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Outline

▶ The talk is intended for a general audience (students,
mathematicians, economists, engineers, scientists,
statisticians, cardiologists).

▶ Scope: What is Egorychev method all about?

▶ A crash course in functions of complex variables.

▶ Outline of Egorychev method: three flavors, I, II, III.

▶ Example of Egorychev I.

▶ Example of Egorychev III.

▶ Residue calculus, and two examples of Egorychev II.

▶ Time permitting: one example done by all three variations.

▶ Time permitting: more examples.



Scope: Schläfli’s identity

Is there anyway to reduce the sum?

k∑
j=0

(−1)k−j

(
n + j − 1

n − k − 1

)(
n + k

k − j

){ j + k

j

}
.

Where do we start? Egorychev method is algorithm-like: steps if
you follow will give you the reduction:

k∑
j=0

(−1)k−j

(
n + j − 1

n − k − 1

)(
n + k

k − j

){ j + k

j

}
=
[ n

n − k

]
.

[
n
k

]
:= signless Stirling numbers of the first kind.{

n
k

}
:= Stirling numbers of the second kind.



Complex functions

Some basic knowledge of complex variable theory is assumed, but
not a whole lot:

i =
√
−1 .

We use the form z = x + iy , for complex variable. The symbol |z |
stands for the magnitude

√
x2 + y2 of z .

We consider a function (such as z2 or ez) as a function of a
complex variable, complex function.



Derivatives
A complex function derivative f , can have a derivative, defined in
the usual way as the rate of change (possibly complex) of f at z ,

f (z + h)− f (z)

h

for a displacement h (in infinitesimal complex units) , as such
displacement tends to 0 in magnitude.

To guarantee the existence of such a derivative, regardless of the
path of approach, Cauchy-Riemann equations are necessary and
sufficient conditions.

It is not our intention to get into these conditions as line integrals
are more relevant to our purpose.



Line integrals
Formally, line integration is defined as a limit of approximations.

Suppose L is a line (not necessarily straight) joining the two points
a and b in the z-complex plane. Divide the line L into segments by
choosing n distinct points on it; call the dividing points z1, . . . , zn.
Think of a as z0 and of b as zn+1. From each of the n + 1
segments choose a point. The point from the kth segment is to be
called ξk .



Line integrals

Consider the (complex) sum

Sn =
n+1∑
k=1

f (ξk)∇zk ,

where ∇zk is the backward difference zk − zk−1. Let n → ∞ in
such a way that the largest absolute difference |∇zk | converges to
0, i.e., max1≤k≤n |∇zk | → 0. If Sn converges to a limit, we call
that limit the integral of f (z) on L and denote it by

∫
L f (z) dz .

When the line L is not a self-intersecting closed curve, forming a
contour, we write the contour integration in the notation∮

L
f (z) dz .



Generating functions versus
formal power series

Generating functions are a way to represent sequences of numbers
(real or complex). Suppose a0, a1, a2, . . . is a given sequence of
complex numbers. The representation

f (z) = a0 + a1z + a2z
2 + · · ·

is called an ordinary generating function of the sequence {an}∞n=0.
One thinks of the powers of z as placeholders of the coefficients:
zn has the coefficient an.



Laundry line

Herbert Wilf, Generatingfunctionology Academic Press, (1990).
Famous quote



Formal power series
Such a representation is very useful in itself as a formal power
series.

The expression formal power series stands for a series of powers
without regard to the possibility of convergence.

But, it often aids a derivation, when the representation appears in
closed form or coincides with a known elementary function.



Exponential generating
functions

Sometimes, it is more convenient to work with the ordinary
generating function of the sequence {an/n!}∞n=0, which is

g(z) =
∞∑
n=0

an
zn

n!
.

In this form, the generating function is called the exponential
generating function of the sequence {an}∞n=0.
When valuation is desired, the presence of the fast-growing
factorials in the exponential generating function helps the
convergence of the exponential generating function toward a limit.



Example
an = 1.

Such a sequence has ordinary generating function

f (z) =
∞∑
n=0

zn.

As a formal power series, zn holds the coefficient 1 in front of it.
However, this geometric series is convergent only within the disc
|z | < 1, and when it converges, it approaches h(z) = 1/(1− z).

f
(1
4

)
=

4

3
,

f (7) has no meaning (other than the undefined ∞), though
h(7) = −1/6.
h(z) is the analytic continuation of f (z), a function that agrees
with f (z), wherever f (z) is defined, but extends the definition to a
domain in the z-complex plane that is larger than that of f (z).



Convergence issues

In contrast, the sequence of 1’s has the exponential generating
function

g(z) =
∞∑
n=0

zn

n!
= ez ,

well defined and convergent at every point in the z-complex plane.



The Extractor
We use the notation [zn] h(z) to extract the nth coefficient in the
formal power series expansion of h(z). Thus, if f (z) is the ordinary
generating function of the sequence {an}∞n=0, then

[zn] f (z) = an.

For instance, for the sequence of 1’s

[zn] f (z) = 1, [zn] g(z) =
1

n!
.

Popularized in Philippe Flajolet’s work.
Alden Biesen (Belgium), 2006.



Shifting and scaling

Shifting
[zn−k ] f (z) = [zn] zk f (z),

zk f (z) = a0z
k + a1z

k+1 + · · ·+ an−kz
n + · · · .

To find the nth coefficient an, look for the power of n − k in f (z).

Rescaling
qn[zn] f (z) = [zn] f (qz),

both sides are qnan.
Power shifting is magic. Formulated and popularized in Riedel’s
work.



The algebra of formal power
series

When a generating function does not converge, it may still be
viewed as a useful formal power series.
For instance, the expression

f (z) =
∞∑
n=0

n! zn

is a formal power series for the factorials, though it is not
convergent for any z in the complex plane, except at z = 0.
With the notion of convergence set aside, it is easier to build an
“algebra” for formal power series than for convergent series, since
the conditions are relaxed.



The algebra of formal power
series

In essence, the algebra on formal power series is an algebra on the
sequences they represent.
Suppose f1(z) =

∑∞
n=0 an z

n and f2(z) =
∑∞

n=0 bn z
n are two

formal power series representing the two sequences {an}∞n=0 and
{bn}∞n=0.
We define the sum

f1(z) + f2(z) =
∞∑
n=0

(an + bn)z
n,

without any regard to the convergence of either formal power
series or the outcome of the addition.



Sums and differences
For instance, if

f1(z) =
∞∑
n=0

zn, f2(z) =
∞∑
n=0

n! zn,

we accept their sum as

f1(z) + f2(z) =
∞∑
n=0

(1 + n!)zn,

generating the sequence 1 + n!, even though f2(z) is not
convergent anywhere, except at z = 0 (nor is the sum).
Local focus (convergence is a global property).
Similarly, we define the difference

f1(z)− f2(z) =
∞∑
n=0

(an − bn)z
n,



Products

f1(z)f2(z) =
∞∑
n=0

n∑
k=0

akbn−kz
n.

Note that in the definition of the product, only a finite portion of
both sequences is engaged, emphasizing the “local” aspect of the
operation at each index n.



Analytic functions
A function f of the complex variable z is called analytic at z , if it
is differentiable in an open neighborhood of z .

Example

f (z) = ez .

is analytic at z = 3, in fact everywhere.

The function

f (z) =
2

z − 3
.

is not analytic at 3. In fact, its analytic everywhere, except at
z = 3



Singularities

If f (z) is not analytic at z , the point z is considered a singularity,
a point where a complex function is not well behaved
(non-differentiable, infinite, for example).



Poles

If there is n ≥ 1, such that (z − z0)
nf (z) has a nonzero limit as z

approaches z0, we say z0 is a pole of f (z) of order n.

Example

f (z) =
2z

(z − 4)(z − (2− 3i))5
.

The points 4 and 2− 3i are poles, of orders 1 and 5.



Residues
The residue of a function f with a pole of order m at z0 is

res
z=z0

f (z) =
1

(m − 1)!
lim
z→z0

dm−1

dzm−1
(z − z0)

mf (z).

The residue at infinity has a special definition:

res
z=∞

f (z) = − 1

z2
res
z

f
(1
z

)
.

For instance, we have

res
z=0

3

z(z + 1)
= lim

z→0
z × 3

z(z + 1)
= 3;

res
z=−1

3

z(z + 1)
= lim

z→−1
(z + 1)× 3

z(z + 1)
= −3,

and

res
z=2

5

z(z − 2)2
= lim

z→2

d

dz
(z − 2)2 × 5

z(z − 2)2
= −5

4
.



Branch points
A point for which one turn on any closed path around it does not
bring the function back to the same value.

Example

ln z = ln e2kπi = 2πik , fork = 0, 1, 2, . . . .

After one turn ln(1) = 0;
after two turns ln(1) = 2πi .
You go up one floor on the so-called Riemann surfaces:



Branch points
For ln z
The origin (0,0) is a branching point:

The point (1,1) is not a branching point:



Branch cuts

A line if crossed while turning, the function changes its value.

Not unique.

A (possible) branch cut for ln z .



Meromorphic functions
A function f (z) is meromorphic in a region, if it is analytic in that
region, except for a finite number of poles. This is mostly what
appears in applications of Egorychev method.

Even when we make a transformation that introduces a branching
points, we craft contours avoiding them and not crossing their
branch cuts.

Other types of singularities
Removable singularity: (z − 1)/(z2 − 1), easy to recognize and
deal with.
Essential singularity: If f (z) is not differentiable at z and the
singularity is not one of the other three types, it is called an
essential singularity. As an example, the function e1/z has an
essential singularity at 0.



Cauchy’s residue theorem

∮
L
f (z)dz = 2πi

n∑
k=1

res
z=zk

f (z).

∮
L

dz

z2
= 0,

∮
L

dz

z
= 2πi ,

∮
L
z2 dz = 0.



The nitty-gritty: Egorychev
method

In his book, Egorychev outlines a potent method for the reduction
of combinatorial sums.

The chief idea is to identify parts that can be summed in closed
form, then treat the leftover via series (formal power series,
residues, Cauchy integrals).



How do we identify summable
part: EgorychevI, II, III

There are three variations; the chief idea in all three nuances is to
identify parts that can be summed in closed form by:

(I) recognizing by direct inspection a combinatorial connection of
certain coefficients in the summand to the coefficients in the
expansion of a known formal power series,

(II) by replacing some factors in the summand with residue
operators,

(III) or by replacing some factors in the summand with Cauchy
contour integrals as i, for example.



What then?

Once the summation is gone, what is left is a core function (under
an operator like an extractor, a residue or a Cauchy integral.
From the core the extraction of coefficients is done by direct
inspection, by computing residues, or by evaluating an integral via
Cauchy’s integral formula.

Egorychev I: The most direct, recognition of standard formal
power series.
Egorychev II: convenient, when the coefficients are residues of
functions (Egorychev’s algorithmic approach).
Egorychev III: is actual integration. This heavy machinery should
be reserved as a last resort for cases, where the core has poles of
arbitrarily high orders inside and outside any chosen contour.



Binomial coefficients

Before I start any examples, we are using the analytic continuation
of the usual binomial coefficients(

z

k

)
=

z(z − 1) . . . (z − k + 1)

k!
.

(
8

3

)
,

(
1/2
3

)
,

(
−1/2
3

) (
5 + 2i

3

)
all have meanings.
For example (

−1/2
3

)
=

(−1/2)(−3/2)(−5/2)

6
= − 5

16
.



Example: Egorychev I
n∑

k=0

(−4)k
(
p

k

)(
2p − 2k

n − k

)
= (−1)n

(
2p

n

)
,

By the power shift technique, we have

Sn =
n∑

k=0

(−4)k
(
p

k

)
[zn−k ] (1 + z)2p−2k

=
n∑

k=0

(−4)k
(
p

k

)
[zn] zk(1 + z)2p−2k

= [zn] (1 + z)2p
∞∑
k=0

(
p

k

)
(−4z)k

(1 + z)2k
.

We have identified a sum that has a closed form (by the binomial
theorem):



Let’s get a core

Sn = [zn] (1 + z)2p
∞∑
k=0

(
p

k

)
(−4z)k

(1 + z)2k

[zn] (1 + z)2p
(
1− 4z

(1 + z)2

)p
= [zn]

(
(1 + z)2 − 4z

)p
= [zn] (z2 − 2z + 1)p

= [zn] (1− z)2p

= (−1)n
(
2p

n

)
.



Gould’s extension

This is Example 3 in Egorychev’s book.
The result then holds for any complex p, because both sides are
polynomials in z of degree n. Once two polynomials of degree n
agree at n points, they are the same everywhere in the complex
plane. This is a technique used frequently in Gould’s compilation
(an Internet source, self published by the author).

n∑
k=0

(−4)k
(
z

k

)(
2z − 2k

n − k

)
= (−1)n

(
2z

n

)
,

for any complex z .



Example: Egorychev III
We establish the identity

m∑
k=0
k odd

(
2n

k

)(
2m − 2n

m − k

)
=

1

2

(
2m

m

)
+ (−4)m

(
n − 1/2

m

)
.

This is Problem 3782050 on math.stackexchange.com.
Toward a proof, let us call the sum Sn,m. To avoid skipping
indices, we work with the difference between two full sums:

2Sn,m = S
(1)
n,m − S

(2)
n,m,

where

S
(1)
n,m :=

m∑
k=0

(
2n

k

)(
2m − 2n

m − k

)
=

(
2m

m

)
;

S
(2)
n,m :=

m∑
k=0

(−1)k
(
2n

k

)(
2m − 2n

m − k

)
.



S
(1)
n,m

S
(1)
n,m :=

m∑
k=0

(
2n

k

)(
2m − 2n

m − k

)
=

(
2m

m

)

In S
(1)
n,m we can use Vandermonde identity, which has an algebraic

proof, a combinatorial proof, and a probability proof. We point out
that it can also be proved straightforwardly via Egorychev I.



S
(2)
n,m
We re-index the sum S

(2)
n,m by setting j = m − k and switch the

sign of the upper index of one binomial coefficient

S
(2)
n,m :=

m∑
k=0

(−1)k
(
2n

k

)(
2m − 2n

m − k

)
=

m∑
j=0

(−1)m−j

(
2n

m − j

)(
2m − 2n

j

)

= (−1)m
∞∑
j=0

(−1)j
(

2n

2n −m + j

)(
2m − 2n

j

)

= (−1)m
∞∑
j=0

(−1)j(−1)2n−m+j

(
−m + j − 1

2n −m + j

)(
2m − 2n

j

)

= (−1)m
∞∑
j=0

(−1)j
(
2m − 2n

j

)
1

2πi

∮
|z|=ϵ

dz

z2n−m+j+1(1− z)m−j+1
.



S
(2)
n,m =

(−1)m

2πi

∮
|z|=ε

1

z2n−m+1(1− z)m+1

×
∞∑
j=0

(−1)j
(
2m − 2n

j

)
(1− z)j

z j
dz ,

for some ε ∈ (0, 1). We shall specify a suitable value for ε after a
transformation.

We have identified a part that can be summed in closed form
by the binomial theorem.



The core

S
(2)
n,m =

(−1)m

2πi

∮
|z|=ε

1

z2n−m+1(1− z)m+1

(
1− 1− z

z

)2m−2n
dz

=
(−1)m

2πi

∮
|z|=ε

(1− 2z)2m+2−2−2n

zm+1(1− z)m+1
dz .

As m is arbitrary, the pole at 0—inside the contour—is of
arbitrarily high order. It does not help to try evaluating the integral
via the pole at 1—lying outside the contour—which is of arbitrarily
high order, too.



A change of integration
variable

Put w = z(1− z)/(1− 2z)2. Note right away that a big chunk of
the integrand is simplified via this transformation. Namely, we
have (1− 2z)2/(z(1− z)) = 1/w , and the part
(1− 2z)2m+2/zm+1(1− z)m+1 is to be replaced with 1/wm+1.



Inversion

To invert this relation, to get z in terms of w , we need to solve the
quadratic equation

(1 + 4w)z2 − (1 + 4w)z + w = 0.

The two solutions are

z =
1

2
± 1

2
√
1 + 4w

.

Of the two branches, we choose the one with the negative sign to
have w = 0 as the image of z = 0.
As we transform the integral, we get a Jacobian:

dz = dw/(1 + 4w)3/2. We have 1− 2z = (1 + 4w)−
1
2 ,



Beware of the branch point

The integrand in the new domain is w−(m+1)(1 + 4w)n−
1
2 . At −1/4

we have a branching point. One possible branch cut in the w -plane

is the line (−∞,−1/4]. The function (1 + 4w)n−
1
2 is analytic inside

the disc |w | < 1/4.



Instantiating the contour
Recall w = z(1− z)/(1− 2z)2. and z is rotating on a circle of
0 < ε < 1
Bounding the magnitude:

ε(1− ε)

(1 + 2ε)2
≤ |w | ≤ ε(1 + ε)

(1− 2ε)2
.

However, the transformed contour must not intersect the branch
cut, i.e., we must take ε(1 + ε)/(1− 2ε)2 < 1/4, which says ε < 1/8.
We may instantiate ε to 1/9 to have

8

121
≤ |w | ≤ 10

49
.

The left plot in Figure 1 shows the transformed contour (in red)
enclaved in an annulus of outer radius 10/49 (the green circle) and
inner radius 8/121 (the blue circle).



We get the transformed integral

S
(2)
n,m =

(−1)m

2πi

∮
|w |=8/121

(1 + 4w)n−
1
2

wm+1
dw = (−4)m

(
n − 1

2

m

)
.

The ϵ-γ technique used in the example is general and works well
for other more complicated examples, as it did here. It is
remarkable that the original contour is a circle, and its image is
almost a circle of the same radius.

Figure: The transformed contours in the w -plane: (a) left (red), with
|z | = 1/9; (b) right (red), with |z | = 1/3.



Egorychev II: Residue calculus

A certain calculus does apply to residues and renders Egorychev
method algorithm-like with certain intermediate steps almost
automated.
In his book, Egorychev presents a set of “rules,” for finding the
residues in multivariate functions of complex variables, such as
f (z1, . . . , zn). He then moves to the simplified univariate versions.
That’s all we need for our examples.



Rules

(i) Removal of the residue operator: The residues
res
w

A(w)/wk+1 and res
w

B(w)/wk+1 are equal, for each

k ≥ 0, if and only if A(w) = B(w).

(ii) Linearity: For any complex numbers α and β, we have

res
w

(
α
A(w)

wk+1
+ β

B(w)

wk+1

)
= α res

w

A(w)

wk+1
+ β res

w

B(w)

wk+1
,

for each k ≥ 0.

(iii) Substitution of coefficients: For a function A(z) that does not
have a pole at zero, we have the expansion

A(z) =
∞∑
k=0

zk res
w

A(w)

wk+1
.



Rules
(iv) Inversion: Suppose h(w) = w/f (w), and g(z) is the inverse

of the series z = h(w), i.e., g(z) = w . Suppose further that
the free term (coefficient of z0) in the formal power series
f (z) is not equal to zero. For a meromorphic function A(w)
that does not have a pole at 0, we have

∞∑
k=0

zk res
w=0

A(w) f k(w)

wk+1
=
( A

(
g(z)

)
f
(
g(z)

)
h′
(
g(z)

)).
(v) Change of variable under the residue operator: Suppose f (z)

has a nonzero free term, and h(w) = w/f (w). For w = g(z),
the inverse of z = h(w), and a meromorphic function A(w)
that does not have a pole at 0, we have

res
w

A(w) f k(w)

wk+1
= res

z

A
(
g(z)

)
zk+1f

(
g(z)

)
h′
(
g(z)

) ,
for each k ≥ 0.



Rules

(vi) Differentiation:

res
w

A′(w)

wk
= k res

w

A(w)

wk+1
, for each k ≥ 0.

(vii) Integration:

1

k + 1
res
w

A(w)

wk+1
= res

w

1

wk+2

∫ w

0
A(s) ds, for each k ≥ 0.



Example: Egorychev II

k∑
j=0

(−1)k−j

(
n + j − 1

n − k − 1

)(
n + k

k − j

){ j + k

j

}
=
[ n

n − k

]
.

[
n
k

]
:= signless Stirling numbers of the first kind.{

n
k

}
:= Stirling numbers of the second kind.



Toward a proof, let us call the sum Sn,k .

Stirling number of the second kind is a coefficient in a formal
power series (exponential generating function) and can be
extracted as a residue:{n

k

}
=

n!

k!
res
z

(ez − 1)k

zn+1
.



We start with re-indexing (setting j = k − s), while retrieving the
Stirling number as a coefficient of the exponential generating
function and using the index shift:



j = k − s

Sn,k

k∑
j=0

(−1)k−j
(

n + j − 1

n − k − 1

)(
n + k

k − j

){ j + k

j

}

=
k∑

s=0

(−1)s
(
n + k − s − 1

n − k − 1

)(
n + k

s

){ 2k − s

k − s

}

=
k∑

s=0

(−1)s
(n + k − s − 1)!

(n − k − 1)! (2k − s)!

(
n + k

s

)
(2k − s)!

(k − s)!
[z2k−s ] (ez − 1)k−s

=
(n − 1)!

(n − k − 1)!

k∑
s=0

(−1)s
(n + k − s − 1)!

(k − s)! (n − 1)!

(
n + k

s

)
[z2k ] zs (ez − 1)k−s

=
(n − 1)!

(n − k − 1)!
[z2k ] (ez − 1)k

k∑
s=0

(−1)s
(
n + k − s − 1

k − s

)
×

(
n + k

s

)
zs (ez − 1)−s



Sn,k =
(n − 1)!

(n − k − 1)!
[z2k ] (ez − 1)k

k∑
s=0

(−1)s
(
n + k − s − 1

k − s

)
×
(
n + k

s

)
zs(ez − 1)−s

=
(n − 1)!

(n − k − 1)!
[z2k ] (ez − 1)k

k∑
s=0

(−1)s [wk−s ] (1 + w)n+k−s−1

×
(
n + k

s

)
zs(ez − 1)−s

=
(n − 1)!

(n − k − 1)!
[z2k ] (ez − 1)k [wk ] (1 + w)n+k−1

×
k∑

s=0

(−1)s w szs(1 + w)−s(ez − 1)−s ×
(
n + k

s

)
.



Collecting the terms containing w under the extractor [wk ], we
find (1 + w)n+k−1w s(1 + w)−s , with an expansion starting at at
w s—there is no contribution to the extractor, when s > k .
Hence, we can extend the sum to go till n + k , and identify the
binomial theorem expansion:

Sn,k =
(n − 1)!

(n − k − 1)!
[z2k ] (ez − 1)k

× [wk ] (1 + w)n+k−1
(
1− wz

(1 + w)(ez − 1)

)n+k

=
(n − 1)!

(n − k − 1)!
[z2k ] (ez − 1)−n

× [wk ] (1 + w)−1
(
w(ez − 1− z) + (ez − 1)

)n+k

=
(n − 1)!

(n − k − 1)!
[z2k ] (ez − 1)−n [wk ] (1− w + w2 − w3 + · · · )

×
n+k∑
j=0

(
n + k

j

)
w j(ez − 1− z)j(ez − 1)n+k−j .

Performing the extraction of the coefficient of wk , we get



Performing the extraction of the coefficient of wk , we get

Sn,k =
(n − 1)!

(n − k − 1)!
[z2k ] (ez − 1)−n

×
k∑

s=0

(−1)k−s

(
n + k

s

)
(ez − 1− z)s(ez − 1)n+k−s

=
(n − 1)!

(n − k − 1)!
[z2k ] (ez − 1)−n

×
k∑

s=0

(−1)k−s

(
n + k

s

)((
1 + z +

z2

2
+

z3

6
+ · · ·

)
− 1− z

)s
×
((

1 + z +
z2

2
+ · · ·

)
− 1
)n+k−s

=
(n − 1)!

(n − k − 1)!
[z2k ] (ez − 1)−n

×
k∑

s=0

(−1)k−s

(
n + k

s

)((z2
2

+
z3

6
+ · · ·

)s(
z +

z2

2
+ · · ·

)n+k−s
.



Note that the expansion of (ez − 1)−n starts at z−n. The
summand, if evaluated at s = k + 1, . . . , n + k , would yield
expansions starting at powers higher than n + 2k . In conjunction
with the powers coming from the expansion of (ez − 1)−n (the
least among which is z−n), we get powers of z higher than 2k .
So, we are free to extend s beyond k to n + k . The extractor [z2k ]
annihilates them.
We end up with

Sn,k =
(n − 1)!

(n − k − 1)!
(−1)k [zk ]

( z

ez − 1

)n
=

(n − 1)!

(n − k − 1)!
(−1)k res

z

1

zk+1

( z

ez − 1

)n
.



Now, put ez − 1 = v , so that z = ln(1+ v), with dz = dv/(1 + v).
Applying a modification of Rule (v); a generalization in Fürst
(2001):

Sn,k =
(n − 1)!

(n − k − 1)!
(−1)k res

v

1

vn
lnn−k−1(1 + v)× 1

1 + v
.

Using the integration rule (Rule (vii)) from the residue calculus,
with A(v) = 1

v+1 ln
n−k−1(1 + v), we get

Sn,k =
(n − 1)!

(n − k − 1)!
(−1)k × n res

v

1

vn+1

∫ v

0
lnn−k−1(1 + s)

ds

s + 1

=
(n − 1)!

(n − k − 1)!
(−1)k [vn]

n

n − k
lnn−k(1 + v)

=
n!

(n − k)!
(−1)k+n [vn] lnn−k(1− v)



Sn,k =
n!

(n − k)!
(−1)k+n [vn] lnn−k(1− v)

=
n!

(n − k)!
[vn] lnn−k 1

1− v
;

in the penultimate step, the sign (−1)n came into the expression
by enacting the rescaling property of extractors from a formal
power series, with the scale −1.
This is the nth coefficient in the exponential generating function of
Stirling numbers of the first kind.

Sn,k =
[ n

n − k

]
.



Comparing the methods

One example, three variations
we establish the identity

n∑
k=0

(−1)k
(
n

k

)(
n + k

n

)(
k

j

)
= (−1)n

(
n

j

)(
n + j

j

)
by all three variations.
Let us call the given sum as Sn,j .



Egorychev I
Here we identify a summable part and a core that happens to have
a well-known formal power series; it is simply the binomial theorem:

Sn,j =
n∑

k=0

(−1)k
(
n

k

)
[zn] (1 + z)n+k [w j ] (1 + w)k

= [zn] (1 + z)n[w j ]
n∑

k=0

(−1)k
(
n

k

)
(1 + z)k(1 + w)k

= [zn] (1 + z)n [w j ]
(
1− (1 + z)(1 + w)

)n
= (−1)n [zn] (1 + z)n[w j ]

(
z + w(1 + z)

)n
= (−1)n [zn] (1 + z)n

(
n

j

)
zn−j(1 + z)j

= (−1)n
(
n

j

)
[z j ] (1 + z)n+j

= (−1)n
(
n

j

)(
n + j

j

)
.



Egorychev II
Here again, we identify a summable part wile extracting
coefficients as residues:

Sn,j =
n∑

k=0

(−1)k
(
n

k

)
res
z

(1 + z)n+k

zn+1
res
w

(1 + w)k

w j+1

= res
z

(1 + z)n

zn+1
res
w

1

w j+1

n∑
k=0

(−1)k
(
n

k

)
(1 + z)k(1 + w)k

= res
z

(1 + z)n

zn+1
res
w

1

w j+1

(
1− (1 + z)(1 + w)

)n
= (−1)n res

z

(1 + z)n

zn+1
res
w

1

w j+1

(
z + w(1 + z)

)n
= (−1)n res

z

(1 + z)nzn−j(1 + z)j

zn+1

(
n

j

)
= (−1)n

(
n

j

)
res
z

(1 + z)n+j

z j+1

= (−1)n
(
n

j

)(
n + j

j

)
.



Egorychev III
Extract the second and third binomial coefficients by Cauchy
integrals:

Sn,j =
n∑

k=0

(−1)k
(
n

k

)
1

2πi

∮
|z|=1

(1 + z)n+k

zn+1
× 1

2πi

∮
|w |=1

(1 + w)k

w j+1
dw dz

=
1

2πi

∮
|z|=1

(1 + z)n

zn+1

× 1

2πi

∮
|w |=1

1

w j+1

n∑
k=0

(−1)k
(
n

k

)
(1 + z)k(1 + w)k dw dz

=
1

2πi

∮
|z|=1

(1 + z)n

zn+1

× 1

2πi

∮
|w |=1

1

w j+1

(
1− (1 + z)(1 + w)

)n
dw dz .



The inner integral recovers the jth coefficient in(
1− (1 + z)(1 + w)

)n
= (−1)n(z + (1 + z)w)n, and we write

Sn,j =
(−1)n

2πi

∮
|z|=1

(1 + z)n

zn+1

(
n

j

)
zn−j(1 + z)j dz

=
(−1)n

2πi

(
n

j

)∮
|z|=1

(1 + z)n+j

z j+1
dz .

Then again, the remaining integral recovers the jth coefficient in
(1 + z)n+j , yielding

Sn,j = (−1)n
(
n

j

)(
n + j

j

)
.

Surprise, surprise, surprise!
All three methods give the same result!



A Moriarty identity:
Egorychev II

Let us establish the identity

n∑
k=m

(−4)k
(
k

m

)(
n + k

2k

)
n

n + k
= (−1)n 4m

n

n +m

(
n +m

2m

)
.

Toward a proof, let us call the sum Sn,m, and start with the
simplification(

n + k

2k

)
n

n + k
=

(
n + k

2k

)
n + k − k

n + k
=

(
n + k

2k

)
−

k

n + k
×

n + k

2k

(
n + k − 1

2k − 1

)
.

We split Sn,m into two sums: Sn,m = S
(1)
n,m − S

(2)
n,m, where

S
(1)
n,m :=

n∑
k=m

(−4)k
(
k

m

)(
n + k

2k

)
=

n∑
k=m

(−4)k
(
k

m

)(
n + k

n − k

)
;

S
(2)
n,m :=

1

2

n∑
k=m

(−4)k
(
k

m

)(
n + k − 1

2k − 1

)
.



The first sum
via the index shift, we get

S
(1)
n,m =

n∑
k=m

(−4)k
(
k

m

)(
n + k

n − k

)

=
n∑

k=m

(−4)k
(
k

m

)
[zn−k ] (1 + z)n+k

=
n∑

k=m

(−4)k
(
k

m

)
[zn] zk(1 + z)n+k

= [zn] (1 + z)n
n∑

k=m

(−4)k
(
k

m

)
zk(1 + z)k .

In the summand, the least power of z is k . So, we can extend the
sum to infinity and coefficient extractor provides 0 for the terms
zk , with k > n. In the following derivation, we re-index, setting
k = m + j , then switch the sign of the upper index of the binomial
coefficient:



S
(1)
n,m = [zn] (1 + z)n

∞∑
j=0

(−4)m+j

(
m + j

m

)
zm+j(1 + z)m+j

= (−4)m [zn] zm(1 + z)n+m
∞∑
j=0

(−4)j
(
m + j

j

)
z j(1 + z)j

= (−4)m [zn−m] (1 + z)n+m
∞∑
j=0

(
−m − 1

j

)(
4z(1 + z)

)j
.

We have identified a part that can be summed by the binomial
theorem in closed form:

S
(1)
n,m = (−4)m [zn−m] (1 + z)n+m 1

(1 + 4z(1 + z))m+1

= (−4)m res
z

1

zn−m+1
(1 + z)n+m 1

(1 + 2z)2m+2
.



Egorychev’s residue calculus
Put z = g(w) = w/(1− w). Note that we are switching from z to
w , while Rule (v) in the residue calculus presents a switch from w
to z . We switch the roles of z and w in Rule (v), and use it at
k = n −m, with the functions

f (z) = 1 + z , h(z) =
z

f (z)
=

z

1 + z
,

z = g(w) =
w

1− w
, A(z) =

(1 + z)2m

(1 + 2z)2m+2
.

Note that the formal power series expansion of f has a nonzero
free term (as f (0) = 1). So, in the numerator we have
A(g(w)) = A(w/(1− w)) = (1− w)2/(1 + w)(2m+2), and in the
denominator we have f (g(w)) = 1 + w/(1− w) = 1/(1− w), and

h′(g(w)) = 1
(1+z)2

∣∣∣
z=w/(1−w)

= (1− w)2.



Executing Rule (v)

S
(1)
n,m =

A
(
g(w)

)
wn−m+1f

(
g(w)

)
h′
(
g(w)

)
= (−4)m res

w

1

wn−m+1
(1− w)

(1− w)2

(1 + w)2m+2
× 1

(1− w)2

= (−4)m res
w

1

wn−m+1

( 1− w

(1 + w)2m+2

)
.

The second sum is handled similarly:

S
(2)
n,m = (−4)m res

w

1

wn−m+1

( 1
2(1− w)2

(1 + w)2m+2

)
.



Combing the parts

Using the switch of the sign in the upper index of the binomial
coefficient, we get

Sn,m = (−4)m res
w

1

wn−m+1

((1− w)− 1
2(1− w)2

(1 + w)2m+2

)
= (−4)m res

w

1

wn−m+1

( 1
2(1 + w)(1− w)

(1 + w)2m+2

)
=

1

2
(−4)m res

w

1

wn−m+1

( 1− w

(1 + w)2m+1

)
=

1

2
(−4)m

((
−2m − 1

n −m

)
−
(
−2m − 1

n −m − 1

))



Finally

Sn,m =
1

2
(−4)m

((
−2m − 1

n −m

)
−
(
−2m − 1

n −m − 1

))

=
1

2
(−4)m

(
(−1)n−m

(
n +m

n −m

)
− (−1)n−m−1

(
n +m − 1

n −m − 1

))

=
1

2
(−1)n4m

((
n +m

n −m

)
+

n −m

n +m

(
n +m

n −m

))

= (−1)n4m
(
n +m

2m

)
n

n +m
.



Summing up
Egorychev method is

Easiest to use when the core function is a formal power series

a0 + a1z + a2z
2 + . . . .

starting at power 0.
If the core has a Laurent series, such as for example

a−2

z2
+

a−1

z
+ a0 + a1z + a2z

2 + . . . ,

The residue calculus or Egorychev III may be the way out.



A Pólya-urn-like thank-you

Thank y ou .


