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We propose to count a type of permutation where some integer k exists such that the set of cycle types in the
permutation is [k] i.e, the permutation contains cycles of size 1, 2, . . . up to k. We will index these by k and
call them type 7" in this document. We introduce a generating function using combinatorial classes as in Analytic
Combinatorics
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where Qo (z) = 1. Here we have used the class

q
SET>1(CYC—4(Z)) which gives the EGF exp (z_) —1.
q

This generating function counts permutations with cycle set where the first k types actually appear. It then
follows that the mixed generating function of type 1" permutations is given by

Qzw) =Y w*Qu(2).
k>0

We set the upper range on k to 1@ when employing this function. We will present a recurrence however in order to
be able to effectively work with these quantities. A closely related statistic is permutations with k distinct cycle
types. This is tabulated at OEIS A218868. The present sequence is a subset of these with the set of types
instantiated to [k] We can get the count of type I" permutations by setting w = 1 and obtain the sequence

1,1,4,7,26,181, 652, 3459, 22780, 265591, 1546436, 13294117, . ..

The coefficient F}, (w) = [zn]Q(z, w) gives the EGF of these permutations on 71 letters by the number of
distinct cycle types. For example with 7 = 7 we get

1 11 1
Fo(w) = ——w+ —w? + — b,
(W) =50t 20 T

As this is an EGF we scale by 12! and obtain e.g. for n = 10 the finite sequence

10! Fig(w) = w + 8550w? + 105840w® + 151200w*.

Computing a recurrence

With the goal being to compute the coefficient py, p = [z"] [wk]Q(z, w) we can extract the coefficient on
[wk] by inspection and are left with
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= —Pnk-1+ Z ([Zp] eXP(E)) Pr—kpk—1
p=0
0 4 /K] 1 o an/kj Prn—kp,k—1
= —Pnk-1 ————Pn—kp k-1 = —_—.
= p! x kp v ps pl x kp

The base case here is pp 0 = 5,1,0. With this recurrence we can easily compute these values even for large 1
and the initial segment of the data yields the following triangular array:
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11231 420

11658 2800

112619 20160

118550 105840 151200

1135695 679140 831600

11129756 4848360 8316000

11568503 30356040 86486400

112255344 |[217136920 |1089728640

1110349535 [ 1651409760 | 8967558600 | 10897286400

Here we note that for the number of distinct cycle types being k we must have . > %k(k + 1) or

1<k<|(v/1+8n—-1)/2].
A conjecture

We introduce a random variable X giving the number of distinct cycle types in a type 1" permutation i.e. k and
ask about the expectation. We may use the formula

20f3
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L[2"Q(z,w)|,
_ dw w=1 )
B TR

The numerics provide evidence that

E[X] ~ N7

where N & 1.27. There might be a lower order term in 72 on the constant. The graph below illustrates this
behavior where the data are displayed as what the recurrence produces.
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Another interesting problem is the asymptotics of the count of type 1" permutations. A close match also

; . _ 2/3
obtained from numerics was ! x e~ 12187

exponent.

. It is supposed that there may be lower order terms in the
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