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The coupon collector problem has been studied in many variations, from ba-
sic probability to advanced research. For an introduction consult the Wikipedia
entry [Wik17] listed in the references. Some results here use the Egorychev
method from [Ego84] to compute binomial coefficient sums by residues.

We present five calculations ranging in difficulty from beginner to more ad-
vanced. The Egorychev method (summation by residues of rational functions)
is used to evaluate some of the more difficult sums that appear. This document
has retained the question answer format used by Math Stackexchange.

1



Contents

1 Basic example, solving the standard problem by Stirling num-
bers 3

2 Number of tuples of some size seen 4

3 Drawing coupons until at least j instances of each type are seen 9
3.1 Drawing coupons until at least 2 instances of each type are seen

with n′ types already collected . . . . . . . . . . . . . . . . . . . 12

4 Drawing coupons until at least one instance of each type is seen
with n′ types already collected 15

5 Processing until a multiset containing some number of distinct
elements has been seen 19

6 Expected number of singletons once all coupons have been col-
lected 21
6.1 The coupon collector’s sibling . . . . . . . . . . . . . . . . . . . . 24

7 Computing the expectation of T-choose-Q, with T the number
of steps and Q the number of distinct coupons among the first
j retrieved 26
7.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8 Retrieving coupons in packets of unique coupons of a certain
size 33

9 Expected time until the first k coupons where k ≤ n have been
collected 37

10 No replacement with j instances of each type of coupon 39
10.1 No replacement with j instances of each type of coupon, a fixed

number of draws and the number of types seen . . . . . . . . . . 44
10.2 No replacement with n instances of each type of coupon, a fixed

number of draws and the number of types not seen . . . . . . . . 45

11 No replacement with j instances of each type until all of one
type is seen 46

12 No replacement with j instances of each type until two of one
type is seen 51

13 No replacement with
(
n
j

)
instances of each type of coupon 55

2



1 Basic example, solving the standard problem
by Stirling numbers

By way of enrichment here is a proof using Stirling numbers of the second
kind which encapsulates inclusion-exclusion in the generating function of these
numbers.

First let us verify that we indeed have a probability distribution here. We
have for the number T of coupons being m draws that

P [T = m] =
1

nm
× n×

{
m− 1

n− 1

}
× (n− 1)!.

Recall the OGF of the Stirling numbers of the second kind which says that{
n

k

}
= [zn]

k∏
q=1

z

1− qz
.

This gives for the sum of the probabilities∑
m≥1

P [T = m] = (n− 1)!
∑
m≥1

1

nm−1

{
m− 1

n− 1

}

= (n− 1)!
∑
m≥1

1

nm−1
[zm−1]

n−1∏
q=1

z

1− qz

= (n− 1)!

n−1∏
q=1

1/n

1− q/n
= (n− 1)!

n−1∏
q=1

1

n− q
= 1.

This confirms it being a probability distribution.
We then get for the expectation that∑

m≥1

m× P [T = m] = (n− 1)!
∑
m≥1

m

nm−1

{
m− 1

n− 1

}

= (n− 1)!
∑
m≥1

m

nm−1
[zm−1]

n−1∏
q=1

z

1− qz

= 1 + (n− 1)!
∑
m≥1

m− 1

nm−1
[zm−1]

n−1∏
q=1

z

1− qz

= 1 + (n− 1)!
∑
m≥2

m− 1

nm−1
[zm−1]

n−1∏
q=1

z

1− qz

= 1 +
1

n
(n− 1)!

∑
m≥2

1

nm−2
[zm−2]

(
n−1∏
q=1

z

1− qz

)′
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= 1 +
1

n
(n− 1)!

(
n−1∏
q=1

z

1− qz

)′
∣∣∣∣∣∣
z=1/n

= 1 +
1

n
(n− 1)!

(
n−1∏
q=1

z

1− qz

n−1∑
p=1

1− pz

z

1

(1− pz)2

)∣∣∣∣∣
z=1/n

= 1 +
1

n
(n− 1)!

n−1∏
q=1

1/n

1− q/n

n−1∑
p=1

1

z

1

1− pz

∣∣∣∣∣
z=1/n

= 1 +
1

n
(n− 1)!

n−1∏
q=1

1

n− q

n−1∑
p=1

n

1− p/n

= 1 +
1

n

n−1∑
p=1

n2

n− p
= 1 + nHn−1 = n×Hn.

This was math.stackexchange.com problem 1609459.

2 Number of tuples of some size seen

To start let us state the probability of needing m draws to collect all n coupons.
Using combinatorial classes as in Analytic Combinatorics we get with the labeled
set operator / class

P[T = m] =
1

nm
×
(
n

1

)
× (m− 1)![zm−1](exp(z)− 1)n−1.

Let us just verify that this will produce n × Hn for the number of draws.
We get

E[T ] =
∑
m≥1

nm

nm
(m− 1)![zm−1](exp(z)− 1)n−1

=
∑
m≥0

m+ 1

nm
m![zm](exp(z)− 1)n−1

=
∑
m≥0

m+ 1

nm
m![zm]

n−1∑
q=0

(
n− 1

q

)
(−1)n−1−q exp(qz)

=
∑
m≥0

m+ 1

nm

n−1∑
q=0

(
n− 1

q

)
(−1)n−1−qqm

=

n−1∑
q=0

(
n− 1

q

)
(−1)n−1−q

∑
m≥0

m+ 1

nm
qm
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=

n−1∑
q=0

(
n− 1

q

)
(−1)n−1−q 1

(1− q/n)2
.

Now to evaluate this last sum we introduce

f(z) = (n− 1)!
1

(1− z/n)2

n−1∏
r=0

1

z − r
= n!

n

(z − n)2

n−1∏
r=0

1

z − r
.

which has the property that

res
z=q

f(z) =

(
n− 1

q

)
(−1)n−1−q 1

(1− q/n)2
.

Residues sum to zero and we may evaluate with minus the residue at z = n:

−n!× n×

(
n−1∏
r=0

1

z − r

)′
∣∣∣∣∣∣
z=n

= n!× n×

(
n−1∏
r=0

1

z − r

n−1∑
r=0

1

z − r

)∣∣∣∣∣
z=n

= n!× n× 1

n!
Hn = n×Hn.

The sanity check goes through.

Main computation

Next we ask how many coupons appear j times in this setting. We get the
mixed GF

1

nm
×
(
n

1

)
× (m− 1)![zm−1]

(
exp(z) + (u− 1)

zj

j!
− 1

)n−1

.

Differentiate with respect to u and set u = 1 to get

1

nm
× n(n− 1)× (m− 1)![zm−1] (exp(z)− 1)

n−2 zj

j!
.

Summing we find

n(n− 1)

j!

∑
m≥j+1

1

nm
(m− 1)![zm−1−j ](exp(z)− 1)n−2

=
n(n− 1)

j!

∑
m≥j+1

1

nm
(m− 1)![zm−1−j ]

n−2∑
q=0

(
n− 2

q

)
(−1)n−q exp(qz)

= n(n− 1)
∑

m≥j+1

1

nm

(
m− 1

m− 1− j

) n−2∑
q=0

(
n− 2

q

)
(−1)n−qqm−1−j
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= (n− 1)
1

nj

∑
m≥0

1

nm

(
m+ j

m

) n−2∑
q=0

(
n− 2

q

)
(−1)n−qqm

= (n− 1)
1

nj

n−2∑
q=0

(
n− 2

q

)
(−1)n−q 1

(1− q/n)j+1

= (−1)j+1n(n− 1)

n−2∑
q=0

(
n− 2

q

)
(−1)n−q 1

(q − n)j+1
.

To evaluate we introduce

f(z) = (n− 2)!
1

(z − n)j+1

n−2∏
r=0

1

z − r

which has the property that

res
z=q

f(z) =

(
n− 2

q

)
(−1)n−q 1

(q − n)j+1
.

Residues sum to zero and we may evaluate with minus the residue at z = n
since the residue at infinity is zero also, and we obtain in terms of a derivative

E[Cj ] = (−1)j
n!

j!

[
n−2∏
r=0

1

z − r

](j)∣∣∣∣∣∣
z=n.

We can use this formula to get concrete values for fixed j. We find for
singletons with j = 1

−n!

[
n−2∏
r=0

1

z − r

n−2∑
r=0

1

r − z

]∣∣∣∣∣
z=n.

= −n!× 1

n!
× (−Hn + 1)

so that

E[C1] = Hn.

Here we have added a unique correction term as the coupon that completes
the set also counts as a singleton.

Continuing with pairs, i.e. j = 2,

1

2
n!

n−2∏
r=0

1

z − r

(
n−2∑
r=0

1

r − z

)2

+

n−2∏
r=0

1

z − r

n−2∑
r=0

1

(r − z)2

∣∣∣∣∣∣
z=n.

so that we obtain 1
2 [(Hn − 1)2 +H

(2)
n − 1] or

E[C2] =
1

2
[H2

n − 2Hn +H(2)
n ].
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To conclude we do triples i.e. j = 3. We need to differentiate

n−2∏
r=0

1

z − r

(n−2∑
r=0

1

r − z

)2

+

n−2∑
r=0

1

(r − z)2


which gives

n−2∏
r=0

1

z − r

n−2∑
r=0

1

r − z

(n−2∑
r=0

1

r − z

)2

+

n−2∑
r=0

1

(r − z)2


+

n−2∏
r=0

1

z − r

[(
2

n−2∑
r=0

1

r − z

n−2∑
r=0

1

(r − z)2

)
+ 2

n−2∑
r=0

1

(r − z)3

]
Setting z = n we get

−1

6
(−(Hn − 1)[(Hn − 1)2 +H(2)

n − 1]− 2(Hn − 1)(H(2)
n − 1)− 2(H(3)

n − 1))

or

E[C3] =
1

6
((Hn − 1)[(Hn − 1)2 + 3(H(2)

n − 1)] + 2(H(3)
n − 1)).

Asymptotics

For the asymptotics we get

E[C1] ∼ log n+ γ.

as well as for j = 2

1

2
[log2 n+ 2γ log n+ γ2 − 2 log n− 2γ +

π2

6
]

which is

E[C2] ∼
1

2
log2 n+ (γ − 1) log n+

1

2
γ2 − γ +

π2

12
.

The case for j = 3 is left to the reader. Apery’s constant appears.
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Computer Algebra

Using a CAS to automate the differentiation in the formula for E[Cj ] we can
tackle higher values of j e.g. j = 20 is possible. We get for j = 4

E[C4] =
1

24
H4

n,1 −
1

6
H3

n,1 +
1

4
H2

n,1Hn,2 −
1

2
Hn,1Hn,2

+
1

3
Hn,1Hn,3 −

1

3
Hn,3 +

1

8
H2

n,2 +
1

4
Hn,4

and for j = 5

E[C5] =
1

6
Hn,2Hn,3 +

1

12
H3

n,1Hn,2 +
1

6
H2

n,1Hn,3 +
1

8
Hn,1H

2
n,2 +

1

4
Hn,1Hn,4

+
1

5
Hn,5 +

1

120
H5

n,1 −
1

3
Hn,1Hn,3 −

1

8
H2

n,2

−1

4
H2

n,1Hn,2 −
1

4
Hn,4 −

1

24
H4

n,1.

We have for the asymptotics for j = 3

E[C3] ∼
ln(n)

3

6
+

(
γ

2
− 1

2

)
ln(n)

2
+

(
1

2
γ2 − γ +

1

12
π2

)
ln(n)

+
γ3

6
− γ2

2
+

γ π2

12
− π2

12
+

ζ(3)

3
.

and for j = 4

E[C4] ∼
ln(n)

4

24
+

(
−1

6
+

γ

6

)
ln(n)

3
+

(
−1

2
γ +

1

4
γ2 +

1

24
π2

)
ln(n)

2

+

(
γ3

6
− γ2

2
+

γ π2

12
− π2

12
+

ζ(3)

3

)
ln(n)

+
π4

160
− ζ(3)

3
− γ π2

12
− γ3

6
+

γ2π2

24
+

γζ(3)

3
+

γ4

24
.

Observe that adding
∑

j≥1 j ×
1
j! log

j(n) ∼ log(n)× exp(log n) = n× log(n)
which shows we have accounted for all coupons.

This was math.stackexchange.com problem 4970981.
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3 Drawing coupons until at least j instances of
each type are seen

What follows is a minor contribution where we compute a formula for the ex-
pectation for the case where j instances of each of n types of coupons must
be seen. Using the notation from the following MSE link we have from first
principles that

P [T = m] =
1

nm
×
(
n

1

)
× (m− 1)![zm−1]

(
exp(z)−

j−1∑
q=0

zq

q!

)n−1

zj−1

(j − 1)!

=
n

nm
×
(
m− 1

j − 1

)
(m− j)![zm−j ]

(
exp(z)−

j−1∑
q=0

zq

q!

)n−1

.

We verify that this is a probability distribution. The goal here is to
find a closed form for the infinite series in m so that its value may be calculated
rather than approximated. Expanding the power we find

∑
m≥j

P [T = m] =
n

nj

∑
m≥0

1

nm
×
(
m+ j − 1

j − 1

)
m![zm]

n−1∑
k=0

(
n− 1

k

)
exp(kz)

×(−1)n−1−k

(
j−1∑
q=0

zq

q!

)n−1−k

=
n

nj

∑
m≥0

1

nm
×
(
m+ j − 1

j − 1

)
m!

n−1∑
k=0

(
n− 1

k

) m∑
p=0

km−p

(m− p)!

×(−1)n−1−k[zp]

(
j−1∑
q=0

zq

q!

)n−1−k

=
n

nj

n−1∑
k=0

(
n− 1

k

)
(−1)n−1−k

∑
p≥0

[zp]

(
j−1∑
q=0

zq

q!

)n−1−k

×
∑
m≥p

1

nm
×
(
m+ j − 1

j − 1

)
m!× km−p

(m− p)!

=
n

nj

n−1∑
k=0

(
n− 1

k

)
(−1)n−1−k

∑
p≥0

n−p[zp]

(
j−1∑
q=0

zq

q!

)n−1−k

×
∑
m≥0

1

nm
×
(
m+ p+ j − 1

j − 1

)
(m+ p)!× km

m!

9
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The inner sum is

1

(j − 1)!

∑
m≥0

(k/n)m
(m+ p+ j − 1)!

m!
=

(p+ j − 1)!

(j − 1)!

1

(1− k/n)p+j

and with P = (n− 1− k)(j − 1) we obtain

n

n−1∑
k=0

(
n− 1

k

)
(−1)n−1−k

(n− k)j
×

P∑
p=0

1

(n− k)p
(p+ j − 1)!

(j − 1)!
[zp]

(
j−1∑
q=0

zq

q!

)n−1−k

.

We claim that the inner sum is (n−k)j−1, proof for j = 2 at end of document.
With this the sum reduces to

n

n−1∑
k=0

(
n− 1

k

)
(−1)n−1−k

n− k

= −
n−1∑
k=0

(
n

k

)
(−1)n−k = 1−

n∑
k=0

(
n

k

)
(−1)n−k = 1

and we see that we indeed have a probability distribution.
Continuing with the expectation and re-capitulating the earlier compu-

tation we find

E[T ] =
∑
m≥j

mP [T = m] =
n

nj

n−1∑
k=0

(
n− 1

k

)
(−1)n−1−k

∑
p≥0

n−p[zp]

(
j−1∑
q=0

zq

q!

)n−1−k

×
∑
m≥0

1

nm
×
(
m+ p+ j − 1

j − 1

)
(m+ p)!(m+ p+ j)× km

m!

The inner sum has two pieces, the first is

1

(j − 1)!

∑
m≥1

(k/n)m
(m+ p+ j − 1)!

(m− 1)!
=

1

(j − 1)!

k

n

∑
m≥0

(k/n)m
(m+ p+ j)!

m!

=
k

n

(p+ j)!

(j − 1)!

1

(1− k/n)p+j+1
=

k

n− k

(p+ j)!

(j − 1)!

1

(1− k/n)p+j

and the second has been evaluated when we summed the probabilities to
give

(p+ j)
(p+ j − 1)!

(j − 1)!

1

(1− k/n)p+j
=

(p+ j)!

(j − 1)!

1

(1− k/n)p+j
.
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Substituting these into the outer sum we thus obtain

E[T ] = n2
n−1∑
k=0

(
n− 1

k

)
(−1)n−1−k

(n− k)j+1
×

P∑
p=0

1

(n− k)p
(p+ j)!

(j − 1)!
[zp]

(
j−1∑
q=0

zq

q!

)n−1−k

.

There is a very basic program which confirmed this formula for several digits
of precision by simulation which is written in C and goes as follows.

Proof of inner sum for j = 2. Setting j = 2 we have to show that

n− k =

n−1−k∑
p=0

(
n− 1− k

p

)
1

(n− k)p
(p+ 1)!.

This is

1

(n− 1− k)!
=

n−1−k∑
p=0

1

(n− 1− k − p)!

p+ 1

(n− k)p+1
.

Re-writing as follows

1

m!
=

m∑
p=0

1

(m− p)!

p+ 1

(m+ 1)p+1
.

and introducing

1

(m− p)!
=

1

2πi

∫
|w|=γ

1

wm−p+1
exp(w) dw

we obtain for the sum (the integral vanishes nicely when p > m so we may
extend p to infinity)

1

2πi

∫
|w|=γ

1

wm+1
exp(w)

1

m+ 1

∑
p≥0

p+ 1

(m+ 1)p
wp dw

=
1

m+ 1

1

2πi

∫
|w|=γ

1

wm+1
exp(w)

1

(1− w/(m+ 1))2
dw.

We now use the fact that residues sum to zero and the poles are at w = 0,
w = m+ 1 and w = ∞. We get for the residue at infinity

− 1

m+ 1
Resw=0

1

w2
wm+1 exp(1/w)

1

(1− 1/w/(m+ 1))2

= − 1

m+ 1
Resw=0w

m+1 exp(1/w)
1

(w − 1/(m+ 1))2

= −(m+ 1)Resw=0w
m+1 exp(1/w)

1

(1− w(m+ 1))2
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= −(m+ 1)[w−(m+2)] exp(1/w)
1

(1− w(m+ 1))2
.

Extracting coefficients we find

−(m+ 1)
∑
q≥0

1

(q +m+ 2)!
(q + 1)(m+ 1)q.

This is

−(m+ 1)

∑
q≥0

1

(q +m+ 1)!
(m+ 1)q −

∑
q≥0

1

(q +m+ 2)!
(m+ 1)q+1



= −(m+ 1)

∑
q≥0

1

(q +m+ 1)!
(m+ 1)q −

∑
q≥1

1

(q +m+ 1)!
(m+ 1)q


= −(m+ 1)

(m+ 1)0

(m+ 1)!
= − 1

m!
.

We thus have the claim if we can show the residue at w = m+1 is zero. We
use

(m+ 1)
1

2πi

∫
|w|=γ

1

wm+1
exp(w)

1

(w − (m+ 1))2
dw.

and observe that (
1

wm+1
exp(w)

)′
∣∣∣∣∣
w=m+1

=

(
−(m+ 1)

1

wm+2
exp(w) +

1

wm+1
exp(w)

)∣∣∣∣
w=m+1

= exp(m+ 1)

(
−(m+ 1)

1

(m+ 1)m+2
+

1

(m+ 1)m+1

)
= 0

as required. This concludes the computation.
This was math.stackexchange.com problem 2426510.

3.1 Drawing coupons until at least 2 instances of each type
are seen with n′ types already collected

What follows is a computational contribution where we derive a closed form (as
opposed to an infinite series) of the expected number of draws required to see
all coupons at least twice when a number n′ of coupons from the n types where
n′ < n have already been collected in two instances. We then observe that the
expectation does not simplify. It seems like a rewarding challenge to compute
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the asymptotics for these expectations using probabilistic methods and compare
them to the closed form presented below.

Using the notation from this MSE link we have from first principles that

P [T = m] =
1

nm
×
(
n− n′

1

)
×(m−1)![zm−1] exp(n′z) (exp(z)− 1− z)

n−n′−1 z

1
.

We verify that this is a probability distribution. We get∑
m≥2

P [T = m]

= (n− n′)
∑
m≥2

1

nm
(m− 1)![zm−2] exp(n′z) (exp(z)− 1− z)

n−n′−1

= (n− n′)
1

n2

∑
m≥0

1

nm
(m+ 1)![zm] exp(n′z) (exp(z)− 1− z)

n−n′−1

= (n− n′)
1

n2

∑
m≥0

1

nm
(m+ 1)![zm] exp(n′z)

×
n−n′−1∑

p=0

(
n− n′ − 1

p

)
exp((n− n′ − 1− p)z)(−1)p(1 + z)p

= (n− n′)
1

n2

∑
m≥0

1

nm
(m+ 1)!

×[zm]

n−n′−1∑
p=0

(
n− n′ − 1

p

)
exp((n− 1− p)z)(−1)p(1 + z)p

= (n− n′)
1

n2

∑
m≥0

1

nm
(m+ 1)!

×
n−n′−1∑

p=0

(
n− n′ − 1

p

) m∑
q=0

[zm−q] exp((n− 1− p)z)(−1)p[zq](1 + z)p

= (n− n′)
1

n2

∑
m≥0

1

nm
(m+ 1)!

×
n−n′−1∑

p=0

(
n− n′ − 1

p

) m∑
q=0

(n− 1− p)m−q

(m− q)!
(−1)p

(
p

q

)
.

Re-arranging the order of the sums now yields

(n− n′)
1

n2

n−n′−1∑
p=0

(
n− n′ − 1

p

)
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×
∑
m≥0

1

nm
(m+ 1)!

m∑
q=0

(n− 1− p)m−q

(m− q)!
(−1)p

(
p

q

)

= (n− n′)
1

n2

n−n′−1∑
p=0

(
n− n′ − 1

p

)

×
∑
q≥0

(−1)p
(
p

q

)∑
m≥q

1

nm
(m+ 1)!

(n− 1− p)m−q

(m− q)!
.

Simplifying the inner sum we get

1

nq

∑
m≥0

1

nm
(m+ q + 1)!

(n− 1− p)m

m!

=
(q + 1)!

nq

∑
m≥0

1

nm

(
m+ q + 1

q + 1

)
(n− 1− p)m

=
(q + 1)!

nq

1

(1− (n− 1− p)/n)q+2
= (q + 1)!n2 1

(p+ 1)q+2
.

We thus obtain for the sum of the probabilities

∑
m≥2

P [T = m] = (n− n′)

n−n′−1∑
p=0

(
n− n′ − 1

p

)
(−1)p

p∑
q=0

(
p

q

)
(q+1)!

1

(p+ 1)q+2
.

Repeat to instantly obtain for the expectation

E[T ] = n(n− n′)

n−n′−1∑
p=0

(
n− n′ − 1

p

)
(−1)p

p∑
q=0

(
p

q

)
(q + 2)!

(p+ 1)q+3
.

Now to simplify these we start with the inner sum from the probablity using
the fact that

p∑
q=0

(
p

q

)
(q + 1)!

1

(p+ 1)q+1
= 1

which was proved by residues at the cited link from the introduction. We
then obtain

(n− n′)

n−n′−1∑
p=0

(
n− n′ − 1

p

)
(−1)p

p+ 1

=

n−n′−1∑
p=0

(
n− n′

p+ 1

)
(−1)p = −

n−n′∑
p=1

(
n− n′

p

)
(−1)p
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= 1−
n−n′∑
p=0

(
n− n′

p

)
(−1)p = 1− (1− 1)n−n′

= 1

which confirms it being a probability distribution. We will not attempt
this manipulation with the expectation, since actual computation of the values
indicates that it does not simplify as announced earlier. For example, these are
the expectations for the pairs (2n′, n′) :

4, 11,
347

18
,
12259

432
,
41129339

1080000
,
390968681

8100000
,
336486120012803

5717741400000
, . . .

and for pairs (3n′, n′) :

33

4
,
12259

576
,
390968681

10800000
,
2859481756726972261

54646360473600000
, . . .

The reader who seeks numerical evidence confirming the closed form or ad-
ditional clarification of the problem definition used is asked to consult the fol-
lowing simple C program whose output matched the formula on all cases that
were examined.

This was math.stackexchange.com problem 2720594.

4 Drawing coupons until at least one instance
of each type is seen with n′ types already col-
lected

Using the notation from the previous section we have from first principles that

P[T = m] =
1

nm
×
(
n− n′

1

)
× (m− 1)![zm−1] exp(n′z) (exp(z)− 1)

n−n′−1
.

We shall see that with this closed form for the probabilities, we can not
only compute the expectation of the number of draws to collect the remaining
coupons but also the second factorial moment if desired, and the variance. To
start verify that this is a probability distribution. We get

(n− n′)
∑

m≥n−n′

1

nm
× (m− 1)![zm−1] exp(n′z) (exp(z)− 1)

n−n′−1

= (n− n′)
∑

m≥n−n′

1

nm
(m− 1)![zm−1] exp(n′z)

×
n−n′−1∑

q=0

(
n− n′ − 1

q

)
(−1)n−n′−1−q exp(qz)
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= (n− n′)
∑

m≥n−n′

1

nm

n−n′−1∑
q=0

(
n− n′ − 1

q

)
(−1)n−n′−1−q(n′ + q)m−1

=
n− n′

n

n−n′−1∑
q=0

(
n− n′ − 1

q

)
(−1)n−n′−1−q

∑
m≥n−n′

1

nm−1
(n′ + q)m−1

=
n− n′

n

n−n′−1∑
q=0

(
n− n′ − 1

q

)
(−1)n−n′−1−q (n

′ + q)n−n′−1/nn−n′−1

1− (n′ + q)/n

=
n− n′

nn−n′−1

n−n′−1∑
q=0

(
n− n′ − 1

n− n′ − 1− q

)
(−1)n−n′−1−q (n

′ + q)n−n′−1

n− n′ − q

=
1

nn−n′−1

n−n′−1∑
q=0

(
n− n′

n− n′ − q

)
(−1)n−n′−1−q(n′ + q)n−n′−1

= − 1

nn−n′−1

n−n′−1∑
q=0

(
n− n′

q

)
(−1)n−n′−q(n′ + q)n−n′−1

= 1− 1

nn−n′−1

n−n′∑
q=0

(
n− n′

q

)
(−1)n−n′−q(n′ + q)n−n′−1

= 1− (n− n′ − 1)![zn−n′−1]
exp(n′z)

nn−n′−1

n−n′∑
q=0

(
n− n′

q

)
(−1)n−n′−q exp(qz)

= 1− (n− n′ − 1)![zn−n′−1]
exp(n′z)

nn−n′−1
(exp(z)− 1)n−n′

.

Note however that exp(z) − 1 = z + · · · and hence (exp(z) − 1)n−n′
=

zn−n′
+ · · · which means the coefficient extractor [zn−n′−1] is zero and we are

left with just the first term, which is one, and we indeed have a probability
distribution.

Continuing with the expectation we evidently require∑
m≥n−n′

m

nm−1
(n′ + q)m−1

=
(n′ + q)n−n′−1

nn−n′−1

∑
m≥1

m+ n− n′ − 1

nm−1
(n′ + q)m−1.

The simple component from this is

(n− n′ − 1)
(n′ + q)n−n′−1

nn−n′−1

1

1− (n′ + q)/n
.
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Here we recognize a term that we have already evaluated which yields on
substitution into the outer sum the value n−n′−1. Evaluating the second term
we get for the expectation

n− n′ − 1− 1

nn−n′−1

n−n′−1∑
q=0

(
n− n′

q

)
(−1)n−n′−q (n

′ + q)n−n′−1

1− (n′ + q)/n

or

E[T ] = n− n′ − 1− 1

nn−n′−2

n−n′−1∑
q=0

(
n− n′

q

)
(−1)n−n′−q (n

′ + q)n−n′−1

n− n′ − q
.

Introducing

f(z) =
(n− n′)!

n− n′ − z
(n′ + z)n−n′−1

n−n′∏
p=0

1

z − p

we observe that for 0 ≤ q ≤ n− n′ − 1

Resz=qf(z) =
(n− n′)!

n− n′ − q
(n′ + q)n−n′−1

q−1∏
p=0

1

q − p

n−n′∏
p=q+1

1

q − p

=
(n− n′)!

n− n′ − q
(n′ + q)n−n′−1 1

q!

(−1)n−n′−q

(n− n′ − q)!

so that the expectation becomes

n− n′ − 1− 1

nn−n′−2

n−n′−1∑
q=0

Resz=qf(z).

Now residues sum to zero and the residue at infinity is zero as well since
limR→∞ 2πR × Rn−n′−1/R/Rn−n′+1 = 0. So the sum is minus the residue at
z = n− n′ :

Resz=n−n′
(n− n′)!

z − (n− n′)
(n′ + z)n−n′−1

n−n′∏
p=0

1

z − p
.

This needs

(n− n′)!

(n′ + z)n−n′−1
n−n′−1∏

p=0

1

z − p

′∣∣∣∣∣∣
z=n−n′
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Note that when we are waiting for one last coupon i.e. n = n′ + 1 the sum
formula yields for the expectation 0 − n × (−1) = n so we may suppose that
n > n′ + 1. Continue with the derivative to get

(n− n′)! (n− n′ − 1)(n′ + z)n−n′−2
n−n′−1∏

p=0

1

z − p

∣∣∣∣∣∣
z=n−n′

−(n− n′)! (n′ + z)n−n′−1
n−n′−1∏

p=0

1

z − p

n−n′−1∑
p=0

1

z − p

∣∣∣∣∣∣
z=n−n′

= (n− n′ − 1)nn−n′−2 − nn−n′−1Hn−n′ .

Replacing this in the main formula yields the closed form (which also pro-
duces the correct value for n− n′ = 1 BTW)

E[T ] = n×Hn−n′ ∼ n log(n− n′) + γn+
1

2

n

n− n′ −
1

12

n

(n− n′)2
+ · · · .

We thus obtain for forty coupons with thirty already seen the expectation

7381

63
≈ 117.1587302.

Moving on to conclude with the variance we now work with∑
m≥n−n′

m2

nm−1
(n′ + q)m−1

=
(n′ + q)n−n′−1

nn−n′−1

∑
m≥1

(m+ n− n′ − 1)2

nm−1
(n′ + q)m−1.

Here we recognize two easy pieces which are

(n− n′ − 1)2

and

2(n− n′ − 1)(nHn−n′ − (n− n′ − 1)).

With
∑

m≥1 m
2wm−1 = (1+w)/(1−w)3 we have two additional sum terms:

− 1

nn−n′−3

n−n′−1∑
q=0

(
n− n′

q

)
(−1)n−n′−q (n

′ + q)n−n′−1

(n− n′ − q)2

and
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− 1

nn−n′−2

n−n′−1∑
q=0

(
n− n′

q

)
(−1)n−n′−q (n′ + q)n−n′

(n− n′ − q)2
.

For the first of these we use f(z)/(n− n′ − z) and obtain five pieces:

(n− n′ − 1)(n− n′ − 2)nn−n′−3 − 2(n− n′ − 1)nn−n′−2Hn−n′

+nn−n′−1H2
n−n′ + nn−n′−1H

(2)
n−n′ .

The second sum only differs in the exponent on n′ + q and we obtain

(n− n′)(n− n′ − 1)nn−n′−2 − 2(n− n′)nn−n′−1Hn−n′

+nn−n′
H2

n−n′ + nn−n′
H

(2)
n−n′ .

Collecting everything including a factor of 1/2 on the derivative we finally
have (observe cancelation of the polynomial in n and n′)

E[T 2] = n2 ×H2
n−n′ − n×Hn−n′ + n2 ×H

(2)
n−n′ .

Using that

Var[T ] = E[T 2]− E[T ]2

we get

Var[T ] = n2 ×H
(2)
n−n′ − n×Hn−n′ .

The dominant term here is ∼ π2

6 n2.
These results for the expectation and the variance are in agreement with

Wikipedia on the coupon collector problem, where they are derived by proba-
bilistic methods as opposed to the Stirling numbers used here.

This was math.stackexchange.com problem 2824168.

5 Processing until a multiset containing some
number of distinct elements has been seen

By way of enrichment here is the complexity using Stirling numbers of the
second kind. Using the notation from this MSE link we have n coupons, and
ask about the expected time until a multiset containing instances of j different
coupons has been drawn.

First let us verify that we indeed have a probability distribution here. We
have for the number T of coupons being m draws that

P [T = m] =
1

nm
×
(

n

j − 1

)
×
{
m− 1

j − 1

}
× (j − 1)!× (n+ 1− j).
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What happens here is that for a run of m samples to produce a multiset
containing instances of j different coupons for the first time on the last sample
we have two parts, a prefix of length m−1 and a terminal sample that completes
the set. Therefore we must choose the j − 1 values excluding the one that
occurs last for the prefix from the n possibilities which gives the first binomial
coefficient. Next we partition the first m− 1 slots into j − 1 non-empty sets in
an ordered set partition. (Stirling number and factorial). The smallest value
chosen gets the slots listed in the first set, the next one those in the second
set etc. Finally we get n − (j − 1) possibilities (j − 1 values from the prefix
have already been used) for the terminal sample that completes the selection.
Combine with nm possible choices.

Recall the OGF of the Stirling numbers of the second kind which says that{
n

k

}
= [zn]

k∏
q=1

z

1− qz
.

This gives for the sum of the probabilities

∑
m≥1

P [T = m] =

(
n

j − 1

)
(j − 1)!(n+ 1− j)

1

n

∑
m≥1

1

nm−1

{
m− 1

j − 1

}
.

Focusing on the sum we obtain

∑
m≥1

1

nm−1
[zm−1]

j−1∏
q=1

z

1− qz
=

j−1∏
q=1

1/n

1− q/n

=

j−1∏
q=1

1

n− q
=

(n− j)!

(n− 1)!
.

Combining this with the outer factor we get(
n

j − 1

)
(j − 1)!(n+ 1− j)

1

n

(n− j)!

(n− 1)!

=

(
n

j − 1

)
(j − 1)!

(n+ 1− j)!

n!
= 1

This confirms it being a probability distribution.
We then get for the expectation that∑

m≥1

m× P [T = m]

=

(
n

j − 1

)
(j − 1)!(n+ 1− j)

1

n

∑
m≥1

m

nm−1

{
m− 1

j − 1

}
.

We once more focus on the sum to get
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∑
m≥1

m

nm−1
[zm−1]

j−1∏
q=1

z

1− qz
=
∑
m≥1

m

nm−1
[zm]z

j−1∏
q=1

z

1− qz

=

(
j−1∏
q=0

z

1− qz

)′∣∣∣∣∣∣
z=1/n

=

(
j−1∏
q=0

z

1− qz

j−1∑
p=0

1− pz

z

1

(1− pz)2

)∣∣∣∣∣
z=1/n

=

(
j−1∏
q=0

z

1− qz

j−1∑
p=0

1

z

1

1− pz

)∣∣∣∣∣
z=1/n

=

j−1∏
q=0

1/n

1− q/n

j−1∑
p=0

1

1/n

1

1− p/n

=

j−1∏
q=0

1

n− q

j−1∑
p=0

n2

n− p
= n

j−1∏
q=1

1

n− q

j−1∑
p=0

1

n− p
.

Retrieving the outer factor we have(
n

j − 1

)
(j − 1)!(n+ 1− j)

1

n

(n− j)!

(n− 1)!
× n

j−1∑
p=0

1

n− p
.

The front simplifies to one as before and we are left with

n

j−1∑
p=0

1

n− p
= n

n−1∑
p=0

1

n− p
−

n−1∑
p=j

1

n− p

 .

This is
n× (Hn −Hn−j)

This yields nHn when j = n and 1 when j = 1 which are both correct. Using
Hn ∼ log n+ γ we get for j = n/2 the expectation n log 2.

This was math.stackexchange.com problem 2021884.

6 Expected number of singletons once all coupons
have been collected

By way of enrichment here is the expectation using Stirling numbers of the
second kind. In referencing the notation from this MSE link we have n coupons,
and ask about the expected number of singletons once a complete set of n
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different coupons has been drawn. We will be using OGFs and EGFs of Stirling
numbers and switch between them.

First let us verify that we indeed have a probability distribution here. We
have for the number T of coupons being m draws classified according to the
number of singletons that

P [T = m] =
1

nm
×
(

n

n− 1

)

×
n−1∑
q=0

(
n− 1

q

)(
m− 1

q

)
q!

{
m− 1− q

n− 1− q

}
≥2

(n− 1− q)!.

What is happening here is that we first choose the n−1 types of coupons that
go into the prefix, where the one not selected goes into the suffix, completing the
set of coupons. Next we choose q coupons from the ones in the prefix which will
be represented by singletons (factor

(
n−1
q

)
). Next we choose the positions from

the available slots where the singletons will be placed (factor
(
m−1
q

)
q!). We split

the leftover m− 1− q slots into sets of at least two elements, one for each of the
n− 1− q types that have not been instantiated (factor

{
m−1−q
n−1−q

}
≥2

(n− 1− q)!).

This probability simplifies to

P [T = m] =
n× (m− 1)!

nm

n−1∑
q=0

(n− 1)!

q!

1

(m− 1− q)!

{
m− 1− q

n− 1− q

}
≥2

=
n× (m− 1)!

nm

n−1∑
q=0

(n− 1)!

q!
[zm−1−q]

(exp(z)− z − 1)n−1−q

(n− 1− q)!

=
n× (m− 1)!

nm

n−1∑
q=0

(
n− 1

q

)
[zm−1−q](exp(z)− z − 1)n−1−q

=
n× (m− 1)!

nm

n−1∑
q=0

(
n− 1

q

)
[zm−1]zq(exp(z)− z − 1)n−1−q

=
n× (m− 1)!

nm
[zm−1](exp(z)− 1)n−1

=
n!× (m− 1)!

nm
[zm−1]

(exp(z)− 1)n−1

(n− 1)!
.

We then get for the sum of the probabilities (observe that the EGF has
morphed into an OGF)

∑
m≥1

P [T = m] =
n!

n

∑
m≥1

1

nm−1
[zm−1]

n−1∏
q=1

z

1− qz
=

n!

n

n−1∏
q=1

1/n

1− q/n
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=
n!

n

n−1∏
q=1

1

n− q
=

n!

n

1

(n− 1)!
= 1.

The probabilities sum to one and the sanity check goes through.
Continuing with the expected number of singletons we get an extra factor q

which yields

n× (m− 1)!

nm

n−1∑
q=1

q

(
n− 1

q

)
[zm−1]zq(exp(z)− z − 1)n−1−q

=
n(n− 1)× (m− 1)!

nm
[zm−1]

n−1∑
q=1

(
n− 2

q − 1

)
zq(exp(z)− z − 1)n−1−q

=
n(n− 1)× (m− 1)!

nm

×[zm−1]z

n−1∑
q=1

(
n− 2

q − 1

)
zq−1(exp(z)− z − 1)n−2−(q−1)

=
n(n− 1)× (m− 1)!

nm
[zm−2](exp(z)− 1)n−2

=
n!× (m− 1)!

nm
[zm−2]

(exp(z)− 1)n−2

(n− 2)!
.

Now we have ∑
m≥2

wm−2(m− 1)![zm−2]
∑
q≥0

Aq
zq

q!

=
∑
m≥2

wm−2(m− 1)Am−2 =

z
∑
q≥0

Aqz
q

′∣∣∣∣∣∣
z=w

.

Applying this to the expectation yields

n!

n2

∑
m≥2

1

nm−2
[zm−2]

(
n−2∏
q=0

z

1− qz

)′

=
n!

n2

∑
m≥2

1

nm−2
[zm−2]

n−2∏
q=0

z

1− qz

n−2∑
q=0

1− qz

z

1

(1− qz)2

=
n!

n2

∑
m≥2

1

nm−2
[zm−2]

n−2∏
q=0

z

1− qz

n−2∑
q=0

1/z

1− qz

=
n!

n2

n−2∏
q=0

1/n

1− q/n

n−2∑
q=0

n

1− q/n
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= n!

n−2∏
q=0

1

n− q

n−2∑
q=0

1

n− q
.

This simplifies to the end result

Hn ∼ log n+ γ

where we have included an increment of one that represents the singleton
which completed the set of coupons.

This post made extensive use of the technique of annihilated coefficient ex-
tractors (ACE). There are more of these at this MSE link I and at this MSE
link II and also here at this MSE link III.

This was math.stackexchange.com problem 2045183.

6.1 The coupon collector’s sibling

This problem is closely related and represents the scenario where the coupon
collector gives his duplicates to his sibling once all coupons have been collected
and we ask how many coupons the sibling is missing for a full collection on
average.

We start with the species of ordered set partitions with sets of more than
two elements marked. This is

SEQ(UZ + UVSET≥2(Z)).

We thus obtain the generating function

G(z, u, v) =
1

1− u(v exp(z)− vz + z − 1)
.

We then get for the probability that

P [T = m] =
1

nm

(
n

n− 1

)
(m− 1)![zm−1][un−1]G(z, u, v).

What happens here is very simple. We choose the n − 1 coupons that go
into the prefix consisting of m − 1 draws. Then we partition those draws into
sets, one for each type of coupon, containing the position where it appeared.
We mark sets of more than two elements. Doing the extraction in u we find

P [T = m] =
1

nm

(
n

n− 1

)
(m− 1)![zm−1](v exp(z)− vz + z − 1)n−1.

Now to do the usual sanity check that we have a probability distribution we
remove the marking in v and obtain∑

m≥1

P [T = m] =
∑
m≥1

n!

nm
(m− 1)![zm−1]

(exp(z)− 1)n−1

(n− 1)!
.
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This was evaluated at the cited link and the sanity check goes through, more
or less by inspection in fact. Continuing with the expectation of coupons that
were drawn mor than once we differentiate with respect to v and set v = 1,
getting

n!× (m− 1)!

nm
[zm−1](n− 1)

(v exp(z)− vz + z − 1)n−2

(n− 1)!
× (exp(z)− z)

∣∣∣∣
v=1

=
n!× (m− 1)!

nm
[zm−1]

(exp(z)− 1)n−2

(n− 2)!
× (exp(z)− z).

We write this in three pieces, namely

n!× (m− 1)!

nm
[zm−1]

(exp(z)− 1)n−1

(n− 2)!

−n!× (m− 1)!

nm
[zm−2]

(exp(z)− 1)n−2

(n− 2)!

+
n!× (m− 1)!

nm
[zm−1]

(exp(z)− 1)n−2

(n− 2)!
.

Consulting the results from the main link we find for the first two pieces

n− 1− (Hn − 1) = n−Hn.

We then get for the third piece (recognizing the Stirling number EGF and
observing that the EGF morphs into an OGF)

n!

n

∑
m≥1

1

nm−1
[zm−1]

n−2∏
q=1

z

1− qz
=

n!

n

n−2∏
q=1

1/n

1− q/n

=
n!

n

n−2∏
q=1

1

n− q
=

n!

n

1

(n− 1)!
= 1.

We thus have for the answer that the sibling collects n + 1 − Hn coupons
and hence is missing Hn − 1 coupons probabilistically from among the coupons
collected in the prefix. Furthermore and deterministically, the sibling never sees
the last coupon collected because it is always a singleton. Hence the sibling is
missing

Hn

coupons. We may add the halting singleton because it does not involve any
additional probability and is determined by the set partition of the prefix.

What have we learned? On seeing this result it immediately becomes evi-
dent that these two parameters (singletons and duplicates) are prefectly additive
on the level of generating functions and we could have concluded by inspection,
citing the result for singletons from the link without any extra calculation.

This was math.stackexchange.com problem 2166203.
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7 Computing the expectation of T-choose-Q, with
T the number of steps and Q the number of
distinct coupons among the first j retrieved

We present a problem inspired by the work at this MSE link. In particular, we
consider a coupon collector scenario with n coupons where an integer 1 ≤ j ≤
n − 1 is given. We introduce two random variables, namely T and Q where T
represents the number of draws until all coupons have been collected and Q the
number of different coupons that appeared in the first j draws. The following
conjecture is submitted for your consideration.

E

[(
T

Q

)]
=

j∑
k=1

n!

nn−k−1+j
×
{
j

k

} k∑
r=0

(
n+ j − k

k − r

)

×
n−k−1∑
p=0

(−1)n−k−1−p

p!(n− k − 1− p)!

(k + p)n−k−1+r

(n− k − p)r+1
.

I have what I believe to be a proof but it is quite involved. We propose the
following list of questions concerning the above identity:

• does it indeed hold and does it perhaps have a straightforward proof using
probabilistic methods and is there structural simplification

• what are the asymptotics, are there effective estimates of these terms that
match the numeric exact values from the formula without having recurse
to a triple sum.

The reader is invited to compare potentially relevant asymptotics to the data
from the identity.

There is the following extremely basic C program which I include here to
help clarify what interpretation of the problem is being used. Compiled with
GCC 4.3.2 and the std=gnu99 option.

Addendum. As a sanity check when j = 1 the formula should produce
nHn for n ≥ 2. In fact we obtain

n!

nn−1

(
n×

n−2∑
p=0

(−1)n−2−p

p!(n− 2− p)!

(1 + p)n−2

n− 1− p
+

n−2∑
p=0

(−1)n−2−p

p!(n− 2− p)!

(1 + p)n−1

(n− 1− p)2

)
.

For the first sum we introduce

f(z) =
(1 + z)n−2

n− 1− z

n−2∏
q=0

1

z − q

so that the sum is given by (residues sum to zero)
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n−2∑
q=0

Resz=qf(z) = −Resz=n−1f(z)− Resz=∞f(z).

The contribution from the first term is

nn−2

(n− 1)!

and from the second

Resz=0
1

z2
(1 + 1/z)n−2

n− 1− 1/z

n−2∏
q=0

1

1/z − q
= Resz=0

1

zn
(1 + z)n−2

n− 1− 1/z

n−2∏
q=0

z

1− qz

= Resz=0
1

z

(1 + z)n−2

n− 1− 1/z

n−2∏
q=0

1

1− qz
= Resz=0

(1 + z)n−2

z(n− 1)− 1

n−2∏
q=0

1

1− qz
= 0.

Hence the first sum contributes

n!

nn−1
× n

nn−2

(n− 1)!
= n.

For the second sum we use

g(z) =
(1 + z)n−1

(n− 1− z)2

n−2∏
q=0

1

z − q
=

(1 + z)n−1

(z − (n− 1))2

n−2∏
q=0

1

z − q
.

We get for the negative of the residue at n− 1 the value

−

(
(1 + z)n−1

n−2∏
q=0

1

z − q

)′

z=n−1

= −

(
(n− 1)(1 + z)n−2

n−2∏
q=0

1

z − q
− (1 + z)n−1

n−2∏
q=0

1

z − q

n−2∑
q=0

1

z − q

)
z=n−1

= −
(
(n− 1)nn−2 1

(n− 1)!
− nn−1 1

(n− 1)!
Hn−1

)
.

Multiply by n!/nn−1 to get

nHn−1 − (n− 1)nn−2 1

(n− 1)!

n!

nn−1

= nHn−1 − (n− 1)
n

n
= nHn−1 − (n− 1).

For the negative of the residue at infinity we obtain
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Resz=0
1

z2
(1 + 1/z)n−1

(n− 1− 1/z)2

n−2∏
q=0

1

1/z − q
= Resz=0

1

zn+1

(1 + z)n−1

(n− 1− 1/z)2

n−2∏
q=0

z

1− qz

= Resz=0
1

z2
(1 + z)n−1

(n− 1− 1/z)2

n−2∏
q=0

1

1− qz

= Resz=0
(1 + z)n−1

(z(n− 1)− 1)2

n−2∏
q=0

1

1− qz
= 0.

Collecting everything we get

nHn−1 − (n− 1) + n = nHn−1 + n
1

n

or alternatively

nHn

and the sanity check goes through. Observe that we evidently require some-
thing more sophisticated to prove the conjectured identity e.g. when j = n− 1.
(Remark. We don’t need to actually apply the formula for the residues at in-
finity, it is sufficient when working with rational functions to observe that both
f(z) and g(z) have the difference between the degree of the denominator and of
the numerator equal to two.)

This was math.stackexchange.com problem 2125064.

7.1 Proof

We use the notation from the following MSE link with m for the number of
rolls and n for the number of coupons. We can actually answer a more general
question, namely what is the expected number of different faces in the first j
rolls where j ≤ n − 1. We classify according to the number k of different faces
that appeared where 1 ≤ k ≤ j. There are at least two types of coupons.

First let us verify that we indeed have a probability distribution here. We
have for the number T of coupons being m draws that the number of configu-
rations i.e. admissible sequences of draws is(

n

k

)
×
{
j

k

}
× k!× (n− k)

×
k∑

p=0

(
k

p

){
m− 1− j

p+ n− k − 1

}
× (p+ n− k − 1)!.

Observe that
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k∑
p=0

(
k

p

){
m− 1− j

p+ n− k − 1

}
× (p+ n− k − 1)!

= (m− 1− j)![zm−1−j ]

k∑
p=0

(
k

p

)
(exp(z)− 1)p+n−k−1

= (m− 1− j)![zm−1−j ](exp(z)− 1)n−k−1
k∑

p=0

(
k

p

)
(exp(z)− 1)p

= (m− 1− j)![zm−1−j ](exp(z)− 1)n−k−1 exp(kz).

This is

(n− k − 1)!

m−1−j∑
p=0

(
m− 1− j

p

){
p

n− k − 1

}
× km−1−j−p.

We thus introduce the generating function

Gj,k(z) =
∑
m≥n

zm
m−1−j∑
p=0

(
m− 1− j

p

){
p

n− k − 1

}
× km−1−j−p.

Now put (
m− 1− j

p

)
=

1

2πi

∫
|w|=ϵ

1

wm−j−p

1

(1− w)p+1
dw

which controls the range so we may extend p to infinity which yields

Gj,k(z) = k−1−j
∑
m≥n

zmkm

× 1

2πi

∫
|w|=ϵ

1

wm−j

1

1− w

∑
p≥0

{
p

n− k − 1

}
wp

(1− w)p
× k−p dw.

Recall the OGF of the Stirling numbers of the second kind which says that{
n

k

}
= [zn]

k∏
q=1

z

1− qz
.

In the present case this yields

Gj,k(z) = k−1−j
∑
m≥n

zmkm

× 1

2πi

∫
|w|=ϵ

1

wm−j

1

1− w

n−k−1∏
q=1

w/(1− w)/k

1− qw/(1− w)/k
dw
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= k−1−j
∑
m≥n

zmkm

× 1

2πi

∫
|w|=ϵ

1

wm+1

wj+1

1− w

n−k−1∏
q=1

w/(1− w)/k

1− qw/(1− w)/k
dw

= k−1−j k
j+1zj+1

1− kz

n−k−1∏
q=1

z/(1− kz)

1− qz/(1− kz)

=
zj+1

1− kz

n−k−1∏
q=1

z

1− kz − qz
=

zn+j−k

1− kz

n−k−1∏
q=1

1

1− kz − qz

= zn+j−k
n−k−1∏
q=0

1

1− kz − qz
.

We have shown that for the probability of having m draws we get

P [T = m] =
n!

nm

j∑
k=1

{
j

k

}
[zm]zn+j−k

n−k−1∏
q=0

1

1− kz − qz
.

This gives for the sum of the probabilities

n!

j∑
k=1

{
j

k

}
1

nn+j−k

n−k−1∏
q=0

1

1− k/n− q/n

= n!

j∑
k=1

{
j

k

}
1

nn+j−k

n−k−1∏
q=0

n

n− k − q
= n!

j∑
k=1

{
j

k

}
1

nj

n−k−1∏
q=0

1

n− k − q

=
n!

nj

j∑
k=1

{
j

k

}
1

(n− k)!
=

1

nj

j∑
k=1

(
n

k

)
k!

{
j

k

}
=

1

nj
j![zj ]

j∑
k=1

(
n

k

)
(exp(z)− 1)k.

Now since exp(z)− 1 starts at z the power k starts at zk. Therefore we may
extend the range of k beyond j without adding any terms (coefficient on [zj ]
being extracted). We may also include k = 0, which is a number. We obtain

1

nj
j![zj ]

n∑
k=0

(
n

k

)
(exp(z)− 1)k =

1

nj
j![zj ] exp(nz) =

1

nj
j!
nj

j!
= 1.

This confirms it being a probability distribution.
Moving on to the expectation we evidently require the following quantity:

∑
m≥n

(
m

k

)
× n!

nm
×
{
j

k

}
[zm]zn+j−k

n−k−1∏
q=0

1

1− kz − qz
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=
n!

nk
×
{
j

k

}
×
∑
m≥n

(
m

k

)
1

nm−k
[zm]zn+j−k

n−k−1∏
q=0

1

1− kz − qz

=
n!

k!× nk
×
{
j

k

}
×
∑
m≥n

1

nm−k
mk[zm]zn+j−k

n−k−1∏
q=0

1

1− kz − qz

=
n!

k!× nk
×
{
j

k

}
×

(
zn+j−k

n−k−1∏
q=0

1

1− kz − qz

)(k)
∣∣∣∣∣∣
z=1/n.

We move to deploy the generalized Leibniz rule which requires∑
p≥0

1

p!
(zn+j−k)(p)wp =

∑
p≥0

(
n+ j − k

p

)
zn+j−k−pwp

= zn+j−k
(
1 +

w

z

)n+j−k

= (w + z)n+j−k

as well as

∑
p≥0

1

p!

(
1

1− kz − qz

)(p)

wp =
∑
p≥0

(k + q)p

(1− kz − qz)p+1
wp

=
1

1− kz − qz

1

1− (k + q)w/(1− kz − qz)
=

1

1− (k + q)(w + z)
.

Hence the substituted derivative is

k![wk](w + 1/n)n+j−k
n−k−1∏
q=0

1

1− (k + q)(w + 1/n)

which yields for the sum

n!

nk
×
{
j

k

}
× [wk](w + 1/n)n+j−k

n−k−1∏
q=0

1

1− (k + q)(w + 1/n)
.

Prepare for partial fractions by residues on the product term which yields

n−k−1∏
q=0

1

k + q

n−k−1∏
q=0

1

1/(k + q)− (w + 1/n)

=
(k − 1)!

(n− 1)!
(−1)n−k

n−k−1∏
q=0

1

w − (1/(k + q)− 1/n)
.

We get for the residue at w = 1/(k + p)− 1/n

n−k−1∏
q=0,q ̸=p

1

1/(k + p)− 1/n− (1/(k + q)− 1/n)
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=

n−k−1∏
q=0,q ̸=p

1

1/(k + p)− 1/(k + q)
=

n−k−1∏
q=0,q ̸=p

(k + p)(k + q)

q − p

=
(n− 1)!

(k − 1)!
(−1)p

1

p!

(k + p)n−k−2

(n− k − 1− p)!
.

We thus obtain

n!

nk
×
{
j

k

}
× [wk](w + 1/n)n+j−k

×
n−k−1∑
p=0

1

w − (1/(k + p)− 1/n)
(−1)n−k+p 1

p!

(k + p)n−k−2

(n− k − 1− p)!
.

Observe that

[wr]
1

w − (1/(k + p)− 1/n)

= − 1

1/(k + p)− 1/n
[wr]

1

1− w/(1/(k + p)− 1/n)

= − 1

(1/(k + p)− 1/n)r+1

and we obtain the sum form

− n!

nk
×
{
j

k

} k∑
r=0

[wk−r](w + 1/n)n+j−k

×
n−k−1∑
p=0

(−1)n−k−p

p!(n− k − 1− p)!
(k + p)n−k−2 1

(1/(k + p)− 1/n)r+1

= − n!

nk
×
{
j

k

} k∑
r=0

(
n+ j − k

k − r

)
1

nn+j−2k+r

×
n−k−1∑
p=0

(−1)n−k−p

p!(n− k − 1− p)!

nr+1(k + p)n−k−1+r

(n− k − p)r+1

=
n!

nn−k−1+j
×
{
j

k

} k∑
r=0

(
n+ j − k

k − r

)

×
n−k−1∑
p=0

(−1)n−k−1−p

p!(n− k − 1− p)!

(k + p)n−k−1+r

(n− k − p)r+1
.

This was math.stackexchange.com problem 2125064.
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8 Retrieving coupons in packets of unique coupons
of a certain size

We can actually solve some special cases. Suppose we have n types of coupons
which are drawn in packets of q coupons, with no duplicates in the packets. We
derive closed forms for any packet size and evaluate them for q = 2. Now with
Tm,n,q the number of ways of drawing m packets of q-subsets of [n] so that all
possible values of n are present we get for the probability of m draws the closed
form

P [T = m] =

(
n

q

)−m q∑
k=1

(
n

n− k

)
× Tm−1,n−k,q ×

(
n− k

q − k

)

=

(
n

q

)−m q∑
k=1

(
n

k

)
× Tm−1,n−k,q ×

(
n− k

q − k

)
.

This is for n > q since the process always halts at the first step when n = q.
The sum variable k is the count of the values missing before the draw of the
subset at position m or alternatively of the values that appear in draw m for
the first time.

To compute the terms in T we have a simple version of the computation at
the following MSE link and introduce the generating function

[zq]

n∏
l=1

(1 + zAl)

which generates the q-subsets so that(
[zq]

n∏
l=1

(1 + zAl)

)m

generates them-sequences of q-subsets. We use inclusion-exclusion to remove
those terms where some of the n terms are missing. The nodes P ⊆ A in the
poset represent terms from the generating function where the elements of P
are missing plus possibly some more. This is evidently accomplished by setting
the Al ∈ P to zero. We set the remaining Al to one to obtain a count. The
contribution for a given P is

[zq](1 + z)n−|P | =

(
n− |P |

q

)
.

Therefore inclusion-exclusion yields

n∑
p=0

(
n

p

)
(−1)p

(
n− p

q

)m

which is
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Tm,n,q =

n∑
p=0

(
n

p

)
(−1)n−p

(
p

q

)m

.

This is zero when m = 0 and n ≥ 1. Now as a sanity check we should have
Tm,n,1 =

{
m
n

}
× n! and indeed we obtain

n∑
p=0

(
n

p

)
(−1)n−p

(
p

1

)m

=

n∑
p=0

(
n

p

)
(−1)n−ppm =

{
m

n

}
× n!

and the check goes through. The rest is as shown at the following MSE link.
Next let us try to verify that we have a probability distribution. We have

∑
m≥1

P [T = m] =

q∑
k=1

(
n

k

)(
n− k

q − k

) n−k∑
p=0

(
n− k

p

)
(−1)n−k−p

∑
m≥1

(
n

q

)−m(
p

q

)m−1

=

q∑
k=1

(
n

k

)(
n− k

q − k

)(
n

q

)−1 n−k∑
p=0

(
n− k

p

)
(−1)n−k−p 1

1−
(
p
q

)
/
(
n
q

)
=

q∑
k=1

(
n

k

)(
n− k

q − k

) n−k∑
p=0

(
n− k

p

)
(−1)n−k−p

((
n

q

)
−
(
p

q

))−1

.

Specializing to q = 2 we get

2

2∑
k=1

(
n

k

)(
n− k

2− k

) n−k∑
p=0

(
n− k

p

)
(−1)n−k−p 1

n(n− 1)− p(p− 1)

= 2n(n− 1)

n−1∑
p=0

(
n− 1

p

)
(−1)n−1−p 1

n(n− 1)− p(p− 1)

+n(n− 1)

n−2∑
p=0

(
n− 2

p

)
(−1)n−2−p 1

n(n− 1)− p(p− 1)
.

We evaluate the two sums by residues, using for the first sum

f(z) =
(n− 1)!

n(n− 1)− z(z − 1)

n−1∏
p=0

1

z − p
= − (n− 1)!

(z − n)(z − (1− n))

n−1∏
p=0

1

z − p
.

The residue at infinity is zero and the residues at n and 1− n are

− (n− 1)!

2n− 1

1

n!
− (n− 1)!

1− 2n

(−1)n(n− 2)!

(2n− 2)!
.

We get for the second sum by the same technique
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− (n− 2)!

2n− 1

1

n!
− (n− 2)!

1− 2n

(−1)n−1(n− 2)!

(2n− 3)!
.

Negate and add to get

n(n− 1)×(
1

2n− 1

(
2

n
+

1

n(n− 1)

)
+

(n− 2)!

1− 2n

(−1)n−1(n− 2)!

(2n− 3)!

(
1− 2

n− 1

2n− 2

))
=

1

2n− 1
(2n− 2 + 1) = 1.

This confirms it being a probability distribution.
We now give a closed form for the expectation. We find∑

m≥1

mP [T = m]

=

q∑
k=1

(
n

k

)(
n− k

q − k

) n−k∑
p=0

(
n− k

p

)
(−1)n−k−p

∑
m≥1

m

(
n

q

)−m(
p

q

)m−1

=

q∑
k=1

(
n

k

)(
n− k

q − k

)(
n

q

)−1 n−k∑
p=0

(
n− k

p

)
(−1)n−k−p 1(

1−
(
p
q

)
/
(
n
q

))2 .
This is

(
n

q

) q∑
k=1

(
n

k

)(
n− k

q − k

) n−k∑
p=0

(
n− k

p

)
(−1)n−k−p

((
n

q

)
−
(
p

q

))−2

.

We obtain nHn when we evaluate this for q = 1 which is a good check but
not exactly surprising since we have already seen this work at the other link
(the reader is invited to attempt this computation using the above formula as a
starting point, which is easier than what follows). We now try for a closed form
for q = 2 and get

2n2(n− 1)2
n−1∑
p=0

(
n− 1

p

)
(−1)n−1−p 1

(n(n− 1)− p(p− 1))2

+n2(n− 1)2
n−2∑
p=0

(
n− 2

p

)
(−1)n−2−p 1

(n(n− 1)− p(p− 1))2
.

We use residues as before with the function

g(z) =
(n− 1)!

(n(n− 1)− z(z − 1))2

n−1∏
p=0

1

z − p
=

(n− 1)!

(z − n)2(z − (1− n))2

n−1∏
p=0

1

z − p
.
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Note that (
n−1∏
p=0

1

z − p

)′

= −
n−1∏
p=0

1

z − p

n−1∑
p=0

1

z − p

We get for the residue at n

(n− 1)!

(
− 1

(2n− 1)2
1

n!
Hn − 2

(2n− 1)3
1

n!

)
The residue at 1− n yields

(n− 1)!

(
1

(1− 2n)2
(−1)n(n− 2)!

(2n− 2)!
(H2n−2 −Hn−2)−

2

(1− 2n)3
(−1)n(n− 2)!

(2n− 2)!

)
For the second sum we get for the residue at n

(n− 2)!

(
− 1

(2n− 1)2
1

n!
(Hn − 1)− 2

(2n− 1)3
1

n!

)
and for the one at 1− n

(n−2)!

(
1

(1− 2n)2
(−1)n−1(n− 2)!

(2n− 3)!
(H2n−3 −Hn−2)−

2

(1− 2n)3
(−1)n−1(n− 2)!

(2n− 3)!

)
Collecting everything we find (observe that the terms on H2n−2 and on Hn−2

and the third term from the residues at 1 − n cancel the same way as in the
computation of the probability that we saw earlier)

− 1

(2n− 1)2
Hn

(
2

n
+

1

n(n− 1)

)
+

1

(2n− 1)2
1

n(n− 1)

− 2

(2n− 1)3

(
2

n
+

1

n(n− 1)

)
+(n− 1)!

2

(1− 2n)2
(−1)n(n− 2)!

(2n− 2)!

1

2n− 2

This is

− 1

(2n− 1)n(n− 1)
Hn − 1

(2n− 1)2
1

n(n− 1)

+(n− 2)!
1

(1− 2n)2
(−1)n(n− 2)!

(2n− 2)!

Flip the sign and multiply by n2(n− 1)2 to obtain the formula

n(n− 1)

2n− 1
Hn +

n(n− 1)

(2n− 1)2
+ (−1)n−1n

2(n− 1)2

(2n− 1)2
(n− 2)!× (n− 2)!

(2n− 2)!
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We conclude with the closed form (an exact result) for the case of packets
containing two coupons which is

n(n− 1)

2n− 1
Hn +

n(n− 1)

(2n− 1)2
+ (−1)n−1 n2

(2n− 1)2

(
2n− 2

n− 1

)−1

.

This attractive formula obviously motivates further research, possibly into
the case q = 3, which looks difficult, perhaps requiring a computer algebra
system during the simplifications. Observe that the dominant asymptotic is
1/2 × nHn which means q = 2 is about twice as fast as a single coupon so the
effect of there being no packets with duplicate coupons is negligible.

This was math.stackexchange.com problem 2147576.

9 Expected time until the first k coupons where
k ≤ n have been collected

By way of enrichment here is a generating function approach to the question
of when the first k coupons where k ≤ n have been seen. Using the notation
from the following MSE link we get from first principles for the probability of
m draws that

P [T = m] =
1

nm
×
(

k

k − 1

)
×

n−k∑
q=0

(
n− k

q

){
m− 1

q + k − 1

}
(q + k − 1)!.

What happens here is that we choose the k − 1 of the k values that go into
the prefix, which also determines the value that will complete the set with the
last draw. We then choose a set of q values not from the k initial ones and
partition the first m− 1 draws or slots into q + k − 1 sets, one for each value.

We verify that this is a probability distribution, getting∑
m≥1

P [T = m]

=
∑
m≥1

1

nm
×
(

k

k − 1

)
×

n−k∑
q=0

(
n− k

q

)
(m− 1)![zm−1](exp(z)− 1)q+k−1

= k
∑
m≥1

1

nm
× (m− 1)![zm−1]

n−k∑
q=0

(
n− k

q

)
(exp(z)− 1)q+k−1

= k
∑
m≥1

1

nm
× (m− 1)![zm−1](exp(z)− 1)k−1 exp(z(n− k))

= k!
∑
m≥1

1

nm

m−1∑
q=0

(
m− 1

q

){
q

k − 1

}
(n− k)m−1−q
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= k!
∑
q≥0

{
q

k − 1

} ∑
m≥q+1

(
m− 1

q

)
1

nm
(n− k)m−1−q

= k!
∑
q≥0

{
q

k − 1

}
1

nq+1

∑
m≥0

(
m+ q

q

)
1

nm
(n− k)m

= k!
∑
q≥0

{
q

k − 1

}
1

nq+1

1

(1− (n− k)/n)q+1
= k!

∑
q≥0

{
q

k − 1

}
1

kq+1
.

Recall the OGF of the Stirling numbers of the second kind which says that{
n

k

}
= [zn]

k∏
p=1

z

1− pz
.

We obtain

k!
∑
q≥0

1

kq+1
[zq]

k−1∏
p=1

z

1− pz
= (k − 1)!

k−1∏
p=1

1/k

1− p/k

= (k − 1)!

k−1∏
p=1

1

k − p
= 1

and the sanity check goes through. For the expectation of when the first k
have been seen we recycle the above, inserting a factor of m, starting from

k!
∑
q≥0

{
q

k − 1

} ∑
m≥q+1

(
m− 1

q

)
m

nm
(n− k)m−1−q

= k!
∑
q≥0

{
q

k − 1

} ∑
m≥q+1

(
m

q + 1

)
q + 1

m

m

nm
(n− k)m−1−q

= k!
∑
q≥0

{
q

k − 1

}
(q + 1)

∑
m≥q+1

(
m

q + 1

)
1

nm
(n− k)m−1−q

= k!
∑
q≥0

{
q

k − 1

}
(q + 1)

1

nq+1

∑
m≥0

(
m+ q + 1

q + 1

)
1

nm
(n− k)m

= k!
∑
q≥0

{
q

k − 1

}
(q + 1)

1

nq+1

1

(1− (n− k)/n)q+2

= n× k!
∑
q≥0

{
q

k − 1

}
(q + 1)

1

kq+2
=

n

k2
× k!

∑
q≥0

{
q

k − 1

}
(q + 1)

1

kq
.

Activating the OGF produces

n

k2
× k!

∑
q≥0

1

kq
[zq]

(
k−1∏
p=0

z

1− pz

)′
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=
n

k2
× k!

∑
q≥0

1

kq
[zq]

k−1∏
p=0

z

1− pz

k−1∑
p=0

1

z(1− pz)

=
n

k2
× k!

k−1∏
p=0

1/k

1− p/k

k−1∑
p=0

1

1/k(1− p/k)

= n× k!

k−1∏
p=0

1

k − p

k−1∑
p=0

1

k − p
= n× k!× 1

k!
×Hk.

This yields the answer

nHk.

What we have here are in fact two annihilated coefficient extractors (ACE)
more of which may be found at this MSE link.

This was math.stackexchange.com problem 2181969.

10 No replacement with j instances of each type
of coupon

We use the notation from the following MSE link with m for the number of
trials and n for the number of different types of coupons. We treat the special
case where there are j instances of each type and we are sampling without
replacement.

We ask about the probability of obtaining the distribution

n∏
q=1

Cαq
q

where αq says we have that many instances of type Cq. We obtain

(nj −
∑n

q=1 αq)!

(nj)!

n∏
q=1

j!

(j − αq)!
.

Therefore the sequences according to probability of length m of n types of
coupons without replacement and a maximum of j coupons of each type are
given by

m![zm]

(
j∑

k=0

j!

(j − k)!

zk

k!

)n

= m![zm](1 + z)nj =

(
nj

m

)
×m!.

Here we are partitioning the draws into n sets, one for each type, with zk/k!
representing the size of the set and j!/(j−k)! the weight according to probability.

Note also that (nj)m gives the denominators of the probabilities while jk

gives the numerators corresponding to a set of size k.
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We then obtain from first principles the formula

P [T = m] =
1

m!

(
nj

m

)−1

× n× j × (m− 1)![zm−1]

(
j∑

k=1

j!

(j − k)!

zk

k!

)n−1

= nj × 1

m

(
nj

m

)−1

[zm−1]
(
−1 + (1 + z)j

)n−1
.

This becomes

nj × 1

m

(
nj

m

)−1

[zm−1]

n−1∑
q=0

(
n− 1

q

)
(−1)n−1−q(1 + z)qj

=

(
nj − 1

m− 1

)−1 n−1∑
q=0

(
n− 1

q

)
(−1)n−1−q

(
qj

m− 1

)
.

Observe that(
qj

m− 1

)(
nj − 1

m− 1

)−1

=
(qj)!× (nj − 1− (m− 1))!

(qj − (m− 1))!× (nj − 1)!

=

(
nj − 1

qj

)−1(
nj − 1− (m− 1)

qj − (m− 1)

)
.

We record for the probabilities the formula

P [T = m] =

n−1∑
q=0

(
n− 1

q

)
(−1)n−1−q

(
nj − 1

qj

)−1(
nj − 1− (m− 1)

nj − 1− qj

)
.

Start by verifying that this is a probability distribution. We obtain for the
sum in m

(n−1)j+1∑
m=n

(
nj − 1− (m− 1)

nj − 1− qj

)

= [znj−1−qj ]

(n−1)j+1∑
m=n

(1 + z)nj−1−(m−1)

= [znj−1−qj ]

n(j−1)∑
m=j−1

(1 + z)m = [znj−qj ]((1 + z)n(j−1)+1 − (1 + z)j−1).

We have nj − qj ≥ j so only the first term contributes and we obtain
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∑
m

P [T = m] =

n−1∑
q=0

(
n− 1

q

)
(−1)n−1−q

(
nj − 1

qj

)−1(
n(j − 1) + 1

nj − qj

)

=
n(j − 1) + 1

j

n−1∑
q=0

(
n− 1

q

)
(−1)n−1−q

n− q

(
nj − 1

nj − qj − 1

)−1(
n(j − 1)

nj − qj − 1

)
We get for the rightmost pair of binomial coefficients

(n(j − 1))!× (qj)!

(nj − 1)!× (qj + 1− n)!
=

(
nj − 1

n− 1

)−1(
qj

n− 1

)
which yields for the sum

n(j − 1) + 1

j

(
nj − 1

n− 1

)−1 n−1∑
q=0

(
n− 1

q

)
(−1)n−1−q

n− q

(
qj

n− 1

)

=
n(j − 1) + 1

nj

(
nj − 1

n− 1

)−1 n−1∑
q=0

(
n

q

)
(−1)n−1−q

(
qj

n− 1

)

=
n(j − 1) + 1

nj

(
nj − 1

n− 1

)−1(
nj

n− 1

)

+
n(j − 1) + 1

nj

(
nj − 1

n− 1

)−1 n∑
q=0

(
n

q

)
(−1)n−1−q

(
qj

n− 1

)

=
n(j − 1) + 1

nj

nj

nj + 1− n

+
n(j − 1) + 1

nj

(
nj − 1

n− 1

)−1

[zn−1]

n∑
q=0

(
n

q

)
(−1)n−1−q(1 + z)qj

= 1− n(j − 1) + 1

nj

(
nj − 1

n− 1

)−1

[zn−1](1− (1 + z)j)n

Now observe that [zn−1](1− (1 + z)j)n = 0 hence everything simplifies to

1

and we have a probability distribution.
Continuing with the expectation we have the following closed form:

E[T ] =

n−1∑
q=0

(
n− 1

q

)
(−1)n−1−q

(
nj − 1

qj

)−1 (n−1)j+1∑
m=n

m

(
nj − 1− (m− 1)

nj − 1− qj

)
.
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By means of plotting strategy let us examine some of these. Here are the
first few for eight types of coupons starting at j = 1 :

8,
76627

6435
,
76801

5434
,
7473667

480675
,
1318429

79794
, . . .

and here is the initial segment for ten types of coupons:

10,
707825

46189
,
7008811

380380
,
266299459

13042315
,
182251913

8360638
,
748880445829

32831263465
, . . .

Careful inspection of these values reveals that we cannot hope for additional
simplification when j ≥ 2 because if it were possible it would have appeared in
these sample values. We do see however that the case j = 1 should be possible,
the value being n (we always finish after n draws if there is only one instance
of each coupon).

We now do this calculation, which is trivial, but nontheless a useful sanity
check, starting with

n−1∑
q=0

(
n− 1

q

)
(−1)n−1−q

(
n− 1

q

)−1 n∑
m=n

m

(
n− 1− (m− 1)

n− 1− q

)

=

n−1∑
q=0

(−1)n−1−q × n

(
n− 1− (n− 1)

n− 1− q

)

= (−1)n−1−(n−1) × n×
(

0

n− 1− (n− 1)

)
= n.

It certainly seems like a worthwhile challenge to prove that the closed form
for E[T ] is nHn in the limit, which is confirmed by the numerical evidence.

We did verify the formula for the expectation in software, as follows. It
really is quite remarkable that the output from this program is in excellent
agreement with the closed form on all values that were tested.

This was math.stackexchange.com problem 2172876.

Simplification

The above computation can be simplified. Using a slightly different notation we
have N coupons partitioned int C clusters of size cj and we start by computing
the probability that after M draws we have seen all types of coupons. Using
the method from above we see that it is given by

1

M !

(
N

M

)−1

×M ![zM ]

C∏
j=1

cj∑
k=1

cj !

(cj − k)!

zk

k!
=

(
N

M

)−1

[zM ]

C∏
j=1

cj∑
k=1

(
cj
k

)
zk.

This is
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(
N

M

)−1

[zM ]

C∏
j=1

(−1 + (1 + z)cj ).

For the special case of all clusters having the same size j we get

(
N

M

)−1

[zM ](−1 + (1 + z)j)C =

(
N

M

)−1

[zM ]

C∑
q=0

(
C

q

)
(−1)C−q(1 + z)qj .

This is (
N

M

)−1 C∑
q=0

(
C

q

)
(−1)C−q

(
qj

M

)
.

We can use this to compute the expected number of draws until a representa-
tive from every cluster has been seen. Note that the complementary probability
counts draws where at least one type of cluster is missing, i.e. the number of
draws until having seen all is more than M. Hence we get for the expectation

E[T ] = N − j + 1−
N−j∑
M=0

(
N

M

)−1 C∑
q=0

(
C

q

)
(−1)C−q

(
qj

M

)
.

As a sanity check when j = 1 the expectation should be C. We obtain

C −
C−1∑
M=0

(
C

M

)−1 C∑
q=M

(
C

q

)
(−1)C−q

(
q

M

)
.

Now we have(
C

q

)(
q

M

)
=

C!

(C − q)!×M !× (q −M)!
=

(
C

M

)(
C −M

C − q

)
.

Substituting we find

C −
C−1∑
M=0

(
C

M

)−1(
C

M

) C∑
q=M

(
C −M

C − q

)
(−1)C−q

= C −
C−1∑
M=0

C−M∑
q=0

(
C −M

C −M − q

)
(−1)C−M−q = C −

C−1∑
M=0

C−M∑
q=0

(
C −M

q

)
(−1)q

= C −
C−1∑
M=0

0 = C,

as claimed. Here we have used that C − 1 ≥ M or C ≥ M + 1 > M .
This was math.stackexchange.com problem 3119266.
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10.1 No replacement with j instances of each type of coupon,
a fixed number of draws and the number of types
seen

By means of explaining the construction we may study an example where we
have a fixed number m of draws and we are interested in the probability that q
different types are seen, which gives the marked generating function(

1 + u

j∑
k=1

j!

(j − k)!

zk

k!

)n

.

We thus have for the probability of q different types

1

m!

(
nj

m

)−1

×m![zm][uq]

(
1 + u

j∑
k=1

j!

(j − k)!

zk

k!

)n

=
1

m!

(
nj

m

)−1

×m![zm]

(
n

q

)( j∑
k=1

j!

(j − k)!

zk

k!

)q

=

(
nj

m

)−1

[zm]

(
n

q

)(
−1 + (1 + z)j

)q
=

(
nj

m

)−1

[zm]

(
n

q

) q∑
p=0

(
q

p

)
(−1)q−p(1 + z)jp.

We conclude that the desired probability is given by(
nj

m

)−1(
n

q

) q∑
p=0

(
q

p

)
(−1)q−p

(
jp

m

)
.

Observing that (
nj

m

)−1(
jp

m

)
=

(jp)!× (nj −m)!

(jp−m)!× (nj)!

we get the alternate form(
n

q

) q∑
p=0

(
q

p

)
(−1)q−p

(
nj

pj

)−1(
nj −m

pj −m

)
.

E.g. for 15 draws from 10 types of coupons with 3 instances of each we
obtain the PGF

7u5

4308820
+

945u6

861764
+

16191u7

430882

+
112023u8

430882
+

416745u9

861764
+

938223u10

4308820
,
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a result that is not accessible by enumeration, which was nonetheless imple-
mented as a sanity check in the following Maple code, where it was found to
match the two closed forms on the values that were examined.

This was math.stackexchange.com problem 2683788.

10.2 No replacement with n instances of each type of
coupon, a fixed number of draws and the number
of types not seen

The following is the complementary porblem to the previous section but it
includes the expectation of the number of different types seen. Here we have G
types of coupons, n of each and draw a sample of s coupons. We have from first
principles as before that the PGF in u with the coefficient on [uq] representing
the probability of q different colors / coupons not being seen in a sample of size
s is given by

1

s!

(
nG

s

)−1

s![zs]

(
u+

n∑
k=1

n!

(n− k)!

zk

k!

)G

.

This simplifies to

(
nG

s

)−1

[zs]

(
u+

n∑
k=1

(
n

k

)
zk

)G

=

(
nG

s

)−1

[zs](u− 1 + (1 + z)n)G.

As a sanity check we indeed have on setting u = 1(
nG

s

)−1

[zs](1 + z)nG = 1.

For example, with four colors and four instances each we get for six draws
the distribution(

16

6

)−1

[z6](u− 1 + (1 + z)4)4 =
3u2

143
+

60u

143
+

80

143
.

where e.g. the last term gives the probability that none of the colors are
missing. We cannot have three colors missing because that leaves only one color
to cover all six draws, we have only four instances, however. With this PGF
we can answer the question about the probability that q colors are missing in a
draw of s items, which is

(
nG

s

)−1

[zs][uq](u− 1 + (1 + z)n)G =

(
nG

s

)−1

[zs]

(
G

q

)
(−1 + (1 + z)n)G−q

=

(
nG

s

)−1

[zs]

(
G

q

)G−q∑
p=0

(
G− q

p

)
(−1)G−q−p(1 + z)np.
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This yields for the probability(
nG

s

)−1(
G

q

)G−q∑
p=0

(
G− q

p

)
(−1)G−q−p

(
np

s

)
which is inclusion-exclusion.
Returning to the main question we thus have for the expectation of coupons

that did not occur (
nG

s

)−1
∂

∂u
[zs](u− 1 + (1 + z)n)G

∣∣∣∣
u=1

=

(
nG

s

)−1

[zs] G(u− 1 + (1 + z)n)G−1
∣∣
u=1

=

(
nG

s

)−1

[zs]G(1 + z)n(G−1).

We get for the number of coupons that did occur

G−G

(
nG

s

)−1(
nG− n

s

)
.

E.g. when we draw one coupon we obtain

G−G
1

nG
(nG− n) = G−G+G

n

nG
= 1

as expected. Also note that we obtain the value G when s > nG−n (second
binomial coeffcient is zero). This is because the maximum coverage with G− 1
colors is nG− n and with the next sample we must use the last missing color.

The expectation may also be computed by linearity of expectation.
This was math.stackexchange.com problem.

11 No replacement with j instances of each type
until all of one type is seen

Here is a basic contribution, working with a closely related question. We solve
the problem where we have j instances of each of n types of coupons and draw
without replacement until we have seen all j coupons of some type. Using
the notation from the following MSE link we introduce the marked generating
function (

j−2∑
k=0

j!

(j − k)!

zk

k!
+ jwzj−1

)n

.

The coefficient on [zm] here represents distributions of sequences of m draws
from the n types according to probability, where the ones that occur j−1 times
have been marked. Each of the latter may be augmented to a complete set of
some color where the weight is one because j − 1 coupons have already been
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drawn. As we only need the count we differentiate with respect to w and set
w = 1, getting

n×

(
j−1∑
k=0

j!

(j − k)!

zk

k!

)n−1

× jzj−1.

With the method from the linked post we thus obtain for the probability

P [T = m] =
1

m!

(
nj

m

)−1

(m− 1)![zm−1]njzj−1

(
j−1∑
k=0

j!

(j − k)!

zk

k!

)n−1

=
1

m!

(
nj

m

)−1

× n× j × (m− 1)![zm−1]zj−1(−zj + (1 + z)j)n−1.

Extracting the coefficient we find(
nj − 1

m− 1

)−1

[zm−j ]

n−1∑
q=0

(
n− 1

q

)
(−1)n−1−qzj(n−1−q)(1 + z)qj

=

(
nj − 1

m− 1

)−1 n−1∑
q=0

[zm−j(n−q)]

(
n− 1

q

)
(−1)n−1−q(1 + z)qj

=

(
nj − 1

m− 1

)−1 n−1∑
q=0

(
n− 1

q

)
(−1)n−1−q

(
qj

m− j(n− q)

)

=

(
nj − 1

m− 1

)−1 n−1∑
q=0

(
n− 1

q

)
(−1)n−1−q

(
qj

nj −m

)
.

Observe that(
qj

nj −m

)(
nj − 1

m− 1

)−1

=
(qj)!(m− 1)!

(nj − 1)!(m− (n− q)j)!

=

(
nj − 1

qj

)−1(
m− 1

m− (n− q)j

)
.

We record for the probabilities the formula

P [T = m] =

n−1∑
q=0

(
n− 1

q

)
(−1)n−1−q

(
nj − 1

qj

)−1(
m− 1

(n− q)j − 1

)
.

We now verify that this is a probability distribution. This requires
the value of
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n(j−1)+1∑
m=j

(
m− 1

(n− q)j − 1

)
=

n(j−1)∑
m=j−1

(
m

(n− q)j − 1

)

= [z(n−q)j−1]

n(j−1)∑
m=j−1

(1 + z)m = [z(n−q)j ]((1 + z)n(j−1)+1 − (1 + z)j−1).

With 0 ≤ q ≤ n−1 the second term does not contribute and we may continue
with

n−1∑
q=0

(
n− 1

q

)
(−1)n−1−q

(
nj − 1

qj

)−1(
n(j − 1) + 1

(n− q)j

)

=

n−1∑
q=0

(
n− 1

q

)
(−1)n−1−q

(
nj − 1

qj

)−1(
nj + 1− n

qj + 1− n

)

=

n−1∑
q=0

(
n− 1

q

)
(−1)n−1−q qj

nj − qj

(
nj − 1

qj − 1

)−1(
nj + 1− n

qj + 1− n

)

=

n−1∑
q=1

(
n− 1

q − 1

)
(−1)n−1−q

(
nj − 1

qj − 1

)−1(
nj + 1− n

qj + 1− n

)
.

Observe once more that(
nj − 1

qj − 1

)−1(
nj + 1− n

qj + 1− n

)
=

(nj + 1− n)!× (qj − 1)!

(nj − 1)!× (qj + 1− n)!

=

(
nj − 1

n− 2

)−1(
qj − 1

n− 2

)
.

We thus find for the sum of the probabilities(
nj − 1

n− 2

)−1 n−1∑
q=1

(
n− 1

q − 1

)
(−1)n−1−q

(
qj − 1

n− 2

)

=

(
nj − 1

n− 2

)−1 n−2∑
q=0

(
n− 1

q

)
(−1)n−q

(
qj + j − 1

n− 2

)

= 1 +

n−1∑
q=0

(
n− 1

q

)
(−1)n−q

(
qj + j − 1

n− 2

)
.

The sum vanishes, as in

n−1∑
q=0

(
n− 1

q

)
(−1)n−q[zn−2](1 + z)qj+j−1
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= [zn−2](1 + z)j−1
n−1∑
q=0

(
n− 1

q

)
(−1)n−q(1 + z)qj

= [zn−2](1 + z)j−1(1− (1 + z)j)n−1,

but (1− (1+z)j)n−1 = (−1)n−1jn−1zn−1+ · · · and there is no contribution.
This confirms it being a probability distribution.

Continuing with the expectation we require the value of

n(j−1)+1∑
m=j

m

(
m− 1

(n− q)j − 1

)
= (n− q)j

n(j−1)+1∑
m=j

(
m

(n− q)j

)

= (n− q)j[z(n−q)j ]

n(j−1)+1∑
m=j

(1 + z)m

= (n− q)j[z(n−q)j+1]((1 + z)n(j−1)+2 − (1 + z)j) = (n− q)j

(
n(j − 1) + 2

(n− q)j + 1

)
.

The second term did not contribute since we have (n− q)j +1 > j. We thus
have for the expectation

j

n−1∑
q=0

(
n− 1

q

)
(−1)n−1−q

(
nj − 1

qj

)−1

(n− q)

(
n(j − 1) + 2

(n− q)j + 1

)

= j

n−1∑
q=0

(
n− 1

q

)
(−1)n−1−q

(
nj − 1

qj

)−1

(n− q)

(
nj + 2− n

qj + 1− n

)

= j

n−1∑
q=1

(
n− 1

q

)
(−1)n−1−q qj

nj − qj

(
nj − 1

qj − 1

)−1

(n− q)

× nj + 2− n

nj − qj + 1

(
nj + 1− n

qj + 1− n

)

= j(nj + 2− n)

n−1∑
q=1

q

(
n− 1

q

)
(−1)n−1−q

(
nj − 1

qj − 1

)−1
1

nj − qj + 1

(
nj + 1− n

qj + 1− n

)
.

Re-using the earlier factorization we get

j(nj + 2− n)

(
nj − 1

n− 2

)−1 n−1∑
q=1

q

(
n− 1

q

)
(−1)n−1−q 1

nj − qj + 1

(
qj − 1

n− 2

)

= j(nj+2−n)(n−1)

(
nj − 1

n− 2

)−1 n−1∑
q=1

(
n− 2

q − 1

)
(−1)n−1−q 1

nj − qj + 1

(
qj − 1

n− 2

)
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= j2n(nj + 1)

(
nj + 1

n− 1

)−1

×
n−2∑
q=0

(
n− 2

q

)
(−1)n−q 1

nj − qj − j + 1

(
qj + j − 1

n− 2

)
.

Working with the sum term we have(
n− 2

q

)
(−1)n−q 1

nj − qj − j + 1

(
qj + j − 1

n− 2

)

= Resz=q
1

nj − j + 1− zj

n−3∏
p=0

(zj + j − 1− p)

n−2∏
p=0

1

z − p
.

Now since limR→∞ 2πR × Rn−2/R/Rn−1 = 0 and residues sum to zero we
may evaluate this by taking the negative of the residue at z = n− 1+1/j. This
is the computation:

−Resz=n−1+1/j
1

nj − j + 1− zj

n−3∏
p=0

(zj + j − 1− p)

n−2∏
p=0

1

z − p

=
1

j
Resz=n−1+1/j

1

z − (n− 1 + 1/j)

n−3∏
p=0

(zj + j − 1− p)

n−2∏
p=0

1

z − p

=
1

j

n−3∏
p=0

(nj − p)

n−2∏
p=0

1

n− 1 + 1/j − p

=
1

j
× (n− 2)!×

(
nj

n− 2

)
× jn−1

n−2∏
p=0

1

nj − j + 1− pj
.

With (
nj

n− 2

)(
nj + 1

n− 1

)−1

=
n− 1

nj + 1

we finally have the closed form

E[T ] = n!× jn ×
n−2∏
p=0

1

nj − j + 1− pj
.

To see what the asymptotics are we use the alternate form

E[T ] = n× j × Γ(n)Γ(1 + 1/j)

Γ(n+ 1/j)
.

Keeping j fixed and letting n go to infinity yields the asymptotic

n× j × Γ(1 + 1/j)× n−1/j = n1−1/j × j × Γ(1 + 1/j).
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There is an enumeration routine that may be compared to the closed forms
both of which were implemented in the following Maple code.

With the calculation that was presented here we want to make sure we
have the correct interpretation of the problem from the start. The following
basic program will do this by computing the expectation through simulation.
Consult for the details of the scenario under investigation. The output is in fine
agreement with the data i.e. the closed form from above.

This was math.stackexchange.com problem 2401573.

12 No replacement with j instances of each type
until two of one type is seen

Introductory remark. This answer was originally written to treat the case of
seeing the first repeated value when drawing without replacement from a deck
of cards as proposed at this MSE link. It answers the corresponding case of n
pairs of socks as well, however, consult the end of the document for this.

We solve the problem where we have j instances of each of n types of coupons
and draw without replacement until we have seen 2 coupons of some type. For
a deck of cards we have 13 types of coupons and 4 instances of each type. Using
the notation from the following MSE link I and MSE link II we introduce the
marked generating function

(1 + jwz)
n
.

The coefficient on [zm] here represents distributions of sequences of m draws
from the n types according to probability, where the ones that occur one time
have been marked. Each of the latter may be augmented to a pair of some color
where the weight is j − 1 because one coupon has already been drawn. As we
only need the count we differentiate with respect to w and set w = 1, getting

n× (1 + jz)
n−1 × jz.

With the method from the linked posts we thus obtain for the probability

P [T = m] =
1

m!

(
nj

m

)−1

(m− 1)!× (j − 1)× [zm−1]njz(1 + jz)n−1

=
nj

m

(
nj

m

)−1

× (j − 1)× [zm−2](1 + jz)n−1

=
nj

m

(
nj

m

)−1

× (j − 1)×
(
n− 1

m− 2

)
jm−2

= (j − 1)×
(
nj − 1

m− 1

)−1(
n− 1

m− 2

)
jm−2.
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Next we verify that this is a probability distribution. The process
may halt after two steps at the earliest and n+ 1 at the latest and we get

n+1∑
m=2

P [T = m] = (j − 1)

n+1∑
m=2

(
nj − 1

m− 1

)−1(
n− 1

m− 2

)
jm−2

= (j − 1)

n+1∑
m=2

(
nj − 1

m− 1

)−1
m− 1

n

(
n

m− 1

)
jm−2

=
j − 1

n

n+1∑
m=2

(
nj − 1

m− 1

)−1(
n

m− 1

)
(m− 1)jm−2.

We have (
nj − 1

m− 1

)−1(
n

m− 1

)
=

n!× (nj −m)!

(nj − 1)!× (n− (m− 1))!

=

(
nj − 1

n

)−1(
nj −m

n− (m− 1)

)
.

Here we have used the fact that for the scenario to make sense we must have
j ≥ 2. Continuing we find

j − 1

n

(
nj − 1

n

)−1 n+1∑
m=2

(
nj −m

n− (m− 1)

)
(m− 1)jm−2

The sum term yields

n∑
m=1

(
nj − 1−m

n−m

)
mjm−1 =

∑
m≥1

[wn−m](1 + w)nj−1−mmjm−1

= [wn](1 + w)nj−1
∑
m≥1

wm(1 + w)−mmjm−1

= [wn](1 + w)nj−1 w

(1 + w)

∑
m≥1

wm−1(1 + w)−(m−1)mjm−1

= [wn](1 + w)nj−1 w

(1 + w)

1

(1− wj/(1 + w))2

= [wn−1](1 + w)nj
1

(1 + w − wj)2
= [wn−1](1 + w)nj

1

(1− (j − 1)w)2
.

Extracting coefficients we find

n−1∑
q=0

(
nj

n− 1− q

)
(q + 1)(j − 1)q =

n−1∑
q=0

(
nj

nj − n+ q + 1

)
(q + 1)(j − 1)q
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= nj

n−1∑
q=0

(
nj − 1

nj − n+ q

)
(j − 1)q − n(j − 1)

n−1∑
q=0

(
nj

nj − n+ q + 1

)
(j − 1)q

= n

n−1∑
q=0

(
nj − 1

nj − n+ q

)
(j − 1)q+1 + n

n−1∑
q=0

(
nj − 1

nj − n+ q

)
(j − 1)q

−n

n−1∑
q=0

(
nj

nj − n+ q + 1

)
(j − 1)q+1

= n

n−1∑
q=0

(
nj − 1

nj − n+ q

)
(j − 1)q+1 + n

n−2∑
q=−1

(
nj − 1

nj − n+ q + 1

)
(j − 1)q+1

−n

n−1∑
q=0

(
nj

nj − n+ q + 1

)
(j − 1)q+1

= n

n−1∑
q=0

(
nj − 1

nj − n+ q

)
(j − 1)q+1 + n

n−1∑
q=0

(
nj − 1

nj − n+ q + 1

)
(j − 1)q+1

+n

(
nj − 1

nj − n

)
− n

n−1∑
q=0

(
nj

nj − n+ q + 1

)
(j − 1)q+1 = n

(
nj − 1

nj − n

)
.

Collecting everything we obtain

j − 1

n

(
nj − 1

n

)−1

× n×
(
nj − 1

n− 1

)

=
j − 1

n

(
nj − 1

n

)−1

× n×
(
nj − 1

n

)
n

nj − n
= 1

and we have confirmed that we have a probability distribution.
The next step is to compute the expectation. Recapitulating the earlier

computation we find that

E[T ] =

n+1∑
m=2

mP [T = m] =
j − 1

n

(
nj − 1

n

)−1 n∑
m=1

(
nj − 1−m

n−m

)
(m+ 1)mjm−1

or

E[T ] =
2(j − 1)

n

(
nj − 1

n

)−1

[wn−1](1 + w)nj+1 1

(1− (j − 1)w)3
.

Extracting coefficients we obtain the closed form
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E[T ] =
(j − 1)

n

(
nj − 1

n

)−1 n−1∑
q=0

(
nj + 1

n− 1− q

)
(q + 2)(q + 1)(j − 1)q.

Observe that for a deck of cards we get

E[T ] =
226087256246

39688347475
≈ 5.696565129.

Furthermore this simplifies when j = 2 (pairs of socks). Instantiating j to 2
will produce

2

n

(
2n− 1

n

)−1

[wn−1](1 + w)2n+1 1

(1− w)3
.

The coefficient is

Resw=0
1

wn
(1 + w)2n+1 1

(1− w)3
.

Note that the residue at infinity is given by

−Resw=0
1

w2
wn (1 + w)2n+1

w2n+1

1

(1− 1/w)3
= −Resw=0

1

w2

(1 + w)2n+1

wn+1

w3

(w − 1)3

= Resw=0
(1 + w)2n+1

wn

1

(1− w)3
.

Hence the value is minus half the residue at w = 1. We find with (1−w)3 =
−(w − 1)3

1

2
× 1

2

1

wn
(1 + w)2n+1

(
n(n+ 1)

w2
− 2n(2n+ 1)

w(1 + w)
+

(2n+ 1)(2n)

(1 + w)2

)∣∣∣∣
w=1

= 22n−1

(
n2 + n− 2n2 − n+ n2 +

1

2
n

)
=

1

4
n4n.

Now observe that(
2n− 1

n

)−1

=

(
2n

n

)−1

× 2n× 1

n
= 2

(
2n

n

)−1

∼ 2×
√
πn

4n

We thus have the closed form for j = 2

E[T ] =

(
2n− 1

n

)−1
1

2
4n =

(
2n

n

)−1

4n.

and we get the nice asymptotic
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E[T ] ∼
√
πn.

There is also a very basic C program which confirmed the closed form of the
expectations for all combinations of n and j that were examined. For example
with j = 5 we get the expectations

2,
23

9
,
272

91
,
3253

969
,
6522

1771
,
94477

23751
,
714436

168113
,
69263329

15380937
, . . .

with values

2, 2.555555556, 2.989010989, 3.357069143, 3.682665161,

3.977811461, 4.249736784, 4.503193076, . . .

Running the program on 108 trials will then match these values to about
five digits decimal precision.

This was math.stackexchange.com problem 2453824.

13 No replacement with
(
n
j

)
instances of each

type of coupon

This problem is a type of coupon collector without replacement where there
are

(
n
j

)
tickets of type j and we ask about the expectation of the sum of the

ticket values after m tickets have been drawn. Using the methodology from
the following two MSE links we find that the EGF by multiplicity of a set of
coupons of type j is given by

(nj)∑
k=0

(
n

j

)k
zk

k!
= (1 + z)(

n
j).

Distributing all n types of coupons we get

n∏
j=0

(1 + z)(
n
j) = (1 + z)2

n

for a total count according to multiplicity of

m![zm](1 + z)2
n

= m!×
(
2n

m

)
.

Marking the contribution of a ticket of type j with uj we obtain the mixed
generating function

G(z, u) =

n∏
j=0

(1 + ujz)(
n
j).
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Differentiate and evaluate at u = 1 to obtain

∂

∂u
G(z, u)

∣∣∣∣
u=1

=

n∏
j=0

(1 + ujz)(
n
j)

n∑
j=0

(1 + ujz)−(
n
j)
(
n

j

)
(1 + ujz)(

n
j)−1juj−1z

∣∣∣∣∣∣
u=1

= (1 + z)2
n

n∑
j=1

(
n

j

)
jz

1 + z
= z(1 + z)2

n−1
n∑

j=1

j

(
n

j

)

= z(1 + z)2
n−1

n∑
j=1

n

(
n− 1

j − 1

)
= n2n−1z(1 + z)2

n−1.

Extracting coefficients we thus obtain for the expectation of the sum

E[S] =

(
2n

m

)−1

n2n−1

(
2n − 1

m− 1

)
= n2n−1 m

2n
=

1

2
nm.

Continuing with the variance we evidently require the second factorial mo-
ment. Differentiating twice we get three components, the first is

n∏
j=0

(1 + ujz)(
n
j)

n∑
j=0

(1 + ujz)−(
n
j)
(
n

j

)
(1 + ujz)(

n
j)−1j(j − 1)uj−2z

∣∣∣∣∣∣
u=1

= z(1 + z)2
n−1

n∑
j=2

j(j − 1)

(
n

j

)

= z(1 + z)2
n−1

n∑
j=2

n(n− 1)

(
n− 2

j − 2

)
= n(n− 1)2n−2z(1 + z)2

n−1.

The second is

n∏
j=0

(1 + ujz)(
n
j)

n∑
j=0

(1 + ujz)−(
n
j)
(
n

j

)((
n

j

)
− 1

)
(1 + ujz)(

n
j)−2j2u2j−2z2

∣∣∣∣∣∣
u=1

= z2(1 + z)2
n−2

n∑
j=1

j2
(
n

j

)((
n

j

)
− 1

)
.

The third is

2

n∏
j=0

(1 + ujz)(
n
j)

n∑
j=0

(1 + ujz)−(
n
j)
(
n

j

)
(1 + ujz)(

n
j)−1juj−1z
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×
n∑

k=j+1

(1 + ukz)−(
n
k)
(
n

k

)
(1 + ukz)(

n
k)−1kuk−1z

∣∣∣∣∣∣
u=1

= 2z2(1 + z)2
n−2

n∑
j=0

(
n

j

)
j

n∑
k=j+1

(
n

k

)
k.

The coefficients on these last two may be joined and we get

−
n∑

j=1

j2
(
n

j

)
+

 n∑
j=1

j

(
n

j

)2

= −
n∑

j=1

j(j − 1)

(
n

j

)
−

n∑
j=1

j

(
n

j

)
+

n

n∑
j=1

(
n− 1

j − 1

)2

= −n(n− 1)

n∑
j=2

(
n− 2

j − 2

)
− n

n∑
j=1

(
n− 1

j − 1

)
+ n222n−2

= −n(n− 1)2n−2 − n2n−1 + n222n−2 = n222n−2 − n(n+ 1)2n−2.

Extracting coefficients we get for the second factorial moment

1

4
n(n− 1)m+ (n222n−2 − n(n+ 1)2n−2)

m(m− 1)

2n(2n − 1)

or alternatively

E[S(S − 1)] =
1

4
n(n− 1)m+

1

4

m(m− 1)

2n − 1
(n22n − n(n+ 1)).

Finally recall that

Var[S] = E[S(S − 1)] + E[S]− E[S]2

so the answer to the problem posed by the OP is

E[S] =
1

2
nm

and

Var[S] =
1

4
n(n+ 1)m+

1

4

m(m− 1)

2n − 1
(n22n − n(n+ 1))− 1

4
n2m2.

As a sanity check when m = 2n and all coupons have been drawn we have
deterministically that

E[S] =

n∑
j=0

j

(
n

j

)
= n

n∑
j=1

(
n− 1

j − 1

)
= n2n−1 =

1

2
nm
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and the check goes through.
With this problem requiring careful algebra I also coded a simulation of the

coupon collector that is featured here which was in excellent agreement on
all values that were tested (outputs first and second factorial moment). Some
optimizations are still possible which is left as an exercise to the reader.

This was math.stackexchange.com problem 2362256.
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