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The Egorychev method is from the book by G.P.Egorychev [Ego84]. We
collect several examples, the focus being on computational methods to produce
results. Those that are from posts to math.stackexchange.com have retained
the question answer format from that site. The website for this document is at
this hyperlink:

https://pnp.mathematik.uni-stuttgart.de/iadm/Riedel /egorychev.html.

The crux of the method is the use of formal power series and residue oper-
ators to represent binomial coefficients, exponentials, the Iverson bracket and
Stirling numbers, Catalan numbers, Harmonic numbers, Eulerian numbers and
Bernoulli numbers. The residue operator algebra encapsulates the underlying
complex integrals. There is a tutorial at the following article: [RM23].

We use these types of integrals:

e First binomial coefficient integral (B )
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where 0 < ¢ < o0.

o Second binomial coefficient integral (Bz)
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where 0 < e < 1.

o Ezxponentiation integral (E)
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where 0 < £ < 00.


https://pnp.mathematik.uni-stuttgart.de/iadm/Riedel/egorychev.html

e [Tverson bracket (I)
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where 0 < e < 1.

o Stirling numbers of the first kind
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where 0 < ¢ < 1.

e Stirling numbers of the second kind

n n! 1 1 n! 1
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z
where 0 < ¢ < o0.

The residue at infinity is coded R.
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1 Egorychev method in formal power series

1.1 MSE 2384932

We seek to evaluate

S (0 BEn) ()

Recall the Beta function identity

1 2\t

We substitute this into the inner sum to get
& k(1 —z)*
’ _qk n\ z"(
= | >0 () e
1 n
" 1 / 1 dz(l — x) dx
1—2J 1—=2
¢ 1 ! 2 n
Sy ——— /1 3 (”) (—1)729(22 — 1) do
T Jo 22\

DA AR

Now for this sum introduce the function

S D L 1
f<z>:zn(+1)_zzﬂ<”p‘z>,nz_r‘

This has the property that where 0 < g <n
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p=1 r:Oqi r*q+1qir
A e
2n+1—gq n q! (n—q)!

(6

Here residues sum to zero and the residue at infinity is zero so we may
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evaluate using minus the residue at z = (2n + 1)/2, getting
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This gives for our sum
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We work with the remaining inner sum
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The beta function identity will now produce
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We continue with the core integral:
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Switching sums,

> et (1))

p=0 q=p

Observe that

(?) @ " (m—q) n;: eI (2) (2:2)

We get for the sum
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\p 2m+1—-2p

Applying the extractor in w,
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2w+ )Y (M) (M),
So\P 2m+1—-2p\ n+1—p

Note carefully that by the construction from the extractor in w the second
binomial coefficient has the property that it vanishes when p > n+1. Otherwise
we get from the falling factorial (m — p + 1/2)"T1=P that

m—p+1/2\ 2m—-2p+1(m—p—1/2
n+l—p ) 2m—-2n—1\ n+1—-p )’
Observe that this corresponds to the Gamma function representation where

we get for the second coefficient (pole from the Gamma function when m > n)

(m—p+1/2)_ I(m—p+3/2)
n+l—p ) T(m—n+1/2T(n+2-p)
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_m—p+1/2 '(m—-p+1/2) _2m—=2p+1/m—-p—1/2
m-n—1/2T(m—-n—-1/2)T(n+2-p) 2m—-2n—1\ n+1—-p }J

This is interpreted as a limiting value where a pole in the denominator gives
a zero value for the binomial coefficient. We find for the remaining sum

The sum is

1 () e = e e [ ]

1 1 1] 1 1 <2n + 2)
= w = .
Vito (O T dw - (et
Here we have correctly encoded the zero value for p > n + 1. Collecting all
the pieces we finally have

= [

2(n+1 1 [2n+1 1 /2n\ "
(Tl + ) (71)n+1 n+ (71)n22n n .
2m —2n —1 22n+1\ 41 n+1\n

Multiplying everything there is cancellation and we are left with just

1
2n+1-2m
This was math.stackexchange.com problem 2384932,

1.2 MSE 2472978
We seek to verify that

n

> (7)2@ +y)(x —y)n 2 = 2”: <2ll) (22 - lzz) ey

1=0 =0

Now we see on the LHS that the powers of x and y always add up to 2n
and the exponent on = determines the one on y. Extracting the coefficient on
[9][y2"~9] we obtain

SO ECp ()

=0 p=0
2

() § (B

=0 p=0

3

o4
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ey (7)2<1 ; )2 (*)p

=0

We may extend p to infinity because with p > ¢ there is no contribution to
[29], getting

ey (1) e (M) oy

p=>0

— (-1’ (;)2(1 + 2 (L 2P

= [2(=1)"w"] (1 + w(1 = 2)*)"(1 + w(l + 2)*)"
= [2[w"](1 4+ w(1 — 2)*)"(1 +w(1 + 2)*)".

Re-write this as

[2][w"](w(1 + 2%) + 1) — dw?z?)"

= ) 3 () ) 1

|
e
(]
3

Il
=)
s

) (~1)P2% 22 [P (w(L + 22) + 1)>" %

= [9] 3 (n) (—1)P2%P 2P <2n ; 2p> (14 222,

n—2p

We observe at this point that we get zero here when ¢ is odd, which agrees
with the target formula. We are thus justified in putting ¢ = 2[ to get

'] i (n) (—1)P2%P 2P (2:__ ;5) (14 z)"2p

p=0 p v 2p l p
NOI € ‘ ha(

(Z) (2:_2215) (@—ip) " P x (n—p)! SZ_?))!)!X (n—1—p)!

B (IZJ) (n—p)!(j7!_><2(1;)!—l—p)! B (é) (22:127]9) (nl_p)'

Re-indexing we get for the sum
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gL

_(_ n2nn 2p _ p72pzn7p lel w)P
S pz_%(p)< 1)P2- 22" ](1 4 2) [ (1 + w)

i_n2nzn lel S 2p _P*QPZP w)P.
(L1 ) ]pZ_%(p)( 1?2222 (1 4 w)

We may once more extend p to infinity because there is no contribution from
the sum term to the coefficient extractor [2"] when p > n, obtaining

(_1)n22n[zn](1 + Z)l[’wl] Z (217) (_1);0272272:1)(1 4 w)P

p>0 \P
:(_U”?nhﬂ0'+@qwa*ﬂi1+u0
:(_nnfwyw1+zYWﬂ7Tf%ii§
= (=1)"2*"["](1 + 2)" /2] 1+u;M1+@
e a2 <2;) (st

= (_1)n—l22n—2l <2ll) [Zn—l] \/1::72

— (_1)n—l22n—2l <2ll) <2’I’L - 2l> (_1)n—l2—(2n—2l)

n—1

-G

Alternate answer. We keep the preliminaries and start with the contri-
bution from w being

1 2\n 2\n
res W(ler(lfz) (1 4+ w(l+ 2)°)".

Now put v = w/(1 + w(1 — 2)?) so that w = v/(1 — v(1 — 2)?) and dw =
1/(1 —v(1 — 2)%)% dv to get

res L — (1 — 2)? (1+ dvz)" 1
P L Qs o T) puper ppm )
1 (1+ 4vz)™

= (1—v(1—z)2)ntt
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-3 (”:L”’)(l — )P grP Ly (Z)

p=0
Observe that

) == ()G )

‘We obtain

o3 () (2 ) cvp -z

p=0 4

_ (—1)"[111"]1_’_% 2 (if’) (=1)P(1 = 2)24mP2"P(1 + w) 2w,

Here we have extended to infinity due to the coefficient extractor in w.
Continuing,

14w

(_1)n4nzn[wn] 1 Z (2p> (—l)p(l _ Z)2P4*PZ*P(1 + w)*ZPwP

p=>0 p
= (=14 " [w ]1+w¢1+(1—z)2w/(1+w)2/2
= ()" w }1+wz\/1+(1—2)2w/(1+wz)2
nAn n 1
= (-1)"4"[w ]\/(1+wz)2+(172)2w
nAn n 1 1
= (—1)"4"w ]mm

Now here we see that there are no odd order coefficients in z and we may
put ¢ = 2[. Extracting the coeflicient we get

(22 (—1)"4"[1"] —— !
V14+wv14 wz?
1 1

o1 (2
e G [

= (-1)" (20 (—1)" (2Z - lzl> (1)

o7



(20N (2n 2]
o\ n—1)
This is the claim.

This was math.stackexchange.com problem 2472978.

1.3 MSE 2719320

The goal here was to investigate closed forms of

n 1
k)ak+0b

We start by trying to prove the first closed form given to see if a pattern
does emerge. We use with ¢ a positive integer

()5 (e
(n;:c> (Z) ~ (o) x(ljl—;c()ri—k)! - (Zii) (k;rc)

Hence we have for the sum
i n+c\ (k+c 1 _li n+c\/(k+c—1
P k+c k kJrc_ck:O k+c c—1 '

This is

Now

(e e (e

k=0

Here we get no contribution to [¢"] when k > n so we may continue with

i k+e—1\ , 1
[ 1ZC+1Z( c—1 ) (

1—2)k

e =

c (1—=2)tt (1—-2/(1—2))
Lt
B 1—2(1—22)

This is
1 1 1 1
—Res.—g
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—1)ctt 1 1 1
= %Reszzo -
c2¢ 2tz —1(z2—1/2)c
With residues summing to zero we can evaluate this using the residues at
z=1,2=1/2 and z = co. We get for z =1 the residue

(~1)et?
¢
For the residue at infinity we find

(=1)ctt 1 1 1 1
——~—Res,—0—
c2¢ 22 (1/z)n+1 1/2—1(1/2z—1/2)¢
(—1)ctt 1 4 2 2°
e 027 1—2(1-2/2)c
(71)c+1 N 1 1
= Res, gt =0
e EE0E T 22y

This also follows by inspection. The residue at z = 1/2 requires the use of
Leibniz’ rule as in

1( 1 1)“”_1 . (p) (D!t g (P!

pl \zntlz—1 - p! = \4 nlzntlte (z — 1)p—atl

p
_ n—+gq 1 1
- (—1)”2 ( q )Zn+1+q (z — 1)p—a+l’

q=0

We set p=c—1 and z = 1/2 and restore the factor in front to get for the
residue

(D et (ntdy_ L (1)
a7V Z( q )(1/2>n+1+q (1/2)e

_ (=1)e2n Ci:l <n+q> =

c
q=0 4

Collecting everything we thus obtain

é(;)kic: <njc>_1(cl)c (1_2n+1§<";q>(_1)q>.

This is an improvement in the sense that if n is the variable and c is the
constant then we have replaced the sum in n terms (variable) by a sum in ¢
terms (fixed) of polynomials in n. We can make this more explicit by writing
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We find

> (= (1) S (e S S

With this last result we obtain closed forms for fixed ¢, e.g. for ¢ = 5 it yields

—24 4+ 2"t (n 4 6n3 + 23n2 + 18n + 24)
(M+5)x - x(n+1)

Addendum. With the purpose of matching conjectures by OP we write

S ("= (U e

q=0 q q=0 4
1y L n+q 9,0 _ [ye-1_1 1
=z ]1_2;;( q )H)Z I e
= ()M=Y : i P sy i)nﬂ = (1) =] T _1Z2 ﬁ

With ¢ = 2d + 1 where d > 0 this becomes

d
1 2q+n-—1
2d
[Z ]1—2:2 1—2” Z( )

9=

and when ¢ = 2d where d > 1 it becomes
d—1
1 2qg+n
r.2d—1
SR S qz<2q+1)'
‘We thus obtain in the first case the closed form

_ d
n+2d+1\"" 1 20+n—1
_1 27L+1
(2d+1) 2d+1< + Z( 2q ))

q=0

and in the second case
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(30) (e ()

These two confirm the conjectures by OP.
This was math.stackexchange.com problem 2719320.

1.4 MSE 2830860

Starting from (here evidently n > k for it to be meaningful).

ik(—l)j 2%k +25\ n+k+j+1
2 j n—k-j

_(—1- kz <2n2])<2nj+1>
n—k—j J
2n — 25 2n+1—3j
_ nk
N Z <n— —g)<2n+1—2j>'

we write

n—k .

n— S 2n+1—j el i Y

D B (o [ P
§=0

n—kj n— nnik J 2n+1_=7 J —4)
= ()" "R+ 2)? ];)(71) (2n+1—2j)z (142)72

We get no contribution to the coefficient extractor when j > n—k and hence
may continue with

(2 o (o T

=0 2n+1—2j

— (—l)n_k[zn_k}(l + Z)Qn Z(—l)jzj(l + Z)—2j[w2n+1—2j](1 + w)2n+1—j

Jj>0
= (=D F2"F (1 4 2)2 [ (1 + w)? Z(—l)jzj(l +2) Hw (1 4w) ™
j>0
= (O O )
1

_ (_1)n7k[znfk](1 + Z)2n+2[w2n+l](1 4 w)2n+2 (1 - 2)2(1 - w) - pon
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1
(w+14+2)(wz+1+2)

1
(w+1+2)(w+ (1+2)/2)

— (71)n7k[znfk](1 + Z)2n+2[w2n+1](1 + w)2n+2

_ (—l)n_k[zn-i_l_k}(l + 2)2n+2[w2n+1](1 + w)2n+2

Now the inner term is
1
(Wit o)t (1+2)/2)

Residues sum to zero and the residue at infinity is zero since limp_ oo 27 R X
R*+2/R2n+2 /R? = (). Hence we may compute this from minus the sum of the
residues at —(1 + z) and —(1 + z)/z. The first one yields

1 Z2n+2 1 .
(14 2)2n+2 —(1+2)+(1+2)/2
Replace this in the remaining coefficient extractor to get

(71)n+17k[zn+17k]z2n+3 1 —

(1 + w)2n+2

1
Resw:o W

1— 22
The second one yields
z2n+2 1 1
(T4 2)2nt+2 22042 (14 2)/2+ 142

Once more replace this in the remaining coefficient extractor to get

z
22 -1

1
—(1+2)/z+1+2

(_1)n+1—k[zn+1—k] _ (_1)n+1—k[zn+1—k]

—_ 7[Zn+17k] Z _

22—-1

["7"]

This is
[[((n — k) is even]] =

as claimed.
This was math.stackexchange.com problem 2830860,

1.5 MSE 2904333

Starting from

l’i <a +k— 1>pa(1 )= °1+be1 (a +Z— 1>pk(1 et

a—1
k=0 k=a
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we simplify to

k=0
or
b—1 b—1
at+k—1 & atb-—1\ 4 b—k—1
1— )k = 1— .
;( S ;( e

The RHS is

= [z L bz_f R(1— p)b—hk-1 2
- T k:op p 1—2)F

There is no contribution to the coefficient extractor in front when & > b —1
and may extend k to infinity, getting

Zk

1 b1 1 : —k
(1—p)" ' ]mg%pk(l—p) k(l_z)k

1 1
0= 1o/ -/ =2
1t b1 1 1
R R e ey Ty
1 1
(1-(1=p)2)*1—-(1-p)z—pz
1 1
=00 _pa

— (1 —p)b_l[zb_l}

2]

25
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The LHS and the RHS are seen to be the same and we may conclude.

Remark. The first one is the easy one and follows by inspection. The
Iverson bracket may be of interest here as an example of the method.

This was math.stackexchange.com problem 2904333.

1.6 MSE 2950043
Starting from
n—k . .
(n—1+7 2n — k n—k+j
_yn+k | Z ("
i R S (A | T
we introduce the EGF for Stirling numbers of the second kind on the RHS,

getting

() ke

§=0
“om ey (D) () ()
Now

G0 ) e o) ()

and we find
e %(1)]‘ (L) e
— G Z( (" L) R iy
S A (ESUR R §<1)j (" )=t

Note that there is no contribution to the coefficient extractor [w"~*] when

j >n—k, so we may write

(n—1) . _ ko j(n—1+7) (exp(z) - 1)
G 1A ’“];(—1)< n—1 )zﬂ“’
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(-1,
R
_(n—1)!

- (k—1)!
Working with

1
(2) = 1)/2)"
(

[wn—k](l + w)2n—k[zn—k} z”/(exp Z) )

(w+ z/(exp(z) — 1))"

_k](l =+ w)Qn—k[zn—k] (1 - w(exp

v
(w—C)"

we compute the residues at C' and at infinity in order to apply the fact that
they must sum to zero. Starting with the first we require (Leibniz rule)

1 1 AN
(n—1)! (w"’“r1 (1+w) )

1 S/m-1N\(n—k+ )! q 1
:('nl)'z( q >( (n*k)!q (V) e

q=0

Resy=0 (14 w)?n=*

w7z—k+1

(2n —k)!
><(2n—kz—(n—1—q))!

n—1
n—k+q 1 2n—k e
= ( ) 1)qwn—k+1+q< >(1 )t

g n—1-gq

(1 + w)ankf(nflfq)

() RO ()

We have two important observations, the first is that

n

z
. S— T
(exp(z) —1)"
i.e. no pole at zero and that
1 1 — 1
1tw _1tz—exp(z) _ it
W lw=—z/(exp(2)-1) z

Hence on substituting into the coefficient extractor on [z"~*] we get for all
sum terms

[zn—k](1+...) (_;z—i—...)n_kJr1 X (—;z—l—m)q =0,

i.e. due to the middle term there is zero contribution from the residue at

w = —z/(exp(z) — 1). Returning to the main computation we get for the residue
at infinity
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ot
(w—C)"

_ i n—k+1 2n—k 1
= —Resy=o 2w (1+1/w) Aw—C)

1
wn7k+1

Resy=co (1 +w)?=*

1oy (L w)>* 1
- —Reswzoﬁw " wn=k (1 - Cuw)"

1 J—
(1—-Cuw)»

On flipping the sign and substituting into the coefficient extractor on z we

1
= —Resy—0—(1 +w)*"7F
w

get

n

(n—1)! (2] z
(k= 1)! (exp(z) —1)"

(n—1)! 1 P

= (e = ) =0 T (oxpla) — 1)
Summing we get for the OGF
zn: 2 (n—1)! Ml
z=0
27 k=1 = (exp(z) —
n k=1 k-1
=x(n —1)! x Res,—
CTOENE SRCEY
exp(xz)

=z(n—1)!x ResZZOW.

Now we evaluate the residue for 1 < x < n an integer. We have

exp(zz) 1 exp(zz) :
(exp(z) —1)"  2mi /z—e (exp(z) —1)" !

1 exp((z — 1)z2) exp(2) d

B Tm |z|=€ (exp(z) - l)n

Res.—g

and putting exp(z) = w so that exp(z) dz = dw we obtain

1 x—1
1 / W
270 Jjy—1j=y (w—=1)"

L 13:1(9”;1)(1”—1)%@[;.

n 21 |lw—1]|= (U} — 1)” 7=0

We obtain from the binomial coefficient at ¢ =n — 1
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1
(nfl)!(

Restoring the two terms in front we finally obtain

T — 1)n—1

xz(n —1)! x

(n_l)!(x—l)(z—Q)x---x(x—(n—l))

—z(z—Dz—-2)x--x(x—(n—1)) = Z(_l)m—k {Z}xk

k=1

which is precisely the Stirling number OGF, first kind, and we are done.
This was math.stackexchange.com problem 2950043. See also

1.7 MSE 3049572

Starting from the claim
(m—i—n) ( n )_ = m <m+1+2q)<n—2—2q)
s+1 s+1 q:oq—l—l q s—gq
we observe that
<m+1+2q) (m+1+2q)
q+1 q

_m+1+q<m+1+2q>_ <m+1+2q>
qg+1 q q

~m (m+1+4+2q
Cgq+1 q '

Therefore we have two sums,
i<m+l+2q><n—2—2q> - (m+1+2q><n—2—2q>
=\ atl 5—4q = q 5—4q

For the first one we write

i[qurl](l +w)m+1+2q[zs—q](1 +Z)n7272q
q=0

29(1 4+ w)*(1 4 )29

"1
= res (1+w)™ 1 [z*)(1 +2)" > —
q=0

We may extend ¢ beyond s because of the coefficient extractor [z°] in front,
getting
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1
res E(l—i—w)"”'l[ 1+ 2)"" 222‘1 UL+ w)?(1 +2)" 2

q>0
=res (1 +w)™ M [2°](1 + z)"*Qi !
w w21 —z(1+w)?/w/(1+ 2)?
1 1

:rgs(l-i—w)mﬂ[ 11+ ) w(l+2)2 — 2(1 +w)?’

Repeat the calculation for the second one to get

1

res (1+w)™H[z"](1+ Z)nw(l +2)? = 2(1+w)?

Now we have

L 1 B 1 11

w w(l+2)2—2(14+w)?2  w—zw(l4+w) 1—wzl+w
1 1 11
Cl—z/ww?(l+w) 1-—wzldw

We thus obtain two components, the first is

1 1

s (1w ) i v )

= res %(1 + ) [2)(1 + 2)"

m
- _ (Z) w14 ) = (L 4+ )" Z (7)ur
(e

We may extend ¢ beyond s + 1 due to the coefficient extractor in front, to
get

(1) +raas S (Mo == (1) + e o

q>0

This is

68



We have the claim, so we just need to prove that the second component will
produce zero. We obtain

1
l—wzl+4+w

res (14 w)™ 251 + 2)"

= res (1+w)"[2°](1 + 2)" T——

S S
“res )Y (M= 3 (M w4 <0
Y q=0 q q=0 4/

This concludes the argument.
This was math.stackexchange.com problem 3049572l

1.8 MSE 3051713
We seek to evaluate
i": (2n + k) (2k — 1)1 1)
Pt 2k (k—q)!
or alternatively
2n

k) (2k—1) |
Z ( 2k ) (k — 1)' x 2k—1 (k _ q)'(_l)k

k=q

2 on+k\ (k) 1
:Z( 2k )k!x?k(k—q)!(_l)k'

k=q

This is
2n

,Z 2n+k (2k)! k! (—1)F
q'qu 2k ) KU x kI x 26 gl x (k—q)l 2F

2n
2n +k\ [(2k\ [k (=1)F
— gl
3 (M) (0) () S5
k=q
Observe that

(") (5) = e = () ()

and furthermore
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(2’?> (S) ~ 2n—h) gz?!x (k—ql (?) (21:—61(])'

We get for the sum
2n Zn 2n +k\ [2n — q\ (—1)*
k= —a) %

(4 )” s (2” o ’“) (o)

k=0

This becomes

<2n) ) % Ziq <2n +2 Z + k) [22nmak|(1 4 2y (_27?;@

q k=0
. 2n ‘(71)q[22n7q](1 +Z)anq an_q 2n+q+k (71)kzk
- q ¢ 29 prd 2n 2k '

Now we may extend k beyond 2n — ¢ because of the coefficient extractor
[227~9] (no contribution) and get

(2”)q!<2?q[ a1 4 2)Pn qZ<2”ZZ+k)(22 2

q k>0

= (M) S e e

k
q 249 k>0 2

1

_ (2n>m<—1mzzn—q]<1 ) A ) s

q

Re-write this as

1

S R L .
ZQn—(H-l( +2) 1+2z(1+w)/2

q 21

(2”) @ E (1 w2 e

Working with the residue we apply the substitution z/(1+ 2) = v or z =
v/(1 —v) to get

1 1—-w 1 1
res
v v oy 1+ (v/(1-v)(1+w)/2(1—wv)?
1 1
= Tres
o p2n—q+l 1—v+ov(l4+w)/2

1 1 1

= res = (1 —w)? 9,

v op2nmatl ] — (1l —w)/2  22n—¢
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Substitute into the remaining coefficient extractor to get

()t G o + wyne

q 24

(P S (G
(Qqn> <2np_ q) T xp! X((22nn)!— q—0p) - (?) (271(1— P)
and

<2nq_ P) @Z J:Z) T < (2n —(2pn—+q(§!)!>< R <2nq+ Q> (pTQ>'

This yields
(2n+q> ,(—1)q 2nz_q( 1y (2n)< on >
q: -
q 22n p)\p+q

%(1 _ w)2n—q

Now

p=0
= (Zn; q) q!% [2" (1 + 2)*" 2ni:q(—l)f’ (2;) 2.

p=0

Now we may extend p beyond 2n — ¢ because of the coeffcient extractor
[227~9] in front. We find

(e Gl oy ()

q p>0 p
2n —1)4 2n—q 2n 2n
:< q+q>q!(22n>[z 11+ 2)27(1 - 2)
_(2n+q\ (=D 5, 2\2n
_< . )q!22n[z J(1 —2z)"".

Concluding we immediately obtain zero when ¢ is odd, and otherwise we
find

2n + —1)4 _ ”
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q 22n
This is
2n+q '(_1)11 (_1)71 q/2 2n
q 22 n—q/2
or alternatively
(—1)"‘“1/2 (2n + q)!

22n (n—q/2)! x (n+q/2)!"

This was math.stackexchange.com problem 3051713,

1.9 MSE 3068381
We seek to show that

With the usual EGFs we get

2n 7

n - (eXplz) — k
S Y () e

j=nk=j+1-n

1 1 j+l-nm
x k! [wk] — ; <1og 7 ) .
! w

Now we have

n 1 _ (2n)! _(2n)! n+1
(j>j!(j+1—")! C@n=tx (H1-n)! (n+1)!(j+1—n>'

This yields for the sum

n-+1 o
—1)727
n+1'z(]+1n> )
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j+n

1\t
[2" 1] Z 27 % (exp(z) — 1)*[w"] (log T ) .
—w

k=j+1

Observe that (exp(z) — 1)¥ = 2* + ... and hence we may extend the inner
sum beyond j + n due to the coefficient extractor [z"*7]. We find

. non S n+1 Jjogjr.n+j
2y ;(jﬂ)(—l) [zn+]

j+1
X Z 2 % (exp(z) — 1)*[w"] <log T _1 w) .

k>j+1

Jj+1 )
Furthermore note that <log ﬁ) = w/Tt 4 ... so that the coefficient

extractor [w*] covers the entire series, producing

(2n)! mon " in+1 Lyigi[ b 1 j+1
( b X_:O(j—i—l)( D72 ]<log1—(exp(z)—1)/2) )

Working with formal power series we are justified in writing

nfl}

1 A 1 1 I+
(o () 1)/2) =g (l"g T (oxp(2) 1)/2)

because the logarithmic term starts at z/1/27+1. To see this write

exp(z) =1 1(exp(z) =1 | 1(exp(z) = 1°

(27 (log 1

2 2 22 3 23 T
‘We continue

(2n)! n—lon—

(n+ 1)1(_1) 2
n +1
n—1 n+1 itloj4l L 1 !
—1)itlgitl 1
Sy e e e
(2n)! n—lon—

i ("7 ) (o gl—(exp@—l)/z)j'

The term for j = 0 in the sum is one and hence only contributes to n = 1
so that we may write
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—[[n=1]] + 1) (71)n712n71
1o (1 Joi ’
x|z ]]Z;J ( j >(_1) - (log 1 — (exp(z) — 1)/2)
_ _Hn _ 1]] i (77()2—:/)1')' (_l)n—12n—1

Finally observe that

(1 e 1)/2)n+1

and furthermore

n—1 -1 n+1 3n+1 n+1 =0

which is the claim.
This was math.stackexchange.com problem 3068381.

1.10 MSE 3138710
We seek to prove that with n > m + 2

an/% m+j+k\ n (n—3\ [(n+k+m
m—j+1)n—35\ 45 ) \ m+1 )

Jj=0
This is
[n/2] . '
m+k m+j+k\ n [n—j n+k+m
+ 2 - )=
m+1 = m—j+1/n—j J m+1
or

m+k +L§/§J m+j+k\nn—j—1\ _ (n+k+m
m+1 e \m—j+1)j\ j-1 S\ m+1

1
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Now observe that

<n—j—1>_n—2j(n—j—1>_n(n—j—l)_z(n—j—l>
J J J—1 J\ J-1 =1 )

We thus get two terms:

<m+k>+an/§J <m+j+k)<nj1> L"f <m+j+k>(nj1>
m+1 = m—7+1 J = m—j+1 J

and

For the first one we have

“‘fj m4j+k\ (n—j—1
m—j+1)\n-2j-1

Jj=0

We may extend j to infinity because of the coefficient extractor in front (note
that the following representation in the variable w will produce a correct value
of zero in the remaining binomial coefficient when j > m + 1):

"7 4 2)" Hw™ ) (1 4 w)™ Z(l +2)7 22 (1 4+ w)w’

50
n—1 n—1r1 m-+1 m 1
= "+ e N ) e
n—1 nfpym+1 m !
= " ) () s
1

— anl 2\ wm+2 w mtk—l ’
= —[z"7 (1 + 2)" w21+ w) (z— Ljw)(z+1/(1 + w))

Extracting [z" 1] first we get

1
(z—1/w)(z+1/(1 +w))
We see that the residue at infinity is zero. Residues sum to zero and we get
for the residue at z = 1/w

1
Res,—o— (14 2)"
ZTL

()



o (14+w)™ 1 1+ w)"

w Twt1l/1+w)  © 1+2w
For the residue at z = —1/(1 4+ w) we find

w" 1
I+w)n1/(1+w)+1/w

1
142w’

—(=D"(1 +w)" = —(-1)"w" (1 + w)

Now the coefficient extractor is [w™% 2] but we have n > m + 2 so the
contribution from this is zero.
It follows that the first sum is given by

[wmﬂ]w

142w

Continuing with the second sum we find
2an/§J m+j+k\/n—j—1
o \m-— J+1 n—2j

[n/2] m+j+k
=9 n 1 n—1
ety (M

j=1

)(1 +2) 79,
We may include j = 0 here because
m+k
2[2™1(1 n—1 =0
e (M) <o
getting

ln/2] m+j+k
2[2"1(1 + 2)"* ]
a3 (T

)+,

We skip forward to the residue computation since the intermediate steps are
the same as before. We get for the residue at z = 1/w

1 " 1 1 n+tl
! (1+w) — 92 (1+w)
w? 1w+ 1/(14 w) 142w

For the residue at z = —1/(1 4+ w) we find

1
142w’

w™ 1
I4+w)r1l/(1+w)+1/w

_(_1)n+1(1 +w)n+1 _ (_1)nwn+1(1 +w)2

We note once more that the coefficient extractor is [w™*2] but we have
n > m+ 2 so the contribution from this is zero. It follows that the second sum
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is given by

(1 +w)n+k+m
14 2w

Adding the two sums we obtain at last

w2

k k
[w™ ] s +1w+)2+ - + [me]Qw‘(l +1u;)72b+ . [w™ (1 4wy
w w
or
n+k+m
m+1 )

This was math.stackexchange.com problem 3138710.

1.11 MSE 3196998

As a preliminary, observe that the generating function of the Fibonacci numbers
is
z
1—2z—22
so that we have Fy =0 and F} = F> = 1.

we 5eek tO e'valuate
p

_I,ZMZO(TL— —t)(nr—l;gq)'

Note that on the first line the binomial coefficient (}) = n%/k! starts pro-
ducing non-zero values when p > n and ¢ > n. This is not desired here, hence
the upper limits. On the second line we use the convention that (2) = 0 when
k < 0, which is also the behavior when residues are used. Continuing we find

n n

S0 DT ) (L w)

p=0¢=0

="+ 2) "+ w)™ Y YT+ 2) PwP T+ w)

p=0 q=0
:[z”](lJrz)"[w”](ler)nz,zpwp (1+2) pquwq (1+w)”
p=0 q=0
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Here the coefficient extractor controls the range and we may continue with

214 2) "1+ w) 3 PP (14 2) S 2L+ w)

>0 q>0
1 1
= B ) ) S T e )
) 1

— [4"(1 n+lp, n 1 n+1 .
[2"](1+ 2) [w"](1 +w) l4z—zwl4+w—zw

Now we have

1 1
l+z—z2wl4+w—zw
o 1l-w 1 w 1
B 1+z—wz1—|—w—w2+1—|—w—wz1—|—w—w2'

We get from the first piece treating z first

1—w
1—2z(w-1)

R el S (R

_(1w)i(gt;)(w1)1’—271:(211)(1”1)%1

p=0 p=0

_ ~ (n+1 +1 _ n+1
_1—Z<p+1)(w—1)1’ =1—w"t

p=-—1
The contribution is

n+1 1

1—
n+1 w _ [w”](l + w)n+1

1+w—w?

The second piece yields

)1+ w) fprev—yt

[ +2) +11—|—w—wz: 1+w[z [ +32) "

1—wz/(14 w)

w " /n+1 wP 7% n+1 wPt1
—1_|_wp:O n—p (1+w)p7p=0 p+1)(1+w)rt?

" /n+1 wPtl w \"M
-1 e P
+Z<p+1><1+w>p+1 *( +1+w>

p=-—1

(1 + 2w)"+!

T AT wy

The contribution is

8



[w™](1 + w)" (_1 + 1+ 2w)”+1> 1

(14+w)"*tt ) 1+ w—w?’
Adding the first and the second contribution we find

1
n 1 2 n+1
w1+ 20)" e
1 1
_ n+1
RS A we—"

Setting w/(1 4+ 2w) = v or w = v/(1 — 2v) so that dw = 1/(1 — 2v)? dv we
obtain

1 1 1
ST T o/(1 — 20) — 02/(1 — 20)2 (1 — 20)2
1 1
T et (1 —-20v)2+0v(l —20v) —0v?
1 1
=Tes

v Tl ] — 3uy 4 02°
‘We have our answer:

1
1—3v+02

It remains to prove that the coefficient extractor returns the Fibonacci num-
ber as claimed. The OGF of even-index Fibonacci numbers is

Sl = 1o 2
= " 21—2z—22 214+z—22 1—322+424

This implies that

[v"] = Fonya.

Therefore

z [n] 1
=z
1—3z+22 1—32z+22

Fopio = [Zn+1]

as required.
This was math.stackexchange.com problem 3196998.

1.12 MSE 3245099
Starting from the claim that S = 1 where
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g e —1+q a?b® + a¥be
qz (a+0b)atk

we get, two pieces

K—1 —1+q ad
aerK — (a+0b)1

K-1 —1—|—q e
(a+0)K (a+b)

Q

q=0
This is
Ve 1
(a+b)K 1—2(1—az/(a+b)K
K
a K1, 1 1
e R TR ATk
Call these 57 and Sa. The first sum is
b 1 1 1
I G R RS R T (T az/(a T B)E
1 1 1
— K Reac _
=0 RebzzozKl z(a+b—az)kK
I T N
- af bZZOZKl—z((a—l—b)/a—z)K
bE 1 1 1
— (—1DE_Res._n—
(=1) aKRebZ_Osz—l(z—(a+b)/a)K

Now residues sum to zero so we compute this from the residues at the poles
at z =1 and z = (a + b)/a. The residue at infinity is zero by inspection. The
residue at z =1 is

(_1>K+1£ 1 _ (—1)EH k1
(1= (a+b)/a)* (a—(a+b)*
_ (_1)K+1bKﬁ - 1.

For the residue at z = (a + b)/a we require

1 11 &Y
(K—l)!(sz—1>
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1 = (K-1 K-1+q)! 1 (K —1-q)!
K—l'qz< )(1)q((K—1)?) e (D0 <(Z_1>Ki13

—1+4+¢ 1 1
1)K+
Z ( ) KHa (2 - 1)k

Evaluating the residue we find

b —1+4q\ 1 1
K+17 K+1
-1 S () e

z=(a+b)/a
R (K —1+q\  aFte 1
~af = K—-1 J(a+bEt1((a+b)/a—1)K-q
_ iy —1—|—q afta bfqbeq 1
N = K — (a+b)K+7 a7 a¥-2 ((a+b)/a—1)K—1

K-—1 K—1+q CI,K+q bi
= (a+b)K+q ad

q

K —1+g¢ b4
= 5.
+quZ;< ><a+b>q i

We recognise So and hence we have shown that

S1—145,=0
or
= 1( 1+q)aqbK+aKbq
(a4 b)atE T
2 (a+b)i
as claimed.

This was math.stackexchange.com problem 3245099.
Remark. This is the formal power series version of the identity by Gosper
in section ?7.

1.13 MSE 3260307

Starting from the claim (we treat the case r a positive integer)
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r+2n -1 (2n-1 757’21 2% —1\ (r+2n—k) -1\ r
n—1 n—-1) = k r+n—~k n—=k

e (2n =2k =1\ (r42k -1\

_k:1 n—k r+k k

(2 —2k—1\ (r+2k—1\r
B n—k k-1 )k

—

—_

o
—

we use the fact that

r+2k—1 o r+2k—1 _ r+2k—1
k-1 )k k k-1
to get two pieces, call them S; and Sy where S = S; — S5 and
n—1
2n—2k—1\ [r+2k —1
s=x (M)

and

n—1
on—2k—1\ (r+2k—1
52_;_1( n—k )( k—1 )

We find for S,

n—1
- 2n — 2k — 1\ (1 +w)?k
r—1
res (1 + w) Z( _ >wk+1
k=1
n—1
_ 1+w)t 2n—1 k o (1T +w)?k
e G R D DU
k=1
Including the term at kK = 0 and compensating
2n—1 1 r—1 n—1 ) o
_<:— 1) R A >0 4zt

Including the term at kK = n and again compensating

_<2n—1> _<r+2n—1>
n—1 n
(14 w)r!

n)(1 2n—1 k 1
tres ———[="](1 + 2) ];)z( +2)

o (1 w)?*
wk
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Now we may extend k beyond n owing to the coefficient extractor [2"] to

get
2n —1 r+2n—1
n—1 n
(1+w) !

1
n(1 2n—1
res 21+ 2)

1 =2(1+w)?/w/(1+2)?
_ <2:_11> - <r o 1)

+res (1 4+ w)" 1[2")(1 + 2)*" !
w w

1
(1+2)2-z2(1+w)?

We get for S,

n—1
_ _ o (T4 w)?k
1 r—1rn 1 2n—1 kl 2kr( )
res (1+w)" " [2"](1 + 2) ;Z( ta) T

The term k = 0 contributes zero. Compensating for £k = n we find

r+2n—1 r—1f.n 2n—1 k o (L +w)?*
_< o )—s—rgs(l—i—w) [z"](1+ 2) Zz (1+2) —
k>0
r+2n—1 1 ont1 1
- 1+w)™ 1271 n+ .
< no1 )+r$sw( +w) T [Z"](1+ 2) w1 — (0 )

‘We therefore have

5251_52:_(2:—11) B (7“+2:—1>+ <7“—|;12n1—1)
(I —w)(1+2)
(1+2)% = 2(1+w)?’

Working with the remaining residue we note that

tres (1+w)" ™! [z"](1+ 2)*" —

1-w)(1+2) 1 1 1
wl+2)?2-z20+w)? wl-z/w 1-zw

We see on substituting into the residue that we get no contribution from the
second term. This leaves

83



B qio <n2fq) (r ; 1) = [2")(1 + 2)*" io (T ; 1) 4

q

The coefficient extractor once more enforces the range and we find

sy ()

q20

= [2"](1+2)2" (1 +2)" "t = 21+ 2) L = (r +2n — 1).

n

Collecting all four pieces yields
S=5 — 8y = — 2n —1 _ r+2n—1 n r+2n—1 n r+2n—1
n—1 n n—1 n

_(r+2n-1 _ 2n —1
o n—1 n—1
which is the claim.

Remark. The next-to-last step may also be done as follows:

res l(1 +w) 7 2")(1 + 2)2"

w w 1—2z/w
r—1
1 r—1\ .. o1

= [2"](1 + 2)*" f (r - 1) 20 = [2"(1+2)2"(142)""! = (’” 2= 1) ,

n
q=0 B

This was math.stackexchange.com problem 3260307.

1.14 MSE 3285142

Starting from (the contribution from k = 0 is zero owing to the third binomial

coefficient)
Z": S\ 2R\ 1 (n+ k-2
— 4 k 1-—2k 2k — 2

we seek to show that this is zero when n > 1 is odd and

1\ (2zm\ 1 77
4 m/)1—2m
when n = 2m is even.

‘We observe that with £ > 1

84


https://math.stackexchange.com/questions/3260307/

(a0 () em (a)
-—2( )i () e
(D)) =)
Wo gob for our sum
22 )
2 (MCO)0E)
S () (o

The value k = 0 contributes zero:

—%x res — (1+w) V20011 + 2)" QZ( )ljk(l—i-z)k

k=0

=22 res 21 w) 2 (14 2) 21+ (1 + 2) )"

n W
2

=X res oy (1+w) Y214 2)" 214w+ 2)"
n z

2 1 1/2 nl n—2 Pt
=——x rgswnH( w) T (1 4 2) Z (14+w)?

ixéc;)(q;”)(’;_f)-

Now observe that with ¢ < n (third binomial coefficient is zero when g = n)

_ n—1
<q_n1/2> = -1/ H (a-1/2-p) [[(a-1/2-p)

1 q—1 n—1
= mH(Qq—l—QP)H(Qq—l—QP)
’ p=0 p=q
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n—1—q

1 (2g — 1)!

- nl x 2n (q— 1)! x 29—1 ]E) (_1 - 2}?)
(=D (2¢—-1)! (2n —1 - 2q)!

T onlx2n (g 1)1 x 2071 (n —1—q)l x 2n—1-q

-FE () (ELY)

We get for our sum

n—1
1 o (2a—1\[2n—1—2q\ (n—2
o e
s < D <q—1>< n—q )(q—1>
n—2
L n=2\, s, (2a+1) (20 —3-2
WXZ( >(1) 2q< >( - —1>'
n x q q n—q

This becomes

LR e ol (i TV G BT

n x 22n=3 par q .

= ! 3 l+w n—1 2n—3
= o x22n-3 '8 T, ("1 +2)

X "22 (n — 2> (*1)"*2*‘1%(1 + w)%929(1 4 2) 2

1 1 1 2 n—2
= res tw [2"71(1 + 2)2 3 (z(—i—w) _ 1)

nx22n=3 27w w(l+ 2)?
1 14w, ,_ .
Tnx 228 1 e "1+ 2) (2(1+ w)? —w(l + z)z)n
1 1
= res +w[zn—1](1+z)(z_w)n—2(1 _wz)n_z.

n X 22n—3 " w"—l

The first piece in z is

2" M(z —w)" 2 (1 — wz)" 2

n

= Z " (_1)n—2—qwn_2_q n= (_1)n—1—qwn—1—q
q=1 q n—1-— q

n—2

= — Z (n o 2) (n - 2) w2n—3-2q

— q q—1
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Here we require

(2] + w3072

We get ¢ = (n—1)/2 in the first case and ¢ = n/2 in the second. As this is a
pair of an integer and a fraction clearly only one of these extractors can return
a non-zero value.

The second piece in z is

[2"2)(z — w)" 2 (1 — wz)" 2

] G IR (e

n—2—gq
n—2
-2 -2
£
=0 q q
Solving for ¢ again we require
([wn72] 4 [wn73})w2n7472q

getting ¢ =n/2—1and g = (n —1)/2.
Supposing that n is odd i.e. n = 2m + 1 we thus have

L) ()

and we have proved the second part of the claim. On the other hand with
n = 2m even we collect

S | ey B ety [y
() ) e (e ) w
- g () = i )

—1)2\m
Restoring the factor in front we obtain

1 1 m om\? 1 1 2m2
nx22=342m—12\m /) = 227 (2m —1)2

24m 1 —2m)2 —2m)? ( )
This is
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N\ (2m\ 1 77
4 m/)1—2m
as was to be shown.

This was math.stackexchange.com problem 3285142,

1.15 MSE 3333597
We seek to verify that

Sy EEE OV O e

Now we have
N\ (N +n\ _ (N +n)! _(N+n\[(n+k
k n ) (N—K!xklxn  \n+k E )
We get for the LHS

Syt G )

n=0 k=0

e S pevaey (e ey

n=0 k=

S )z () ()

k=0

N

- i:o m[,w](l 4 ) Nnt (‘27) Z(il)nJrkzk <N; k) <n : k>

k=0

Now the coefficient extractor controls the range and we continue with

N

2 +; 1 GG R (JD

n=0

N+Ek 1 1

n+k _k

X Z(_l) z ( N ) vl | (1 — w)k+1
k>0

N
1 N v N 11
—_ - 1 +n+1 -
;N—l—n—i—l[z J(+2) n rgswn+11_w

X

k>0
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N
f;N n+1[N](1+ )N+ +1<n)

1 1 1
wrtl T —w (14 z/(1 — w))N+!

X res
w

N
(_1)n N N+n+1 N
S N A 1 S
5 L e e (%)

" (1—w)N
res
w o wrtl (1 —w+ z)N+H!

s ALk ("Z)

n=0

(1—w)V
X W (1 —w/(1 1 2)) N

i i %Wl + )(]Z)
B ot
S ()

< ;:(—1)’“ (JIZ) (“ - ’;V+ N) V(14 2),

Now for the coefficient extractor to be non-zero we must have k > N which
happens just once, namely when n = N and k = N. We get

() ()Y

This expression does indeed simplify to

1
2N +1

as claimed.
This was math.stackexchange.com problem 3333597.

1.16 MSE 3342361
We seek to verify that
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St () (O e [(5) - ()

=3 j=1
S ()

to be non-zero we would need k —3 > n — 2 or k > n + 1, which is not in
the range, so it is zero and we may work with

Sor (g2

where n > 3. Now for

k=3 =0
- ki3(_1)k<z> ; (j(n +nl)_+2k: — 3) 0<i<k—2]
— é(—l)k(D J; (j(n +nl)_+2k — 3) e Zkl_l 1%
R - . é(—l)’“ (Z) Zik ; (j(n +nl)_+2k - 3) i

z
j(n+1)+k— 3
e 1—z; ()Zergsw (1+w)
= res1 res —— IZ < > 1+wk 32 (1+w) 3(nt+1) 4
z — 2 w w

7>0

z 1
B IR 1+w"+12 () (L+w)*™

z 1 1 1
= res res
z 1=z w w14+ w)31—2(1+4w)nt!

() ko

=3

We compute this by lowering the index to k = 0 and subtracting the values
for k = 0,1 and k = 2 from this completed sum. First (piece A), extending to
k =0 we find

z 1 1 1 L Ltw "
res res - -
z 11—z w wr 't (1+w)?1—2z(1+w)nt! z
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1 2 1 1 1 (1w
= res — res z—1—w)™
z 2" 1l—z w w (1+w)31—2(14w)nt!

We introduce z/(1 + w — z) = v so that z = v(1 + w)/(1 + v) and dz =
(1+w)/(1+v)?dvaswell as z/(1 — 2) = v(1 +w)/(1 —vw) to get

(=™ 1 1 v(1 4 w) 1 14+w
res res
v v w w14+ w)d 1—ovw 1—o(l4+w)™t2/(1+v) (1+v)2

(—1)" 1 111 1
res res :
v "l 140w wrll4+wl—vwl—o((1+w)t2-1)
Observe that

L SR S SN A
l+vl—vw 14+wl+v 14+wl—ow’
We thus have piece A :

(-1 1 1 1 1
res res
o Pl 140w wrm (14 w)?21—o((1+w)t2—1)

n n—2
C L S (1wt - 1y

ros 1 1 1-(1-(01+ w)"+2)”_1
= re wn—1 (1 + w)2 (1 + ’LU)”+2
_ [wn_Q] 1-— (—(n +2w— - — wn+2)n—1 _ (_1)n_2 n—24+n+3
(1 4+ w)nte n—2

2n +1
=(-1" .
()
We have one correct piece. Continuing with Ay (which we conjecture to be
zero) we find

(—1)" 1 1 1 1
res res
v "l w w2 (14 w)?2l—ovwl—o((14+w)nt2 —1)
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n—2
" 1
( ) Z((n + 2)qwn72 NI w(n+1)q+n72)

= I‘gs wn_2 7(1 +w)2

n—2
—1)"
q=0

Continuing with the second piece B which corresponds to k =0

z 1 1 1
res res .
z 11—z w w14+ w)31—z(14+w)nt!

This is zero by inspection because there is no pole at z = 0. More formally,

1 1
reSs ——-—"7"—""—
w n1 (1 er)d

xres z(14+2z4+ 224+ )1+ 21 +w)" ™ + 221+ w)* 2 +...) =0.

For the third piece C' which corresponds to & = 1 we get a factor of —n(1+
w)/z for

1 1
—nres —— ————
w owr (14 w)?
xres(14+2z+22+-- )1+ 2(1+w)" ™ + 221 +w)* 2 +...) =0.

The factor for the fourth piece D is (5)(1 4 w)?/2? :

n 1 1
2 Yo w114+ w

1
X Tes ;(1+z+22—|—-~-)(1—|—z(1+w)"+1+22(1+w)2"+2+~-~)

n 1 1 n
= — = (-1)" .
(2> S T Y <2>
Subtracting B,C and D from A we finally obtain
2 1
(—1) n+ _(n -
n—2 2

This was math.stackexchange.com problem 3342361.

1.17 MSE 3383557
We seek to show that

- (—1)k 2n—k\ g oop_op 1 — (2n 2k, 2 n—k
n/;)%—k g )oY =g 2 (g )V 07 — )"

k=0
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We compare the coefficient on [29] of the LHS and the RHS where 0 < ¢ < n
and show that they are equal. We must therefore show that

(=1)7 (2n —q 2n—2q _ [..q 1 <~ (2n 2k 2 n—k
"onal o )Y *[:”]2%];) o |V WP = )
The RHS is

We have reduced the claim to

(1) 2n—q\ 1 <
n2n—q q 722”;:(1

The RHS is

= D 3 <k> 22,

k=q q

Now when k exceeds n we get zero from the coefficient extractor, which
enforces the range:

R T D

k=g N4
(—1)2

n n k+q
= 55—t [227]229(1 + 2)? Z < )sz

k>0 \ 4
(_l)q 2n7 .2 2n 1
= gmem 1 T
_ (_l)q 2n—2q 2n—qg—1 1
= 92n—2q 2 J(1+2) A=yt
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(—1)4 2n§q:—1 2n—q—1\/2n—-2¢g—p+gq
22n—24 P q

p=0

_ (—1)¢ Qni71 2n—q—1 2n—q—p
22n—2q 2n—q—1—p q ’

p=0

Then we have

( n—q—1 ><2n—q—p> (2n—q—1)!(2n—q—p)

2n—q—1—p q - p! x q! x (2n —2q — p)!

1 (2n-9¢)!2n—q—p)
2n —qp! x q! x (2n — 2q — p)!

(e ) e

Substituting we find (here we have included the value for p = 2n — ¢, which

is zero):
2n—q
(-9 1 2n —q 2n — 2q
22n—2q 2’)’L—(] Z P (2n_q_p)'

¢ ) =

Working with the remaining sum we note that (2n — 2¢)2 = 0 when p >
2n — 2q and 2n — g > 2n — 2q so we may continue with

2n—2q 2n—2q
2n — 2q n— 2n —2q
> ( )(27%—(1—1?)=(2n—q)22 R ( ) )p

p=0 p p=1

- on—2q a2 2n —2q — 1
= (2n —q)2 —(2n-29) >

p=1 p-1

— (2n _ q)22n—2q _ (2n _ 2q)22n—2q—1 — (2n _ q)22n—2q _ (n _ q)22n—2q

=n2?n2
Substituting we at last obtain
_1)¢ _
L "D (2n—q
2n —q q
which was to be shown.
This was math.stackexchange.com problem 3383557,

1.18 MSE 3441855

We seek to evaluate the LHS of the first equation below and start as follows:
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zn:(—1)k4"—k (2nk— k) _ zn:(—nkzw—’f <22:_—2kk>

k=0 k=0

— i(*l)kélnik[zznizk](l + Z)ank
k=0

n
_ [z2n}(1 + 2)211 Z(_l)k4n—kz2k(l + Z)_k.
k=0
Now when k > n we get zero contribution due to the coefficient extractor
[227] and the factor 22 so this enforces the range of the sum and we may
continue with

[27"](1+ 2)>" > (=1)F4n Rk (1 4 2) 7"
k>0
1

i S v ey

1 1
:4n+1 2n 1 2n+1 :4n+1 2n 1 2n+1 )
2711+ 2) 444z 4 22 I+ 2) (z +2)2
This is
1 1
+1 2n+1
e (AT

We introduce z/(1+ 2) = w so that z = w/(1 —w) and dz = 1/(1 — w)? dw,
to obtain

1 1
4n+1
"o w2 (w/(1 —w) + 2)2 (1 — w)?
1 1

_ an+1

=4 res T 7(2 ST

1 1 1

:4n+1 2n7:n 2n7:4n2 1)—
=2n+ 1.

Remark. This can also be done using the fact that residues sum to zero,
which starting from the residue in z we see that the residue at infinity is zero,
So our sum is

1
(z42)2

1 !
= -4t <Z2n+1 (1+ Z)2n+1>

—4" 1 Res,_ (14 2)*+t

—2 2n+1

z=—2
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2n+1 (2n+1)
n+1 2n+1 2n
=—4 (— Soni2 (1+2) + ol (14 2) )

1 _1 2n—+1
= (2n+1) x 4™ <E_2;2n+2 - (( 2)2) +1>

1 1
22n+2 + 22n+1

z=—2

= (2n+1) x 22n+2 ( >—2n+1.

This was math.stackexchange.com problem 3441855,

1.19 MSE 3577193
We seek to show that

The RHS is

The coefficient extractor enforces the range:

[2"]> (1) <z _l;; 1_ k) (14 2)F

k>0
= [2")(1+ 2) w1+ w) Y (DR (14 2) 7
k>0
1

= 0+ ) )

= "1+ ) ) )

1
14+ 2(1 4+ w)

— [Zn](l + Z)l+1[wl—m] Z(_l)kzk(l + w)k+l+1
k>0

k+1+1
)1+ ) (1 ( **).
m

k>0

>0
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The LHS is

D l0 <k <Y1+ 2) w1+ w)"

= "] S0 (14 2)F (1 4 w) ol

1—vw
k>0

> (14 2)F 1+ w)Fob

k>0
1 1
1—vl1-=(142)(14+w)v
1 1/(1+2)/(1+w)
v—1v—1/142)/14+w)’

= [="][w"][v']

= ["][w"[v"]
The inner term is
Res 1 1 1/(1+2)/(1+w)
Oy 1o —1/(1+2) /(1 + w)’
Residues sum to zero and the residue at infinity in v is zero. The contribution
from minus the residue at v =1/(1 4 2)/(1 4+ w) is
1/(1+2)/(1+w)
1/1+2)/(1+w)—1
1/(1+2)
1/1+2)— (14 w)
1/(1+ z)
w+z/(1+2)
1/z
w(l+2z2)/z+1

Now with I, m,n positive integers we must have [ > n,m or else there is no
contribution to k™k™. This means we continue with

n L\n—k
[2™](1 + Z)lJrl Z (l Z 1> 1(71)”71{2 (1 i»n)k

71+ 2) (1 )

= —[2™](1 + 2)" Hw"](1 + w)' !
= [2"](1 + 2)" T w"] (1 4 w)"

= [Z™)(1 + 2)" T "] (1 + w)

k=0 z
- e (T 1+14+n—k
= 2= E J\m+ti+n—k)
k=0
This is
2 I+1\/l+14+n—k
_1\n—k

S () ()
k=0
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We have the same closed form for LHS and RHS, thus proving the claim.
For a full proof we also need to show that the contribution from v = 1 is
zero. We get

S T )/0rw) CT AT ) w) - 1
= ") = [

T+w(l+z)/z
— [Zm+1](_1)nM _ (_1)n< n ) —0.

2" n+m-+1
This was math.stackexchange.com problem 3577193,

z4+w+ zw

1.20 MSE 3583191

Goal here is
i 2n\ (n—7\ _ 4kn (n+k
= \2jJ\k—j) n+k\n-£k/)

j=0

Start as follows:

i @;) <Z_j> - Jz; (2k2n2j> (n _;‘CH)

20 +z)2"2k:z2f (”_’?”).

i=0 J

Here the coefficient extractor enforces the range:

o (M)

>0 J
1
(1 _ ZQ)’n.—k—‘rl

1

= [22F)(1 + 2)*" (S

_ [Z2k](l + Z)n-',—k—l

This is
1 1
. n+k—1
Res:—0 g (1+2) (1— 2)n—F+1
= (=1)""F"1Res L (1+ z)"*kilil
- #=0"2k+1 (z — 1)n—k+1°

Now the residue at infinity is zero so this is minus the residue at one:
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1
(1+ (z — 1))2F+1

n—k .
B thk-1 L i n—k—j+2k
= (=1)" k n 2n+k 1]_171 k—j
(-1) Z( ) (1) .

n—=k .
_ +k-1\__. (n+k—j

= gkt N (T 277 (—1)! :
Z( p S P

Jj=0

1

n—k
(—1)"""Res,=1 (z — 1)K+l

2+ (= — 1))"h1

Coefficient extractor enforces range:

n+k—1 ank ZnJrk n+k—1 G 1\ 20
2RIk (1 4 ) Z( . )2(1>(

= j 1+ 2)9

. . . > n+k—1
_ 2n+ —1r n— 1 n+k 1—
L) 2(1+ 2)

= ["H(1+ )@ + )"
_ [ank](2 + Z)nJrkfl + [ankfl](z + Z)n+k71

n+k—-1 n+k—-1
_ 2n+k—1—(n—k:) 2n+k—1—(n—k—1)
< n—k ) * n—k—1

1 2k (n+k n—=k n+k
_ 14k 4k
2 n+k(n—k>+n+k (n—k)

_ 4kn (n+k
T n+k\n—k)

This was math.stackexchange.com problem 3583191

1.21 MSE 3592240
We seek to verify that

o (e C )

q=m

Using the standard EGFs the LHS becomes

= e—m(k—1+q g (exp(z) — )™ w1 1 \7*
e R T e e C e
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- g at+k—1
(k (_nl)lll!m![ "1 (=192 (exp(z) — )™ (log — w> ﬁ
_ (n-1) oo 1
T L
n—k

q=

q+k—1
X 3 (~ 1)1 P[RR exp(z) — 1) (log - w)

(TL B 1)' [ nfl] 1
= —F— (W —_—
(k—1)! x m! 1—w
n—1 1 q
_1)2—(k=1)—=myq] k-1 _1ym
X Z (-1 [29]2" " (exp(z) — 1) <log = w) .
qg=m+k—1
Now as log ﬁ =w+--- when ¢ > n — 1 there is no contribution from the
logarithmic power term due to the coefficient extractor [w™~!] so we find

m -1 ('fl— 1)' n—1 1
(=1 )(k—l)!xm![w ]1—w

x Y (=1 <1og

g>m—+k—1

) ) -

Note that z#~1(exp(z) —1)™ = z™*k~14... which means that the remaining
sum / coefficient etractor pair covers the entire series and we get

(_1)m+(k—1) (k: (_nl_)' 1:'m' [wn—l] : _1 ”

x(—1)k1 <log : _1 w>k1 (exp (—log - _1 w) - 1>m

m -1 n—1) n—1 1
=(-1) +(k )M[w | ——

1—w

x(—1)k1 (log . j w>k_1 (—w)™

1—w
_(n=1) 1

n—l—m] 1 1 1 A
m! o 1—w((k—1)! 1w
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=D )" (1°g 1 —1w>k

) ! .(n_m)![w”*m]% (log 1—1w>k

_(n— 1\ |n—m
T\ m k|
This is the claim.

This was math.stackexchange.com problem 3592240.

1.22 MSE 3604802

We seek to evaluate

S(N) = i—l)"@q) (ﬁi . Z) (qilﬂ

or alternatively

B 3 (N +q)! 1
= (N=glg—-DP(¢+1D*

This is

(N + q)!
(N —q)l(g+ 1)

Sy, (N1 (N +q)!
- () wemae

1 al JN+1 (N +q)!
NN 22 (1) (q+1)(N—1)!(q+1)!

s () ()

‘We continue with

N

o 2 (v ) ()

q=0

1 I aq(Nta
= w0+ Ay (M.
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Here the coefficient extractor enforces the upper limit of the sum:

1 N +q
N(N+1)[ JL+2)™ D o ( —1>

q>0
1

zm[zN](I—FZ)NH[ 11+ w) Zq 1)929(1 4+ w)?

>0
Ny—21+w)(1—2(1+w))
(I4+2(1+w))3
1—2(14+w)
(1+2(1+w))3"

- 1
 N(N +1)
- *N<N1+ e A+ DT T+ w) N

We have two pieces here, the first one is

V)1 + 2)V TN (1 + w)

1
“N(N +1)

1

N+ DN )

1
~ N(N +1)

The inner term is

S (e (1)

q

1
(1+zw/(1+2))3

V(4 )Y 2N (14 w)

Now

N+1 q+2\ (N +1)! _(N+1\(N-1
N—-1—gq 2 ) (N—-1—-¢q)!xqx2 2 q
and we find for the inner term
N-1 _ q N-1
N+1 Z N -1 (—1)s z _ N+1 1 z
2 = q (14 z)9 2 1+z2

(") i

Substitute into the outer term to get

1 . L(N+1 1

eI () e
1, vy, 11
5[2 ]1+z 2
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The second piece is

1
N(N+1)

1
(1+zw/(1+2))3

Y721+ 2)V 2N (14 w) N
For this piece we obtain

ues LA NZ( vt ) e ()

The remaining coefficient extractor cancels the term for =N —1:

e A G NZ( ) () e

N-2

:N(Nl+1)§ (N]\iJlri) <q+2>
N

() e S (T e (1)

N—-1

=3V 2 <N]\if q)<1>q<qg2).

Continuing, with the coefficient extractor enforcing the range,

R T M (e > (q 3 2)

1
N(N +1)

1
NN

_ 1
[ZN 1](1+Z)N+2(1+Z)3
R

1
NN +1)

Collecting the contributions from the two pieces we obtain at last

=-(-)N +

1

(- + NV

This was math.stackexchange.com problem 3604802.
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1.23 MSE 3619182
We seek to verify that

SO SO

Starting with the inner term on the LHS we have

()0
e EG))

k

(RSO (RRUED DR (Y EERURS

1=0
The coefficient extractor [2*] enforces the upper limit of the sum and we find

21+ 2) ] (1 + w)? S 2! (’;) (14 w)™!

1>0

= [2(1 + 2)*[w"](1 + w)?" <1 + l—iw)

= [2F](1 4 2)*[w"] (1 + w)" (1 + w + 2)".

We get from the outer sum

> (Z) [ZF]1(1 + 2)*[w™] (1 + w)" (1 + w + 2)"

k=0
:Z( ) K1+ 2] (1 + w) (Lt w0+ )"
=0

n 2
= [2"](1 4 2)"[w"](1 + w)* (1 +w+ 2)" Z <Z) (14 2)7k
k=0

=[2"]1+2)" w14+ w)"(1+w+2)" 1—|—v”zn:<) FaR 4 2)7F

k=0

— [+ 2) "1+ w) (1 + w + 2) (1 + o) (1 T f)

= ["w"](1+w)"(1+w+ 2)" "] (1 +0)" (14 z+vz)™.

Extracting the coefficient on [2"] we obtain
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D)1+ w) (14 w A+ 2)") (M) (L A+ 0)" (1 2(1+v)")

- kzn:_o <(n . k> [w™] (1 + w)“k) <<Z> "1+ v)”+k>
SO
This is the claim,

This was math.stackexchange.com problem 3619182,

1.24 MSE 3638162

Suppose we seek to verify that

Sev () () - ()

B 1 btk
> e (1)

1 e 1 btk
=i 22 k(l—z)k(b+1>’

k=1

We get

Here the coefficient extractor enforces the upper limit of the sum and we
find

o1 we 1 (b+k
I 27 D) k(l—z)k<b+1>

1 1 2 .1 b+1+k
:[Za]l—z(_l)a_ 1—zZZk<_1)k(1—z)k< —Z—I——il— )

(—1)a—1 1 e (_1)(1—1
(1—2)2 (1+2/(1—2))0*2 = 1]72(1 . Z)b+2

= ")

=D =) = (1 +2) = (a ’ >

This is the claim.
This was math.stackexchange.com problem 3638162,
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1.25 MSE 3661349
We seek to show that

S (TS ) - ()

where 0 < 5 < k.
The LHS is

e S

a=
1 1
(1 4+ wz)ntt (1 — z)ntl’

= (=1 [w" ] (1 + w)*"[z"]
The inner term is

e L 1 1
O52=0" 351 (1 +wz)n 1 (1 — z)ntL”

Residues sum to zero and the residue at infinity is zero by inspection. We
get for the residue at z =1

n+1 1 1 !
(-1t ]E{eszz1zk+1 (14 wz)"tL (z — 1)+t
n+1 1 : :
= (—=1)"""Res,_; (14 (z = 1)) (1 +w+w(z— 1))+ (z = 1)nH!
_ oty L . 1
T 0w T A G- D) (e - D/ w) - )

S n g wd k4+n—gq
)4 _1)n—a
HwanZ( Jerarger ()

0
__i n+q w? k‘—l—n—q
BRIV ACER A

Substitute into the coefficient extractor in w to get
" n+q\[(k+n—gq
—(=1)J nti—q)(1 L )19,
( )q}_oj( I [ [ (TR

Now with 0 < ¢ <n—1 and j > 0 we have [w"*79)(1 +w)" 179 = 0. This
leaves ¢ = n which yields

) Cersts ()
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This is the claim. We have the result if we can show that the residue at

z = —1/w makes for a zero contribution. We get
Res 1 1 1
1 s T T et (1 — gyt

This requires

1/ 1 1 m & Yi(k+q)!  (n+n—q)
nl \ ZFH (1 = 2)nt1 Byl Z Zk+1+q x k! (1 — z)ntl+n—a x pl

:Z k+gq (—1)" 1 2n —q 1 .
= k zk+1+q n (1 —z)2ntl-q

Evaluate at z = —1/w and restore the factor in front:

Z k+q k-‘rl k+1+q 27’L—q 1
e n )+ e

Applying the coefficient extractor in w we get

(_1)j[w7l+j](1 —I—U))Qn 1 wk+1+q w2n+1—q
wn+1 (1 _|_w)2n+1—q

= (—1)j[w“+j](1 + w)qflwn+k+1 _ (_1)j [wj}(l + w)q—lwkﬂ -0

because j < k. This concludes the argument.
This was math.stackexchange.com problem 3661349.

1.26 MSE 3706767
We seek to verify that

" (k+m 2n+1 n
nm — = 4n=m,
S, Z<2m><n+k+1> (m)
The LHS is
nifz k+2m 2n+1
‘ n+m+k+1

k=

' (k+2m JE— 1

Z 2m ](1 _ Z)n+m+k+2
=0

ne—m k+2m 2"
=l ](1—z”+m+2 Z( 2m ) (1—2)k

k=0
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Now when k > n — m there is no contribution to the coefficient extractor
and we may continue with

n—m k +2m P
[Z } 1 _ Z n+m+2 Z < 2m ) 1— Z)k
k>0

1 1
(L= (1= 2/(1 = 2))m
1 1
(1 _ Z)n—m+1 (1 _ 22)2m+1'

nfm]

= [z

="

This yields

1 1 1
anerl (]_ _ Z)nferl (1 _ 22)2m+1 .

Sn,m = Res.—¢

Residues sum to zero and the residue at infinity is zero by inspection. We
get for the residue at z =1

1 1 1

Res:=1 Zn—mAl (1 — Z)n—m+1 (] — 2z)2m+1'

Setting z = 1 — u we get

R 1 1
—Resy=

0 (1 — w)n—m+L yn=m+1 (1 — 2(1 — y))2m+1

R 1 1 1
= —Resy=
O (1 = w)n—m+T yn—m+1 (2 — 1)2m+1
1 1 1

= Resy—o Srom-

(1 _ u)nferl unferl (]_ _ 2u)2m+1 = ’

Here the contour in z is given by the circle |z — 1| = ¢ where € < 1/2 so the
image contour is | — u| = £, now multiplication by —1 is a rotation by 7 radians
so this is |u| = ¢, at the end use dz = —du.

Continuing with the residue at z = 1/2 we find

1 1 1
T 92m+1 SamTT eSz=1/2 an—mHL (1 — p)n—m+1 (5 _ 1/2)2m+1
1 1 1
= e RS2 (T gy (12 = (5 = 1j2))n
1
NSV R

1 1 1

= T RS2 (T gyt (5 = 12
1 gn—m+l 1

= e RSl 2 T gyt (; = 1)
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22n72m+2 1

7W[(z — 1/2)2m] (1 — 4(2’ — 1/2)2)n—m+1

22n—2m+2 1

e (G Y g gy

2n—2m+2
2 m+n-—m 92m
22m+1 n—m '

‘We have shown that

Sn,m + Sn,m - 22n72m+1 (n) =0
m

Sn,m _ (n>4n—m.
m

This was math.stackexchange.com problem 3706767.

which is at last

1.27 MSE 3737197
We seek to show that
k .
Z (k) (]/2) (71)717]' _ E2k72n (277’ —k— 1>
o 7 n n n—1

where n > k > 0. We get for the even component

3 () (=

p=0

because n > p and p > 0. This leaves the odd component

e L(ki/ﬂ (21711 1) (p+n1/2>.

p=0

Now we have

n—1 n—1
p+1/2) 1 !
( )=t 2-0 =g [ +1-20)
q=0 q=0
1 D n—1
= 5 [[er+1-20) [ @p+1-29)
" q=0 q=p+1
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n—1

1 (2p+2) .
~ 2l zp(f(p +)1)1 (=t qzl;-[i-l(Qq —2p—1)
1 (2p+2)! (—1)n-p-1 (2n —2p — 2)!

T2l v H(p+ 1)) 2nr—1(n—p—1)!

e () ()

S5 () ()

where p < n. It will be helpful to re-write this as
p+1 (=) P12\ (2n—1\""/ n
n 22n n)\2p+1 p+1
(=t on on —1 -1
- 92n n)\2p+1 p )
We thus get for our sum

1 (20 L(ki/%(l)p Eo\(2n—1\""(n—1
227\ n 2p+1)\2p+1 p )

p=0

Now observe that
k 2 — 1\ k! (2n — 2p — 2)!
2p+1)\2p+1 S (k=2p—1)! (2n—1)!
(2n—1\ "' /2n—2p—2
N k k—2p—1)°
This yields for the sum

1 /2n\ /20 —1 ‘“(kim( (=222 (n-1
22n \ n k k—2p—1 p )

p=0

Now to treat the remaining sum we have

[(k—=1)/2] B
[zk](1+z)2n72 Z (1)pz2p+1(1+z)2p<n 1>.

p=0 p

The coefficient extractor enforces the upper limit [ (k—1)/2] > p so we may

continue with

[2F(1 4+ 2)20 72 3 (1Pt (1 4 2) 2 (n - 1)

p=>0 p
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= [2"(1 + 2)>" %2 <1 - ufz)z>n1

= [¥2(1 4 22)" 1.

This means for £ = 0 the sum is zero. For k£ > 1 we get including the factor

in front
1 (o (20 -1\ (n—1 -
22n \ n k kE—1 '

To simplify this we expand the binomial coefficients

1 Cn)! xEl'x 2n—1—k)! x (n—1)!
22n=k+lpl x pl x 2n — 1) x (k—1)! x (n — k)!

B 1 (2n)xkx(2n—1-k)!
S 22nktl oy xnl x (n—k)!

1 kx(2n—1-k)
S22k plx (n—k)!

1 E n—1—k
22n—Fk n n—1 '

This was math.stackexchange.com problem 3737197.

This yields at last

1.28 MSE 3825092
We seek to show that

This is -
7;;(_1)k(n_k) <n+1>_ ki:<n+1> Ve — Ry

=1+l nH (" + 1) k exp((n — k)2)

n+1
=1+ n![z"] exp(nz) Z ( ) ) exp(—kz2)
k=0

=1+ n![z"] exp(nz)(1 — exp(—z))"
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=1+ n![z"] exp(—2)(exp(z) — )" =1

because exp(z) — 1 = z + --- and hence (exp(z) — 1)"T1 = 2" +1 4
is the claim.

This was math.stackexchange.com problem 3825092,

1.29 MSE 3845061
We seek to show that

> (G-
S ()= ()

or alternatively

-+ which

where k > a for the binomial coefficient to be defined, and n > a + 1 or

alternatively
nfl gt+a\(mn—a—-1-—q\ n
a k—a S \k+1)
q=0
The LHS is

A2t S (T k) g < n-a- 1)

q=0

_ [Zk—a](l + Z)n—a—l Z (q : a) 1+ Z)—q[wn—a—l}wiq

1—w
q=>0
— P+ z)"‘“_l[w”_“_l]ﬁ ;) (q Z a) (Lt 2) o
—a n—a— n—a— 1 !
= e e e e
1 1

= [’zk_a}(l + Z)n[wn_a_l] 1—w (1 4oz — w)aJrl :

This is
1 1 1
e — 1 (w— (14 2))ett’

Now the residue at infinity for w is zero by inspection, residues sum
and the residue at w = 1 yields

[2F79)(1 + z)”(fl)“Reswzow

112

to zero


https://math.stackexchange.com/questions/3825092/

) (1 + Z)”(*l)“(_l)aﬁ _ (k " 1).

This is the claim if we can show that the contribution from the pole at
w =1+ z is zero. We get (Leibniz rule)

1/ 1 1\ 1&/(a\ (-D)(n—-1-a+q) (~1)*(a—q)
a!(Ww—l) :cz!qz_:()(q)(n—l—a)!xw”“*q (w—1)atl-qa

_ ax~(n—1—a+q 1 1
- (_1) Z < q ) wnh—atq (U} _ 1)a+1—q ’

q=0

‘We thus obtain for the contribution

k—a n ~(n—1—a+ q 1 1
1
[2 }( + Z) ; ( q ) (1 4 Z)n7a+q ~at+l—q

= Z (n Sl q) M1+ 2) =0

q=0 4

because a > q and k 4+ 1 > a. This concludes the argument.
This was math.stackexchange.com problem 3845061.

1.30 MSE 3885278

Introduction

The identity

Z (2k +1)? ( 2p )( 2q )_ 1 <2p+2q>
kzo(p—l—k—l—l)(q—i—k-l—l) p—k)\qg—k p+q+1\ p+gq

is identical to

ml§7q)(2k+1)2< Zp+1 )< 2¢+1 >(2p+1)(2q+1)(2p+2q)
P p+k+1)\g+k+1 p+q+1 p+gq
or

n%%%ﬁwdf€p+v(m+l>:C@+UQQ+U<%+2ﬂ.

P p—k)\q—k ptqg+1 p+yq
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The LHS is

min(p,q)
S = [2P](1 4 2)* T w) (1 +w)* Y (2K +1)% 2w,
k=0

The two coefficient extractors enforce the upper limit of the sum:
[2P](1 + 2)2P T [w9](1 + w)?7H Z(Qk: + 1)22Fwk
E>0
2g+1 22w? + 6zw + 1
(1 - zw)3
1 22w? + 62w + 1
= [P 2p+17,,0 21 27w T bzw 1

2q+1 22w? + 62w + 1
(w—1/2)°

= [7](1 + 2)* " [w] (1 + w)

= —[2""](1 4 2)* T w) (1 + w)
The coefficient extractor in w is

1 2g+1 22w? + 6zw + 1
Reswzom(l + 'UJ) W

Residue at infinity

Now residues sum to zero and the residue at infinity is given by

Res iwq+1(1+w)2q+1 22 Jw? + 62/w + 1
=02 w2t (1jw—1/z)
R (1 + w)?t 22w + 62w? + w3
= —Res,=
07 a2 (1—w/z)3
— Res (14 w)29+L 22 4+ 62w + w?
N wEOT et (1—w/z)3

Next applying the coefficient extractor in z we find

R (1 + z)2pHl (1 4+ w)?att 22 4+ 62w + w?
€S;=0—————Res,=
0 ot 0 el (1—w/z)3
R (1 + z)%pHt (1 +w)?H 1 4+ 6w/z + w? /22
= Res,—g———5—Resy,=
0 2 0 et (1—-w/2)3

1+Z 2p+1 1+w 2q+1 wk
= Reszzo%ReSwzo% Z(2k + 1)22’7]{
k>0
2p+1 29 +1
=) (2k+1)? =5
2 (2h+1) <p+k+1>(q—k>

k>0
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This means that S is minus half the residue at w = 1/z, substituted into the
coeflicient extractor in z.

Residue at w =1/z

The residue at w =1/z is

2g+1 22w? + 6zw + 1

R P VO

Resy—1/- TSy

1 8 8z 22
—R _ e 2q+1 .
esw—l/zqu( +w) (w—1/2)3 + (w—1/z2)2 - w—1/z

Evaluating the three pieces in turn we start with

(1 + w)2q+1

1/ (1+w)2att
wat3

8— ]

5 ) =4(g+1)(qg+2)

(1 4+ w)%

(1 + w)2q71
wat2 TS

—8(g+1)(2¢+1) RS

+4(2¢+1)(2q)
Evaluate at w = 1/z to get

(1+ z)%att

4a+1)a+2)—5

(14 2)?

! ag+ 1) gL

—8(g+1)(2¢+1) s

2972
Substituting into the coefficient extractor in z we find

2p+2q—|—2>

—4(q+1)(q+2)( ptatl

2p+2¢+1
p+q+1

Continuing with the middle piece we have

+8(q+ 1)(2q + 1)( > —4(2¢+ 1)(2q)< 2P+ 2 >

p+qg+1

(14 w)2a 1\’ (14 w)?at? (14 w)

Evaluate at w = 1/z to get

(1 + Z)2q+1

(14 2)%
a2 a2

—8(q+1) +8(2¢+1)—=

The coefficient extractor now yields

2p+2g+2 2p+2q—|—1>
8(g+1 —8(2g+1 .
(@ )<p+q+1> (20 >(p+q+1
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The third and last piece produces

(14 z)2at?
2972

which when substituted into the coefficient extractor yields
B (Qp +2q+ 2>
ptqg+1 )
Collecting the three pieces
We get

%+ 2 + 2 % +2¢ + 1 %+ 2
-4%+1F<p+Q+ >+w@q+n<p 9 )—8ﬁm+1( P q)

p+q+1 p+q+1 p+q+1
2p+2q+2> (2p+2q)
—(2g +1)? +8¢(2¢+1
(2¢ )<p+q+1 q(2¢+1) ptq
2p+2¢+1 2p +2q
—22q+12< )+8q2q+1<
( ) p+q ( ) p+q
2+29+1(/2p+2 2+ 2
-a@q+1fl)q(l) q>+8ﬂ%+ﬂ)(p %
p+tq+1 \ ptgq ptq
_J%H1X%+1)Gp+%)
p+rag+1 p+q )

Halve this value and flip the sign to obtain the coveted

(2p+1)(2¢+1) <2p + 2q>
p+qg+1 p+q )

This was math.stackexchange.com problem 3885278|

1.31 MSE 3559223

We seek to evaluate

g
%n (n+1) -k

With this in mind we introduce the function

P2 -

1
%n(n—f—l)—z};[lz—q'

F,(z) =n!
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This has the property that the residue at z = k£ where 1 < k < n is the

desired sum term. We find

Rt M
Res.—rF,(z) = n!
%n(n+1)—kql;[1k—qq:1;£1k—q

o kI 11 (—ynF
T T+ ) —kk(k—1)! (n—k)!

" Tuln fn e <Z>

We will evaluate this using the fact that residues sum to zero and if (n +
1) = (j —1) > 2 or n > j the residue at infinity is zero, so we have in this case

Gr,j = —Res,_1, e Frn(z) = nl=5 .
’ i) = Gn(n+1) — )

We thus have

a n!
n,1 HZ_I(%n(n +1)—q)
and
a - (3n(n+1))""In!
T g (3n(n+1) —q)

When j > n we must use the formula

Gn»j = _Resz:%n(n+1)Fn(2) - Resz:oan(Z)-
We have

1 1 1 ~o1

n
z z
=n! X Res,—o—
P0G %n(n—l—l)z—lHl—qz

q=1
1 1 |
=n! x Res,—o— .
A inn+1)z -1 (11;[1 1—gqz

In particular when 7 = n + 1 we just need the constant term and find
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n

1 1
n! = —n!
%n(n—l—l)x()—lql;[ll—qx()
we thus have
(in(n+1))"n!
Gnntl = == 2 —nl.
o Hq:l(%n(n + 1) - Q)
The general case for j > n is
I R 1 ﬁ z
n! es,—
02 (n—i—l)z—lq 1—gz

which yields

o) 1Y

so that the closed form is (here we must have j — 1 — ¢ > n)

j—1—

[[7 > n]]n! Z

q=0

(3n(n+1))7~tn!

(n(n+1)—q)

Gn,j =

n
q=1

(o)

I

j—1-g¢q
n

b

This was math.stackexchange.com problem 3559223,

1.32 MSE 3926409

Suppose we seek an alternate representation of

> 17 (F)a-»
This is o
g;(D c>q p)"* é; <>q p)"

We get for the first piece

k
2D (-

p=0

% (ﬁ) exp((g — p)2)
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k
= k![z*] exp(qz2) Z(—l)p (2) exp(—pz)

-
= k![2*] exp(gz)(1 — exp(—2))"*.
Now (1 — exp(—2))* = z¥ + ... so this evaluates to k!. We thus have

- Sy (5ot

p=0 p

Using an Iverson bracket we get for the sum component

[wq‘llﬁ > (1P <k> (q - p)fw?

2 exp(g2)(1 - wexp(—))*

L1 exp(g2)(1 - wexp(—2))".

=klres Toyres oo

We now apply Jacobi’s Residue Formula. We put w = vexp((1 — v)u) and

z = (1 — v)u. The scalar to obtain a non-zero constant term in u and v for z
and w is u for z and v for w. Using the determinant of the Jacobian we obtain

-1
1—vw —u

‘1 0
v(l —v)exp((1 —v)u) exp((1 —v)u) — uvexp((1 —v)u)

01

=exp((1 —v)u) U(ll—_vv) 1 :1;7)

=exp((1 —v)u)(1 — uv — v + w? 4+ v — uv?)
=exp((1 — v)u)(1 —v).
Doing the substitution we find

1 1 1

Rlves — — —  res ——
0 R (1 —v)ktl R exp(q(1 — v)u)

o 1
1 —wvexp((1 —v)u)

exp(g(1 — v)u)(1 —vexp((1 — v)u)exp(—(1 — v)u))”

xexp((1—v)u)(1—wv)

1 1 1 1
—_——————— Tes —
ubtl (1 —v)F+l v 021 —vexp((1 — v)u)

x exp((1 — v)u)(1 —v)

(1- )"

= k! res
u
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= k! res res ! !
O T uk Ty e 1 —wexp((1 —v)u

= k! res ! resi 1
U w wk e waexp((v — D) — v

jexp((1 = o))

Consider on the other hand the quantity

p=0
llllb 1S

—

q—

K> [w?] 1-w

exp((w—1)z) —w

p=0
= k![Zk][wqil] 1 _1 w exp((wl:ll;)z) —w
= k"[zk] [wqil]exp((w —11)2’) —w
1 1

1
= k! — .
TS T T e exp((w—1)z) —w

This is the same as the sum term and we conclude the argument having
shown that

Swr(y)a-nt x5 ()
which is o :
Zi:(—l)” (ﬁ) (a—p)" = zi: <§> :

The reference for Jacobi’s Residue Formula is Theorem 3 in [Ges87].
This was math.stackexchange.com problem 3926409.

1.33 MSE 3942039
We seek to verify that

S w2 ~ ()
kz:o(_l) (m+k+1)("™™) mtk+1

We can re-write this as
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mln! e hook (M +m+1 = ()
K Z(_l) 2 _
(n+m+1)! pars n—k k:0m+k+1

or

" - \ko—k n+m+1\ n+m+1) — (Z)
2 kzzo( 12 ( n—k )—(m+1)< n —mtk+1

We get for the LHS

n

on Z(il)k27k (Zlin; ::: 1) —9n Z(il)szk[znfk](l_z)w

k=0

Ju—y

1 - 1
= 2”[2”]7(1 Ly I;J(—l)kQ_kzki(l —

Here the coefficient extractor enforces the range and we find

'VL 1 _ n 1 1
2"l 1—2’”*2];) W_2[Z](lfz)m+21+z/(1fz)/2

1 1 L 1
Q-2 2142/(1-22) Cia—2o)m¥i1—»
On the other hand we have

n+m+1\ (n\ (n+m+1)! (n+m+1\ [(m+Ek+1
n k) (m+D!xklx(n—k)! n—k m+1
which gives for the RHS

zn: n+m+1 m+1 m+k+1 _zn: n+m+1\/m+k
n—=k m+k+1 m+1 m+k+1 m

k=0 k=0

2":<m+k> e k](l—z)ﬁ: i<m+k>1_z)lm+k+zzk

=0

= ="

We once more have the coeflicient extractor enforcing the range and we get

o 1 m+k 1 Jk
[ %1—@mﬂ2§( )i
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1 1 a1 1
A= (A—z/a—z)mi ~ F Tz =2t

The LHS is the same as the RHS which concludes the argument. The coeff-
cient extractor evaluates to

= [="]

“ k+m>2k
('

This was math.stackexchange.com problem 3942039,

1.34 MSE 3956698

The sum in the problem statement here is

=) CIG)
=2 () a) 2 6) () 2 (00

k>0

which we seek to prove is equal to
gn—2m (0= M\ 1 +1
m—1 m
where we will take m > 1. We get for the first term

() (h) e ()

k>0
= 22"](1 + 2)" k; (7’;) 22 = gnm(] 4 g)nt ;; (k ;m) 22k

1
(1 — 22)ym+1"

— Q[Zn—Qm](l 4 Z)n—l

The second term is

3 (:;) (nfl__l%) — Y0 —&—z)"_ll;) (Z)sz

k>0 >
1

_ [Zn—2m—1](1 _’_Z)n—lm.

The third term is

£ () ) ()

k>0 k>0
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=+ Y (k . 1) 22 = [n2m (4 S (’“ ;m> 22

k>m—1 k>0
1

_ [Zn—Qm-‘rl](l + z)n—lm.

Adding these together we get

1 1
n—2m-+1 2 n—1 _ n—2m-+1 n+1
[ J(14+2°+422)(1+2) 7(1 Lzt [z 1(142) 7(1 mpe
1
[ ,n—2m+1 n—m
— [ 10+

The coefficient extractor now yields

”+1Z_:2m n—m\[(n+1-2m—q+m 7"“2_2"1 n—m\ (n+l-m-—q
q m B q m

q=0 q=0
_nﬂz:zm<n—m>n+1—m—q<n—m—q)
g q m m—1
Now

(n;m> (n ;m;q> T x (m— 1)!(2_(1:2!1 —2m =)

_(n—m\ [ (n+1-2m
S \m-—1 q '
We get for the sum

1 (n—m) "t n+1-—2m
il 1—m —
i) X oo (M)

q=0
n+1—2m
1(n—m> Z n+1-2m
== (n+1—2m—q)( )
m\m—1 = q
. n—m n+lz—2m n+1-—2m
m—1 q
q=0
n+1—2m
1 /n—m n+1—-2m n—m
— 2n+1—2m
) ()G
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_nt+l1-2min—m n+1i2m n—2m L (T gnti-2m
m m—1 q—1 m—1

qg=1
:n—|—1—2m n—m gn—2m n= MY ont1-2m
m m—1 m—1
This simplifies to
n+1/n—-m gn—2m
m \m-—1 '

Addendum. Following the hint by OP in view of the intermediate closed
form we see that we can simplify the three terms first. We get

3 ()G 2 )0 2 (0
=22 () 2 () 206
S (G S (6 -S)

We then find
k n+1 " " k
Z (m) <n+1 Qk) = [2"H(1 4 2) Z <m>zzk
k>m k>m
k+m 1
_ n+1—2m n+1 2k n+1—2m n+1

k>0

From this point on the computation continues as before.
This was math.stackexchange.com problem 3956698.

1.35 MSE 3993530
We seek to verify that (with n > 1, n = 0 holds by inspection)

§<:>xnk _a _@né{g}m (1_)

We get using standard EGFs for the RHS

" (exp(z) — 1)* z \F
a1 — o 3 p(k)! D k!( )

11—z
k=0
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= nl[z"])(1 - 2)" zi:(exp(z) — 1)k ( < >k .

1—2z
k=0

Now because exp(z) — 1 = z + - -- we have (exp(z) — 1)¥ = 2¥ + ... so when
k > n there is no contribution to the coefficient extractor and we get

MEICRS DR e |

k>0 e
=nl[z"](1 —2)" :
1 — (exp(z) — 1)z/(1 - x)
n n -z
Sl weeyny ey o
=mkﬂ0—$wff%§§5

1—
= nl[z"] sc

1—zexp(z(1—2x))

On the other hand we have for the LHS by the mixed GF of the Eulerian
numbers

nllz" Infk wk w—1
' ]kzo [ ]w—exp((w— 1)2)

n

Now we have <Z> =0 when k& > n so this is

—k w—1
nl[z"]z" ];)x k[wk]w ~exp((w = 1)7)
= nl[z"]z" Lz -1
- 1/z —exp((1/x — 1)z)
= nl[z"]z" 1
1—zexp((l/z —1)z)
= nl[z"] L
1 —zexp((1/x — 1)zx)
= nl[z"] -

1—zexp((1—12)2)

The LHS is the same as the RHS and we have the claim.
Addendum. We have




= nl[z"w* M (w - 1)) % exp(q(w —1)2)
q2>0

= [wk+1] Z iqn(w _ 1)n+1 _ Z[wk+1+q]qn(w _ 1)n+1

q>0 q>0

- <1>”§<1>qq" (1)

This justifies that <Z> = 0 when k > n and hence the two coefficient extrac-
tors combined return zero in that case as claimed.
This was math.stackexchange.com problem 3993530.

1.36 MSE 4008277
We seek to show that

Se()( ) =S ()i

The LHS is

vt St (7))

= pljwP]["](1 + 2)" Z exp(kw) (7:) .

k=0
Now the coefficient extractor enforces the upper limit of the range and we
may continue with

wP][z" z)" exp(kw mn 2k
P +2)" el (7

= pl[w’][z"](1 + 2)"(1 + zexp(w))™
= pllwP][z"](1 + 2)"(1 + 2z + z(exp(w) — 1))™

m

= pl[wP][z"](1 + 2)" Z <Zn> (14 2)™ 729 (exp(w) — 1)

J=0

= [+"] é <T) (14 2)m+n=i ) j!{? }
-5 () {)

j=0
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Note that if m > p the values with m > j > p produce a zero Stirling number
so we may lower m to p. If m < p the values with p > j > m produce a zero
binomial coefficient and we may raise m to p. We thus obtain

(0L
= 7 m+n-—r ji

a sum with p non-zero terms except for p = 0, when it has one term. (We could
also use min(m, p) as the upper limit but we want to emphasize the dependence
on p.) Note that in the initial sum for it to be non-zero with non-negative k we
must have m > kandn >r—kor k > r—mnsothat m > k > r —n and for the
range not to be empty we must have m > r —n or m+n —r > 0 which ensures

that the middle binomial coefficient in the boxed form is well defined. Observe
that with p = 0 we obtain ( men ) = ("™'™) which is Vandermonde. A slight

m+n—r

()

(")

variation is

Remark. We may keep the if we remember that it originates with

[2"](1 + 2)™*T" =727 and hence is zero when j > 7.
This was math.stackexchange.com problem 4008277.

1.37 MSE 4031272

()20 )

q=0

Stal tillg “i t}l tlle I{‘IIS we ﬁlld
Zm <k') (2k + m — q)
a=0 q m — q

f:( > J29(1 + 2)" [w™w? (1 4 w)?* ™4,

q=0

Now we may extend ¢ to infinity because the coefficient extractor [w™] en-
forces the upper limit. We get

k kr,,,m 2k+m k 449 w) 4
[2%](1 4 2)F[w™](1 + w)?** Z(q)z (1+w)

q>0

= ["1(1 + 2) ™) (1 + w)* (1 + 2w/(1 + w))"
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= [M)(1 + 2) ™) (1 +w)*H " (1 + w + 2w)
Re-expanding we find

k

k kr,,m k+m k w? )4
[29](1 + 2)* [w™] (1 + w) Z(q) (1+2)2.

q=0

We may set the upper limit of the sum to m. (If k < m the values k < ¢ <m
produce zero from the binomial coefficient and we may raise ¢ to m. If & > m
the values m < ¢ < k produce zero by the coefficient extractor [w™] and we
may lower ¢ to m.) We get

2 2) k™ w’”mm kwq z)4
5+ 2)M ™) (1 + w) g(q) 1+ 2)

SO,

q

Now observe that
kE+q\ (k+m\ _ (k4 m)! _(m+k m
k m—gq) klxqg x(m—gq)! k m-—gq/)
This yields for our sum
("2 6"
k)= \a)\m—q)
Using Vandermonde we obtain at last
m+ k\?
K .
This was math.stackexchange.com problem 4031272 and this identity is the
Li Shanlan identityl

1.38 MSE 4034224

We seek to show that with 0 < k < n the following identity holds: (two alternate
representations of second order Eulerian numbers)

s (= G =S ()

Jj= j=0

We will start with the LHS. The chapter 6.2 on Eulerian Numbers of Con-
crete Mathematics by Knuth et al. [GKP89] proposes the formula
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R R

m (m

where o, (x) is a Stirling polynomial and we have the identity

1 1\
(oar=s) = gmte e

We get

1 1 “
[anm] (Z log T z> = xan_m(x +n— m)

and hence

o) (Fiom = )_"z—nan_m<—m>

1—=2

which implies that for n > m > 1

This gives for the LHS

jzl =

1

—n—1
= (-1 (2 og 1_) (w11 + w)n?

k . —j+1
ntj—1 (1 1
XZ ( . )(—I)J L=t (legl—z) .

j=1

Now the coefficient extractor in w enforces the upper limit of the sum and
we may extend j to infinity, getting

(1+w/(3log 1))+

Continuing,

(—1)"FH Rl M [w" TR (1 4 w) 2 (1+ 5+ log =)+
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= ol Y () e (Dog 1)

n w9 1—=2
q>0

(LR ] 2?:1 <2n.+ 1) <n+j — (n+k))(_1)j(n+k)

n
j=n+k J

1 1 j—(n+k)
X <log )
z 1—=2

— (—1)P R H_ZM (j T;:IJ <ni‘7> (-1 <i log 7 i z)j

J=0
n—k+1 - J
_ 2n+1 n+j , , 1
— (—1\" k+1 ! —1)7 n+j 1
AP () () v (o2 )
n—k+1 -
_ 2n+1 n+g .
= (=1)" k+1! —1)7
= " ; <j+n+k>< n >( )
4! i 1 1y
X L x (n+ )z ﬂ]ﬁ (log . —z)
n—k+1 .
_ 2n+1 n4+g
(=1) jgo j+n+k( ) j
n—k+1 .
:(71)n7k+1 Z 2n+1 (71)717167]’4»1 27’L—k—j+1
= 2n —j+1 n—k—j+1

7n§1 <2n+1>(1)j{2nkj+1}
o J n—k—j+1
The Stirling number is zero for j = n — k 4+ 1 and we get at last
”Z’“<2n+1>(_1)j[2n—k—j+1}
= j n—k—j+1]|
This is the RHS and we have the claim.

Remark. The Stirling number identity from [GKP89] may be derived from
first principles. Start using the combinatorial EGF of set partitions

{1} = ZE e -1

m m!

whichisforn>1,n>m>1
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H [Zn—l] eXp(Z)(eXp(z) — 1)m—1'

The corresponding integral is by the Cauchy Coefficient Formula with ¢ < 1

((:;__11))"217” /| _ zi" exp(z)(exp(z) — 1)™ ! dz.

Now put exp(z) — 1 = w so that in a neighborhood of zero z = log(1 + w)

(branch cut is [-1,00)) and exp(z) dz = dw. With w = z + 22/2 4+ 2%/6 + - -
the image of |z| = € makes one turn around zero. We obtain
(TL — 1)' 1 / _ -1
—_— log(1 ™ dw.
(m — 1)' 211 |w\:'y( Og( + UJ)) v v

As for the choice of «y the image of |z| = ¢ is contained in the annulus defined
by two circles centered at the origin of radius 1 —exp(—¢) and exp(e) — 1. Hence

we may take 7 = ¢ — &2 /2 (the branch point is at w = —1). Continuing we find
(TL - 1)' 1 / 1 1 —n .
n=1)- 1 (1. met g
(m — 1)' 211 w|=ry w™ \ w Og( + w) w w

(n—=1"! 1 1 1 -
= — | —log(1 dw.
(m = D27 Jjy )=y ™ \w og(1 +w) v
We may recover a formal power series result from this which is

O D) (Los+a))

(n_l)! n—mf, n—m n 1 1 -
= ey (<4 os 1)

- ey (Los )

This is the cited result. The powered term is in fact a formal power series
as the logarithmic term being zero cancels the 1/w factor.
This was math.stackexchange.com problem 4034224.

1.39 MSE 4037172

We seek to show that with 0 < k < n the following identity holds: (two alternate
representations of second order Eulerian numbers)
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e G ==y e ) ]

J=0 J=0

where we have associated Stirling numbers of the first and second kind.
Now from the combinatorial meaning of these numbers (cancel fixed points
resp. singleton sets) we have that

and

k
{{n }} _ Z(il)q (n) {n - Q}
k = q) (k—q
Consult OEIS A008306/ and (OEIS A008299 for more information. We will
only use the second of these but we show the pair to illustrate the similarity
in their construction (PIE). The combinatorial classes for these are SET(U x

CYC>3(2)) and SET(U x SET>2(2)).
We start with the LHS and obtain

3 C’J>§5 LRIt

= q:l

Recall e.g. from Concrete Mathematics chapter 6.2. [GKP89] that

We find for the LHS

3 () S () D (g L)

Jj=1 g=1
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J . —q+1
Z _ifn+g\[(n+q-—1 1 1
2 1 (j—q)< qg—1 )(Zlogl—z

q=1

_ 1n7k:+1 1.7 11 1 & TL—]
= () (Slog ) ()
j=1
—q+1
1 n+ 1fn+qg—1 1 1 1
x[w? (1 4 w) jz L (q—l )(legl—z .

q=1

Now the coefficient extractor enforces the upper limit of the inner sum and
we may extend ¢ to infinity, getting

(—1)"F+ L[] (i log ]Liz) o i (Z - j)

1
(1+w/(} log 1))+

k .
= 0 Y (3 )

x[w! 71 (1 + w)"t

(3 log 715 +w) 1

The inner term is

1

[w? = (1 4 w)™t (Tlog = —2) + L+ w)rH!

1 1

I+ tog e — =)

= [u)j_l](l + w)j_

Re-expanding the series,

(1) Z( )wj (1 4wy

j=1

() (e -0)

The upper limit on the inner sum results from [2"] because 1 (log -1 —z) =

1z + -+ and the lower one from the fact that [w/~'](1 + w)7=!17¢ = 0 when
1<g<j—1; q=0 produces a constant. Continuing,

e M e [

Jj=1
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o () (1) G )
= (~1)"*nl Jijl (:27) 2_; (") (U e (g 2 - z)
~coa (TS (e ()

e S () 1]
Wi that we may raise j to n wiﬁgto [u¥]

g S () ]
—(~1) kz[[”:qﬂ [uk](1+u)"i<g‘;)(—1) W (1 + )




which is the claim. (Here we must have n —¢>k—1lorn—k+1> qelse
the binomial coefficient vanishes and we may lower the upper limit from n to
n—Fk+1.)

This was math.stackexchange.com problem 4037172,

1.40 MSE 4037946
We seek to show that with 0 < k < n the following identity holds:

[nnk} - {nnk} - jzf:o ((H;é_ 1) - (n +2]2_j)> <<I;>>

Recall from the previous example the identity

s ({0 =S o () [

We get for the first piece

G DS vl

j=1 p=0
B[ ()0
e S

S-S0

Now this last piece evaluates combinatorially to [ ",] when written as

H k;p ﬂ (n—Z—p) namely we choose n —k — p fixed points and split the remaining
k + p elements into p cycles of size at least two for a total of n — k cycles. Here
we must have k +p > 2p or p < k. (We have classified by the number of fixed
points).

We get for the second piece
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=1 p=0
_ z: {rril <1>”j_2k3p<1>j )G
SR )
S e (o)
o g (R 5 )

With this piece we get exactly the same reasoning as with the first one,

namely it evaluates to {, ™, }. We write it as {{ k;p }} (n—Z—p) in choosing the

number of singletons, of which there are n —k — p. The remaining k4 p elements
are distributed into p disjoint sets of at least two elements for a total of n — k
sets. We once more have the condition that &k +p > 2p or p < k. (We have
classified by the number of singleton sets.)

This was math.stackexchange.com problem 4037946.

1.41 MSE 4055292
In trying to verify the identity

zzn(—l)k n+k\ " /2n) [2k _1
— k k k)
we see that

() G- - () G

so that we seek to prove

S (7 ) () = ()

The LHS is
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2n

S () () = a0 (3 i

k=0 k=0

Here the coefficient extractor enforces the range of the sum and we find

[227)(1 + ) Y (1) (?) ufz)% = [+ ) (1 - (1;)2)3”

k>0

]

=z (14 2+ 2%)3"

Expanding the second powered term

q=0

The coefficient extractor sets the upper limit of the sum to n and we get
(note that the powers of 1 + 2 do not have a pole at zero hence the expansion
about zero starts with 22¢ and there is no contribution to [22"] when ¢ > n):

S E)sre-S () - (2)

q=0 q=0

Observe that the the power n — g to which 1 + z is raised is a non-negative
integer and hence we are justified in writing [22"]229(1 + 2)" 79 = [22"24](1 +
Z)"e = (22:3(1)- The only ¢ in the range 0 < ¢ < n where this binomial
coefficient is not zero is ¢ = n, producing a contribution of (3:) and we have
the claim.

This was math.stackexchange.com problem 4055292

1.42 MSE 4054024
We seek to verify the identity

z”: n—2k: Hoj, — 2Hy, (2K 1 o 32n—1
2n —2k—1\ k n n '

k=1

Preliminary. We get for the first piece in Hgy call it A that

"L (20 — 2k 1 2k\ . oy 1 1
Z( >2n—2k—1<kz>[z T e

k=1
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n—1
o\ 1 (20— 2K\, 9yop; 1 1
— —_— n 71
;<k)2k—1<n—k)[z T le i

We may raise k to n because the function in z has no constant term:

1 I &2k 1 [2n-2k
2n 2k
" log —— -
= Og1—zkzo(k>2k—1( n—k )Z
Now the coefficient extractor enforces the upper limit of the sum and we get
(in fact expansions start at z2**! which cancels k = n already)

1 1 ok\ 1 (20— 2k
2n 2k
& ]1—z10g1—zz<k>2k—l( n—k )Z

k>0

1 1 1
2
= —[2°"]—— log —— [w"|V1 — dwz? ———.
[z ]I—ZOgl—z[w] = V1 —4w

The same method yields for the second piece in Hy, call it B

1 1 1
og ——
gl—z

[w"]V1 — 4wz#.

] 1—4w

First part. Continuing with piece B

. dw(l—z) ., 2K\ 1 wh (1 — 2)k
A i [w]];)(k>2k—1(1)k (1 — dw)F

"2k 1 gy (1= 2)F
:_’;O<k)2k1(_1)k[w k](174w)k

=—4" g (2:) ﬁ(—l)k(l — z)kgF (Z - 1)

and extracting the coefficient in [2"]

S () a e ( e

k=1

_ 4"; (2:) Tal(_l)k4—k (Z‘ 1) H(—l)q (k ; 1) - i 7

Now
G R e e e e il |
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Switching the order of the summation,

2 () 2 (L) (e

q=0 k=g+1
n—1 n
4n n n—1—-q)\ (2k 1 k—k
2 _1)4 _
n (q)( ! k_zq;l(/f—l—q)(k)?k—l( U
S (e & (322D evres
n = q vt k—1—¢q

The inner sum is

TL_zjl_q(”_l_q)[z’”q“}m:nf (n—l—q)[ W

k k
k=0 k=0

2"V + 2 Zq (n -1- q) k= [2"]VT + 2(1 4 2)" 17,
k=

Substitute into the outer sum to get

MZ( ) a4 oymta = P L g

n 142

a4 2n an o\ 1
= 4 +1)=-——+ =
n n n n n

Second part. Here we may recycle the first segment from the easy piece B
and obtain for piece A

e @ (-

The coefficient extractor in z has two parts, the first of which is

k—1
Sy <k - 1> 1
o q 2n — 2q

which contributes half the value of the piece B. The second is

k-1
(_1)q(k - 1) L
q 2n—1—2q

q=0
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This yields

n—1
n—1 1)4 _1_
4" [V L Sy S RS B
+Z( ) >2n_1_2q< +2)

q=0 q
-1\ (=1)
— " — L (n—1/2—-¢)%/nl.
Z( ) >2n12q<” /2= a2 /n
q=0
We have for the falling factorial

n—1 n—1

1
[[n=1/2—q-p) = on [[@n—1-2¢-2p)
p=0 p=0

0 q
1 _1 n
=5 I (0-20-2)= ( Qn) II @-y
p=—(n—1) p=q—(n—1)
(D™ (2¢-1)!  1q
= 2 - 1 .
on 2a—1(g — 1)] I @-v
p=q—(n—1)

With 2¢ — 2(n — 1) — 1 = 2¢g — 2n + 1 this finally becomes
(D)7 (2¢—1)! (2n — 1 —2q)!
n 20-1(g—1)12n"1=9(n — 1 — q)!
(=17 (29)! 20— 1 - 29)!
2l gl (n—1-gq)
This was for 1 < ¢ <mn—1. We get for ¢ =0

0

1 1 (2n-1)!
— 1-2p)= ————
w1 == 9n—1(n — 1)!

p=—(n—1)
and we see that the generic term in four factorials represents this case cor-
rectly as well.

Returning to the sum we obtain

2 ”Z‘:l (2q> (2n —2- 2q)
ne\4d n—1—¢q
2[ n—1] 1 1 2[ n_l] 1 24n_1 14™
= ——\Z = ——\Z = —— = —— .
n V1—42+1 -4z n 1—-4z n 2n

Conclusion. We now collect the three pieces with A first then B :
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1

Jr J—

n
4mn 1/2 4™ 31 /2 n 1/2n—1
n n\n n 2n\n n n\n-—1

This is indeed

This was math.stackexchange.com problem 4054024.

1.43 MSE 4084763

We seek to evaluate

— RI[2M io (n) (exp(z) — 1)927—7 = z: (Z) q!{];}gn—q
Sl

Now we may set the upper limit to k. If n > k we may lower to k because
the extra range k < g < n produces zero from the Stirling number. If n < k we
may raise to k because the extra range n < ¢ < k produces zero from the falling

factorial. We get

B

g=1

In this way we obtain e.g. for k =4

4 4 4 4
n—1_1 n—2_2 n—3,.3 n—4, 4
2 n{1}+2 n{2}+2 n{3}+2 n{4}

Now the Stirling numbers can be evaluated by inspection:
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14 4 4
2" Ik x 142" 2n? x <2 (2) + (J) +2"%n? x (2) +2"*nd x 1.

We find at last

2" Il 4 7 x 27 2n2 4 6 x 2732 4 27t

We may expand the falling factorial if desired:

2"l x4+ Tx 2" 2 xn(n—1)
+6 x 2" 3 xn(n—1)(n —2)+2"* x n(n — 1)(n — 2)(n — 3).
This was math.stackexchange.com problem 4084763.

1.44 MSE 4095795

We seek to evaluate

We may also express this in terms of Stirling numbers of the second kind
and falling factorials. We start with

- exp((n+1)z) —1
exp(z) — 1

rh = El[2*] Zexp(rz) = k![2F]
r=0 r=0

(]

1 sy (n—l—l

o (" )<exp<z> 1y

g=1

NS (” i 1) (exp(z) — 1)1

q=1 a
n+1 o q—1
= K[> (n + 1)% (eXp((qZ)_ 1)1!)

“Seenif )

Note that we may set the upper limit of the sum to k+1. Ilf n+1 > k+1 we
may lower to k+ 1 because the removed terms from the range k+2 < ¢ <n+1
produce zero by the Stirling number. If K+ 1 > n + 1 we may raise to k + 1
because the extra terms from the range n+2 < ¢ < k+ 1 produce zero through
the falling factorial.
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We get

k1 Ak k+1 a1
Z(n+1){q_l}:(n+1)2n 15

q=2 q q=2

)

or alternatively

z":rk:(nﬂ)qZ:”qqh{z}'

r=0

In this way we get e.g. with k =4

1(4 1(4 1(4 1(4
1 12 22 31 4l
(n+1) x {n 2{1}+n 3{2}+n 4{3}+n =14
The Stirling numbers may be evaluated by inspectiona as before and we find
1 7 3 1
D) x |=nt+ fn2 4 2pd 4 St
Zr n—|— [Qn +3n +2n +5n

This was math.stackexchange.com problem 4095795,

1.45 MSE 4098492

We seek to verify that
zn: _(n+1
P C\r+1

wheren >0and 0 <m <nand m<r <n.
We get for the LHS

3

) 301+ ) (L )

>
Il
o

= [+ w)" Y (14 2)H 1+ w) "
k=0

(142" /(1 +w)™ =1

14+2)/14+w)—
(142" /(1 +w)" - (1+w)
L+2)"H - (1+ w)”‘g

= [ + w)"

= [z"][w™" (1 + w)"

= ]!

Now we have
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n+1 n+1 n q
A+2)"" —(A+w)™ <n+i) 3 2P,
zZ—w q+ =0

q=0
This is because the RHS is

n q n +1 /,q+1
Z n+1 quzp/wp: n—l—l quq /wq —1
qg+1 = +1 zjw—1

q=0 —o \4

z":(n—l—l) AT —w & (n—i—l)zq“—w‘”l
= wt—m—m—m—— = e —

= qg+1 zZ—w = q+1 zZ—w
__1 Z(n+1>zq+1_z(n+1)wq+1]

Z—w = q+1 o qg+1
S lz <”+1>Zq+1 3 <“+1>wq+11

Z-w | = qg+1 = qg+1

1

El— [(1+ 2)" T — (1 + w)""“] .

Returning to the main sum we now see that it is given by

(2 o™= z”: (Z i D Zqzzpwqu R T— Z”: o z”: (n n 1> ”

q=0 p=0 p=0 q=p
With m < n we obtain
n

e S (1w (e

g=m q=m

With m < r <n this becomes at last

n+1
r+1/)
The concluding step also follows by inspection seeing that p = m and ¢ = r

are the only combination zPw? P that can possibly contribute to [z][w"~™].
This was math.stackexchange.com problem 4098492,

1.46 MSE 4127695

In seeking to evaluate
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we find that it is

1 1 R 11 1
= Res,— .
1—2z(1—z)ntt 0+l T =22 (1 — z)nt1

[2"]

We will use the fact that residues sum to zero, which requires the residue at
z = 1/2 and the residue at z = 1 as well as the residue at infinity. The latter is
zero by inspection, however . We get for the residue at z = 1/2

1R 1 1 1
—=Res,—
2 1/2z"‘*‘1z—1/2 (1= z)ntt
‘We obtain
1
—52”“2’“rl = —2 x 4™

We also have for the residue at z =1

1 1 1
Res,—
=TT Z 2 (1= 2)n
Res ! 1 :
T I G T2 - D) (1- 2
1 1 1
= (—1)"Res,=1

(1+(z—=1)"t114+2(z—1) (z — 1)nt+1"
This is

(—1)" f:(—w (" : T) (—1)rronT — f: gn—r (” j T) _S,.

r=0 r=0

We have shown that S,, —2 x 4™+ S,, =0 or

For the residue at infinity we get

1 1 1 1 2t
—Res,_g—2"1! = _—Res,_gz"————
=02 1 2/, -1/ =0 T e — et
1 1
= —Res,—oz?" T —— =0

2—2(z— Lt

This was math.stackexchange.com problem 4127695,
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Additional answers appeared at math.stackexchange.com problem 1874816.

1.47 MSE 4131219

Defining the Kravchuck polynomial as (the definition in its full generality is at
Wikipedia)

Ki(a;n) = Zk(:)(_l)j (f) (Z_j>

Jj=

we seek to show that

n _ E _
Z(n )K[(x;n):2"b « (n l‘)
—\n—m m

We prove this for = p an integer and then it holds for all z because Ky (z;n)
is a polynomial in x.
We have

k
-n) = [zF z)"P )i (P,
Rulpm) = 100+ 31 (J)

J

Here the coefficient extractor enforces the upper limit of the sum and we get

Ki(pin) = [2*](1+ 2)" 7Y (~1)7 <p) I = M1+ 2)" P - 2)P,

>0 J

We also get for the coveted identity that it is

> (n ! m> Kot = (n ! m) "L+ )" P (L = 2)P

£=0 £=0

SR D Sl R

£=0

—aearra-ar 3 ()

l=n—m

= -ap o (1)

n—m
£=0

Now here we have another coefficient extractor enforcing the upper range of
the sum and we get
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(142 P =2 S <€ e m> o

n—m
>0

1

= ["(1+2)"7P(1 - ZVW-

This is

1 1 1
S R P L N S— P

27i |2]=e 21 (1 —z)n—p

Now put (1 + 2)/(1 — 2) = w so that z = (w — 1)/(1 + w) and dz =
2/(14w)? dw to obtain (observe that due to the fact that w =1+ 2z +--- the
image of a small circle |z| = & can be deformed to another small circle jw—1| = 7y
because when z makes one turn around zero so does w around one)

1 (1+ w)m+1 n—p om—1 2
5 i1 Y mo1 5 dw
270 Jjy—1j=y (w0 = 1) (1+w) (14 w)
2m 1
= — [ — YT d
21 |lw—1]=~ (U) — 1)m+1w v
2m 1 n—p
- [ —1)" dw.
2mi Jlw—1|=v (’LU - 1)m+1 Z ( r )(w ) v
r>0

There were no poles other than w = 1 inside the image contour and the
series in w — 1 converges including for n — p < 0 because v < 1.
This yields

as claimed.
This was math.stackexchange.com problem 4131219.

1.48 MSE 4139722
We seek to prove the identity

n

1
B, = 1) ——Hpq (k+2)!
kZ:O( ) Erl k1 (k + ){

n+1

kit 1} + ()" (n+1).

The sum is

n

(n+ DD (-1 <1 +

1
—— \H -1 k+1'
> ) Hia(exo() - 1)
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With exp(z) — 1 = z + - - - the coefficient extractor enforces the upper limit
of the sum and we get

(n+1)1[z"H] I;)(_nk (1 + qu) (exp(z) — 1)k+1[wk+1]ﬁ log - ! —

Note that the term in w starts at w. We get for the first piece

—(n 4+ 1)![z" ] exp(—2) log exp(—2)
= (n+ D!z"]exp(—2) = (-1)"(n + 1).

We see that this cancels the extra term from the initial closed form. There-
fore the remaining term must give the Bernoulli numbers:

1 1 1
1 | n+1 -1 k -1 k+1 k+1 71 -
(0 D 0 ) D e
Differentiate to get
e enp(®) (-0 emwl) - DM o !
= iz exp() 3 (~DHexp(z) — D¥uk] 2 log
= wl—w 1-—
This is
n![z"] exp(z)é exp(—z) log exp(—z)
1 —exp(z)
z
=nl"]——— =B
nilz ]exp(z) -1 "
as claimed.

This was math.stackexchange.com problem 4139722,

1.49 MSE 4192271

We seek to show that

> () (@)= ()
=i 2¢+ 1/ \k k

For the initial analysis note that the first binomial coefficient requires m > 2q
so that when k& > m/2 which would imply 2¢ > m the LHS evaluates to zero,
even though the RHS is nonzero when & > m. We will therefore restrict to
k <m/2. We get for the LHS
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= () - (0

920

q>0

Observe that this coefficient extractor produces a finite sum with no contri-
bution from 2¢q > m — 2k. Continuing,

1 1
m—2k m—+1 _ m—2k m—k
2R+ )™ e = 0
This is
1 ZF-1 1
. m—k _ . m—k
res — s (L +2) (1— o)+t ~ ' o=k (1+2) (1— z)kt1

See how the residue vanishes when 2k > m. Now put z/(1 + z) = w so that
z=w/(1—-w)and 1/(1 —2) = (1 —w)/(1 - 2w) and dz = 1/(1 — w)? dw to
obtain

1 wkfl (1 _ w)k+1 1
res
w W™k (1 —w)k=1 (1 —2w)k+1 (1 —w)?
1 1
T wm AT (1 )k
This is
m—k
27n—2k
(")
as claimed.

This was math.stackexchange.com problem 4192271,

1.50 MSE 4212878

We are interested in the asymptotics of

& @i -2k -1 &R n—1\ (20— 2k —1)!!
g(");k(k> (2n — D ";(k—J @n— DIl

Now we have
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 (@2n-1)!
(2n -1 = m

so we get for our sum

nlx 21 -1 (2n — 2k — 1)
(2n —1)! = \k—1 k=l x (n—k—1)!

_onlx 2t 2 n-1 (2n — 2k — 3)!
S (2n-1) 4 <\ k J2nRx(n—k - 2)!

_n!x2"—1"‘2< n—1 )(2k+1)!

- (2n—1)! —\n—2-k) 28 x k!
o201 ‘1”2‘:2 1 1 (2 +1
N n P (n—2—k)! 2k k

on—1\"" w2 L1 (2%k+1
__ on—1 n—2 k
=2 ( n > [2" %] exp(2) kgzoz oF ( i )

Here the coefficient extractor enforces the upper limit of the sum and we
obtain

-2() e Yt gk ()

k>0

The sum is

2 2 1

+ ——.
zZ  zZA1—-z

We get from the first piece

n n n—1)!

Now from the asymptotic (*") . V/mn/22" we get for the modulus /7n/2" /(n—

n
1)! so this vanishes quite rapidly. Continuing with the second piece we obtain

22n—1 2n _1[Zn—1] eXp(Z/2)
We apply the Darboux method here as documented on page 180 section 5.3
of Wilf’s generatingfunctionology [Wil94] where we expand exp(z/2) about 1

and take the first term, extracting the corresponding factor from the singular
term. This yields
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n 1—=2

= exp(1/2) x 2°"71 (2”> - (” - 3/2)

n n—1

= exp(1/2) x 22171 (?) - - _"1/2 (n _n1/2>.

Using the Gamma function approximation of the second binomial coefficient
from the Wilf text we get

exp(1/2) x 22! (2”>_1[zn_1] 1

2n—1 2n o " L
exp1/2) <2 (U)o
Va1

1
~ = exp(1/2
o n 12 v 2 OPU/2)

~exp(1/2) x 22"t x

‘We have obtained

Je

2

the same as in the contributions that were first to appear.
This was math.stackexchange.com problem 4212878\

1.51 A different obstacle

We seek to evaluate for n,m > 0 the sum

S (a ) (1)
First note that
<n2+kk) <2k:k) " _(;Ska;i <kl <n Z k) <Z)

We get for our sum
A DLy
= \k)k+1+m\ n '

Now introduce
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Note that n + z — p # 0 for z = ¢ with 0 < ¢ < n so the simple poles from
the first product are preserved.
This function f(z) has the property that with 0 < k <mn

q=k+1 q p=0

(_1)71 k—1 1 n 1 n—1
Resz:kf(2)=k+1+mHkiq 11 [[n+k-p)
q=0

(n+k\n!x(=1)" 1 (-1)"F
_( n )k+1+mk!(nk)!'

Upon simplifying we find that our sum is given by

Z Res.—k f(2).
k=0

Now using the fact that residues sum to zero and that the residue at infinity
of f(z) is zero by inspection (compare degree of denominator and numerator
which are n + 2 and n resp.) we have that the sum must be

—Res.——m—1 f(2).
Compute this to get

n 1 n—1
(-1 (n—1-m—p)
ql;[O—l—m—qpl;[O
n 1 n—1
:1;[0(1+m+1 Ho(p_m)

Here we get a zero value when 0 < m < n—1 or n > m. Otherwise the terms
in the second product are all negative and we get

! n m! m!
mrnrn L= = 0"

-G

Here the last binomial coefficient produces zero when n > m as required.

This is a simplified version of an earlier answer prompted by an observation
by Markus Scheuer at math.stackexchange.com problem 4504576.

This problem has not yet appeared at math.stackexchange.com. The source
is problem 8 “A different obstacle” from section 5.2 of Concrete Mathematics
by Graham, Knuth and Patashnik [GKP89].
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1.52 MO 291738

We seek a closed form of

>l i) ()

This follows the template from the previous section very closely with only
the type of the auxiliary residue being different. First note that

(Z i_ Z) (2:) B (n —(:)!—kal?:i <k <” —l: k) (Z)

We get for our sum

Now introduce

2z+1H

P
q=0 q

H n—+z—p

Note that n + z — p # 0 for z = ¢ with 0 < ¢ < n so the simple poles from
the first product are preserved.

This function f(z) has the property that with 0 < k <mn

Reszzk f(Z) ék—‘,—l m H H n—|—/<: p

_(n+k\n!x(-1)" 1 (-1" —k
_( ) 2k+1 K (n—k)!

Upon simplifying we find that our sum is given by

> Res.— f(2)
k=0

Now using the fact that residues sum to zero and that the residue at infinity
of f(z) is zero by inspection (compare degree of denominator and numerator
which are n + 2 and n resp.) we have that the sum must be

—Res.—_1/2 f(2).
Compute this to get

1) n 1 n—1
_( 2) g_l/Q_qH(n—1/2—p)

p=0
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n n—1
1 1
“3 g o120
q=0 p=0
n n—1
1 1
=] (2n—1—2p) =
q:01+2q el 2n+1

This is a simplified version of an earlier answer prompted by an observation
by Markus Scheuer at math.stackexchange.com problem 4504576,
This was mathoverflow.net problem 291738,

1.53 Stirling number identity by Gould
We seek to show that

L= OO 5 G

=0 q=0

Using the standard EGF on the RHS we find for the inner sum

; ! q j+1 J+an+q qn+q
1) ) et -y

J .

. 1 L o

= 4! E (—1)7—¢ (j; )[Zyﬂnﬂ—qn—q](exp(z) _ 1)Jn+J—qn—q
q=0

- Zj(n+2) exp(z) — 1)inti ; _1\i—¢q J+1 29 (axp(2) — 1) 974
P esple) = 17 S (q) (exp(z) — 1)

= O exp(z) — 17 é(—nﬁ“—q (Y (e)

Observe that when we raise ¢ to j + 1 we obtain for the sum

n+1 I+l
—j![ D] (exp(z) — 1Y [(exp(z)—l) : 1]

but note that (exp(z) — 1)/t = 27+ L ... and

z

5 n+1 J+l
_ — (1) ((n JHLH
[(exp( —) 1] (17 ((n+ 1)/2)7 4

We have however that [2/("+2)]((—=1)7+1((n +1)/2)7H1 /(241 1.0y = 0.
Hence the sum is minus the value at ¢ = j + 1 and we get
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z

(G+1)(n+1)
A exp(z) — 170 )

exp(z) — 1

_ j(n+1) (G+1)(n+1)
|[ j} (exp(z)_ 1)] Z
23 (n+1) exp(z) — 1

1) (=)

We obtain for the outer sum in j

’“i CErid (xp()—1>+

= KI[z"] (exmzz)l)n+1 zk: %23

=0

We may raise the upper limit beyond k because there is no contribution to
the coeffcient extractor in front and find

kl[2¥] exp(2) (Z)JW .

exp(z

This is

k! / ) 2k d
— exp(z) —————— dz.
2mi |z|=¢ (exp(z) - 1)n+1

Note that with the arithmetic we have preserved the pole at z = 0. Now put
exp(z) — 1 = w so that exp(z) dz = dw and z = log(1 + w). (Branch cut of the
logarithm is (—oo, —1].) This yields

k! (log(1 + w))"=*

pyrTES dw.

270 =

Putting it all together we have

i (Z)’“”w"]“‘)g“ Fw))" = () (Z)’f![w"meg(l — )"

- (Z)k![w”] (log : _1 w>nk = nl[w"] n _1 0! <1°g 1 —1 w)nk N [n : ’J

as claimed. Concerning the choice for € and v we have for the image of
|z| = € using | exp(e exp(if))| = exp(e cos(f)) that 1 —exp(—e) < |exp(z) — 1] <
exp(e) — 1. The image is contained in two circles of radius e — 2% and e/(1 — )

and we may take v =¢ — %52.
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This problem has not appeared at math.stackexchange.com. It is from page

179 eqn. 13.10 of H.W.Gould’s Combinatorial Identities for Stirling Numbers
[Goul6].

1.54 Stirling number identity by Gould 11

The claim here is

B T (P D Vi [ G IR

=0

Using the standard EGF this becomes

ot e Sy (C1 D) i) -1y

J=0

= (" e é(—nj (") senpte) -2yt

J

Raising the index to k + 1 we obtain for the sum

oo (i)

Note that (exp(z) — 1)k = 2+ + ... and

(o) T s

We have however that [zF(+D]((n/2)k+12k+D+1 ...y = 0. Hence the
sum is minus the value at j = k + 1 and we get

n= L\ k) e (kD0 1
e e

-0 (" e (=)
= (") ()
(e ()

Here we recognize the generating function of the Stirling polynomials (con-
sult e.g. Concrete Mathematics [GKP89| section 6.2) and we obtain at last
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(”;1>k;! xnak(m:(n?!k)!["nk] f: n-d

as claimed.
This problem has not appeared at math.stackexchange.com. It is from page
183 eqn. 13.28 of H.W.Gould’s Combinatorial Identities for Stirling Numbers

[Goul6].

1.55 Schlafli’s identity for Stirling numbers

Gould [Goul6] presents the following version of Schlafli’s formula linking the two
kinds of Stirling numbers: where n > 1 and n > k (the first binomial coefficient
vanishes when n = k)

AR e e (S T T

The RHS is
k
Z(_l)q<n+k—q— 1) <n+k>{2k—q}.
= n—k—1 q k—q
Using the standard EGF this becomes

(n—1)! b n+k—q—1\(n+k\ o, k-
() (e -
— B ep(e) - 1t

w n+k q —q
><q§>:0 Atw)y < ¢ )z (exp(z) — 1)

Here we have extended ¢ to infinity because of the coefficient extractor in
w. Continuing,

D ()~ D 0

k
wz e

(1 +w)(exp(z) — 1)
(n—1)!

= M[z%](exp(z) _ 1)7n[wk]7

1—
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% [(1+w)(exp(z) — 1) — wz]"F.

Now we have for the inner powered term

[w(exp(z) — 1 — 2) + (exp(z) — 1)]n+k
_ ik n+k q q n+k—gq
- qgo ( q )w (exp(z) = 1 = 2)(exp(z) — 1)" 1.

Extracting the coefficient on [w*] (note the upper range)

e~ 1)

k
X Z (n + k) (—1)k_q(exp(z) —1—2)(exp(z) — 1)"+k—q.

q=0 q

Observe that (exp(z) — 1 — 2)? = 229/224 + ... 50 that the sum terms start
at z to the power 2g+n+k—q—n = k+ ¢ so we may raise q to n+ k once more
due to the extractor in z (the outer exponential has a pole of order n which gets
canceled however, yielding a FPS). We get

(n—1)!
(n—k—1)!

Revealing the formal power series we finally have

[2*"] (exp(2) — 1) 7" (=1)"2"F*,

(n—1)! kpk o !
= (1 — = | .
(n—k—l)!( V1] exp(z) — 1
The core term is
1 z"
r .
& 2 (exp(z) — 1)

Now put exp(z) — 1 = w so that z = log(1 + w) and dz = 1/(1 4+ w) dw to
get

1 n—k—1 1
res — (log(1 + w)) Trw
1 n

_ n—1 n—k—1 _ n n—k

= [w" "] (log(1 + w)) Tow = sk [w"](log(1 + w))™~".
Collecting everything we have

Tl' k n n—k __ 77,' n+k n n—=k

U loB(1 4 )" = I (1) (1 — w)
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:”![wn](n—lk) (1 gl_l >”—k: {nik]

Consult also for a generalization [1.129

This problem has not appeared at math.stackexchange.com. It is from page
183 eqn. 13.32 of H.W.Gould’s Combinatorial Identities for Stirling Numbers
[Goul6).

1.56 Stirling numbers and Faulhaber’s formula

Suppose we seek to prove that with p > 1 (polynomial representation of the
power sum)

Se-SeSiYorf]

With the usual EGFs we obtain for the inner sum

p+1 J
o+ DT plexp(e) DDt (1o 1)

k=j

_ p+1 1 1\
= (OB o) Yfesole) = 01Tt (los 12 )
Now with exp(z) — 1 = z + --- the coefficient extractor in z enforces the

upper limit of the sum and we get

(17 S S () - DDt (los )
k>j

Since log i = z+ - - - the coefficient extractor in w covers the whole of the
powered logarithmic term and we find

exp(2) 'lzj
exp(z) — 14!

Substitute into the outer sum to obtain (here the exponential terms yield
two formal power series):

p![z"]

p+1

eXp
| J
P"] exp(z) — exp(z) — 1 Z
z LA
=pl[ZPMexp(z) ——— Y 0/
exp(z) — 1 ; j!
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The coeflicient extractor once more enforces the upper limit of the sum and
we have

P[22 exp(2) (exp(nz) — 1) = p![zP Tz exp(z Zexp kz)

exp(z) — 1
= pl[z?] z_: exp((k+1)2) = i(k +1)P = Z kP,
k=0 =0 Pt

This is the claim. With p > 1 we may restore the £ = 0 value with no
change. Note that this also yields

1 » z
Iy 1(29 + D!z H}m(exp(”z) —1)

(-1t

= 1)1[P1]

z

W(exp(—nz) -1)

(-1t S

By 1
_ D ST Bk ke L
pr1 Pt )kzzl(p—&-l—k)!( i~

e
- Bt i (—1)P 1 kpk
p+1“< ) Bpeaa

p 1-k
np+1 + Z ( ) VB, prikpk

p+1—k

1 1 — (=P B,k
p+1 p p+1-k K
Jrln + n-i—Z() P l—k n.

Now for ¢ > 2 we have that B, is non-zero only if ¢ is even so we may write

1 1 B
p+1 P p+1—-k &
prit T ”+Z()p+1—k”

We have derived Faulhaber’s formula.

This problem has not appeared at math.stackexchange.com. It is from page

214 eqn. 15.32 of H-W.Gould’s Combinatorial Identities for Stirling Numbers
[Goul6].

1.57 Stirling number and binomial coefficient

Suppose we seek to prove that
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;(Uk(Z) (z — k)"t = ki_o (:U ; n) n+ k)'{ZI]]f}

Starting with the LHS we obtain

(n+ j)! Z () p((z — k)z)

k=
n

= (n+ )] xp@w>§jc—mk(k) exp(~k2)

= (n+J)![z" ] exp(2)(1 — exp(—2))"
= (n+ /)![z" ] exp((x — n)z)(exp(z) — 1)".
Now observing that exp(z) — 1=z + --- we find

+
(n+j)! Z —n)z)[2"](exp(z) — 1)"

= (n+5)! ) [/ Mexp((z — n)2)[z"+*](exp(z) — 1)"

k=0

N O R B LA
7(n+])!k§0 (j—k)! (n+k)!{ n }
J (@ —n)k n! n+j—k
= (n+5)' k!) (n+jk)!{ i }

k=0

:n!g)(";rj)(x—n)’“{wri_k}.

Expanding the powered term in x yields

E LD E e

= (e ()

It remains to simplify
J . .
n+j\[n+j—Fk)\ [k
Ip!
(O
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= (n+ )Y [ F](exp(z) — 1)" [w"](exp(w) — 1)

= (n+ )" "] (exp(z) — 1) Zz J(exp(w) — 1)P.

Now with exp(w) — 1 = w + - - - the coefficient extractor in w starts at the
first non-zero coefficient on [wP]. We may extend k beyond j to infinity owing
to the powered exponential in n because k > j is n + k > n + j and there is no
contribution due to the coefficient extractor in z. We obtain at last

(n+ j)![z"](exp(2) — 1) "ZZ J(exp(w) = 1)*
k>p
_ (n+j)![zn+j](exp(z) —1)"*? = (n +p)'{z::__;}

This is the claim because we have the coefficient on the falling factorial in x
and we may conclude.

This problem has not appeared at math.stackexchange.com. It is from page
2 eqn. 1.16 of H-W.Gould’s Combinatorial Identities [Gou72al.

1.58 Stirling number and double binomial coefficient

We seek to show that

S-Sl

We will prove this for x a positive integer, it then follows for all x including
complex because LHS and RHS are polynomials in z. (Use e.g. (7)) = 2%/k!.)
Starting with the RHS we find

T

D DM+ 2) [ M+ w) 0] (exp(v) — 1)*
k=0

T

= i fw"](1+w)" " Y (~1)*wk (exp(v) = DFF](1 4 2)*

k=0

Now with exp(v) —1 = v + --- we may raise the upper limit of the sum to
infinity because the additional values do not pass the coefficient extractor in v:

Pl fw")(1+w)" ™ > (=1)*wF(exp(v) — DF[F](1 + 2)*
k>0
= rl[o"][w™](1 + w)"~*(1 — w(exp(v) — 1))*
=" [w"](1 +w)" (1 + w — wexp(v))”®
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= rlfo"][w™](1 + w)"~* - ( (—1)Fwk exp(kv) (1 + w)**.
)t

The coefficient extractor in w is [w™*](1 + w)"~* which is one when n > k
and zero otherwise (residue definition). Hence if > n we may lower the upper
limit of the sum to n because the range x > k > n does not contribute. On the
other hand when z < n we may raise the limit to n because we get zero from
(i) for the range x < k < n. This leaves

o] zn: ("2) (—1)* exp(kv) = f:(—nk (”Z) k"

k=0 k=0
as claimed.

This problem has not appeared at math.stackexchange.com. It is from page
1 eqn. 1.6 of HW.Gould’s Combinatorial Identities [GouT2a].

1.59 Stirling number and double binomial coefficient II

We seek to show that

kio(l)’“ (Z) K = (—1)"(n +j)!ki0 G B Z) <Z) - —]T—!j)! {k —]:J}

Start with the LHS to get

n

(S0 () expls) = G+ 0~ expla))”

k=0

= (=1)"(n+ H)'[z"](exp(z) — )™ = (—1)"n!{n +j}_

n

Proof for j =0

This follows by substituting j = 0 into LHS and RHS and observing that they
produce the same value.

Proof for n > j with n,j > 1

Re-write the sum without the scalar in front as

I (ks [ I Ll

Recall the following result from [GKP89|] that we used in section
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o)~ )

We apply this to the RHS. Because we assumed j > 1 we have that {k;;} =0
when k£ = 0 and we may start the sum at £k = 1. We obtain

k

j w)—L ! N\, \j-k_ W
w0 S ()0
k! k-1 (1 1\
X - .(*1) W[Z ] (Zlog )

—k—j
1, (1 1
7 = log —— .
Xk+jk}<z 1 )

We may raise k to n due to the coefficient extractor in w:

1 1
_ I P e § —2
nXIes — lgl U[w 11+ w)™

22 71—1 e 1 wh! 21 (o 1\
— vh=1 (1 4 w)k-1 %1,

1 1 (1 1\
= —nXres o — log = [wj_l](l + w)" 2] ( log I )
z

—Z

1 n—1
X <1+w<1—1<110g 1 ) >> .
v\ 2z 1—=2

Re-expand the powered term in n — 1 being extracted by [w’/~1]:

1 1 (1 1\ 77!
— - (=
nxrgsijrzlog _v[z]<zlog1_z)

S (- et) )
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1 (1 1\ 7!
I =1
l—v[z](z Ogl—z>

S (R (e (eerts)”
)

1 1
= —n Xres —= lo
v 'UJJF2 &

q= p=0

L e
=-ny ("

q

e et
"q; <n1>

XZ( ) B p+1<'(i;i)!1>!{j;ﬁ1}‘

There follows some simple binomial coefficient manipulation:
j—1
n—1 1
n —-1)? e
21 ( q ) q+1

AL e

(et ey

Continue with the standard Stirling number EGF:
1 A n
+1
res 7 (=1 <q N 1)
q=0

T lg+1 1
+1 +1
’ pgo (p + 1) D" S (ep(z) =D

With j > 1 we may include p = —1 as it makes no contribution and obtain

z

res ot Z “1( ! 1) (14 (=1) x (exp(z) — 1)/2)7*!
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=[] ) (-1t (q _7_ 1) quﬂ (14 2z —exp(z))?T.

Now we may extend g to n—1 because (1+z—exp(z))4T! /291 = (—1)7+1 /291 x
29t ... and hence when g+ 1 > j or ¢ > j — 1 there is no contribution to the
coefficient extractor in z. We may also include ¢ = —1 because 57 > 1 and the
sum term is zero in this case:

15 (7)) et et

g=-1 ¢+1

= [9)(1 4+ (1) % (14 2 — exp(2))/2)" =[] (-1 + exp(2))"

It remains to restore the scalar in front:

(=1)"(n + )" )(exp(z) = 1)" = (_1)%!{”:;}

as claimed.

Proof for n < j with n,j > 1

We start with the RHS and obtain for the sum without the scalar

1047 3 (1) 4 st - 1

k=0

J n explw) — k
— ey ()R 2

w
k=0

Now when k& > j there is no contribution to the coefficient extractor in z
and we may write

n explw) — k
e Y () e =)

k>0 wr
= [Z)(1 + 2)7 7" [w’] (1 + zieXp(:Z) — 1>n

= [/](1+2)" " w" ] (w — 2 + z exp(w))"

Expanding the powered term

[27](1 + 2)7 " [w™ ] zn: <Z) 2F exp(kw) nf (” - "7> wP(—1)nk=pyn—k=p

k=0 p=0
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k=0 p=0

The coefficient extractor in z is [z97"P](1 + 2)7~™. Now when j —n > 0 or
J > n the only contribution originates with p = 0 and we obtain

2 (e

Multiply by the scalar from the start to get

zn: (Z) k(1)

k=0

which is the claim.
This problem has not appeared at math.stackexchange.com. It is from page
3 eqn. 1.17 of HW.Gould’s Combinatorial Identities [GouT72a].

1.60 Stirling number and Bernoulli polynomials

We seek to show that

n

S () = e e

=0

where By(z) is a Bernoulli polynomial. The EGF of these polynomials is
texp(at)
exp(t) — 1
so we get for the RHS

n

1 )kH B[t t exp(zt)
z

exp(t) — 1

1 & 1 1 1 \" texp(xt)
== 2" —— [ log —— [th] ———%.
n!z_;)n[z]k!l—z<0gl—z) k[t]exp(t)—l

Now because logi = z 4 --- there is no contribution to the coefficient
extractor in [¢"] when k > n and we may extend k to infinity, obtaining (there
is no pole at t = 0)

k
=5 iz 2 <10g 1 1 z> iy texp(x—t)l

= exp(t)
1
1 (log 172«) =g 1 1
— [ — [,n+1 1
[Z]lfz L -1 | ](1—2)z 812



This is

1 1 1
(1 — z)ztn+2 8 1—2z

res

s sz (=)™

Now put z/(1—2) = w so that z = w/(1+w) and dz = 1/(1+w)? dw which
yields

1
res — 5 1+ w)* T 2 log(1 + w)
wn

(14 w)?
1

_ +n

= —res wn+2(1+w)w "logler.

Extract the coefficient to get

_Z /f+k1+1 <n+1w—+(2+1)) - ki_[f‘”kkil(zfi)

This is the claim.

This problem has not appeared at math.stackexchange.com. It is from page
13 eqn. 1.102 of HW.Gould’s Combinatorial Identities [Gou72al.
1.61 Central binomial coefficient and Stirling numbers
We seek to show that

z”:% T 2n+41/2n\ < (n Lo
P 2622 \n )& \k)2k+17 kS

First part

We get for the sum on the RHS without the scalar in front using the combina-
torial EGF of the Stirling numbers of the second kind:

" /n 1
2] kZ:O (k> m(exp(z) — 1k

Now we may extend k to infinity because with (exp(z) — 1)¥ = 2% 4---- the
coefficient extractor cancels contributions from k& > r :

DY (Z) Til(exp(z) —1)*.

k>0

With n non-negative we may now set the upper limit to n because the
binomial coefficient is zero when k > n (we also reverse the index on the sum):

i ( ) gr et - 0t
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n

= r![2"](exp(2) — 1)"[w*" ] log 1 _1 p Z (Z) w?* (exp(z) —1)7F
k=0

w2 n
= rl2"](exp(2) = 1)"[w*" "] log ; —1 w (1 T () - 1>

(exp(z) — 1 +w?)™.

1
2n+1] log .

= rl[z"]|[w
Expanding the powered term we find

r![2"][w*™ ] log 1 E " Z (Z) exp(kz)(w? — 1)"*

= [w*"*]log I _1 " ZL: (Z) k" (w? — 1) F
)

Switching sums we find

= n) "1 (n—k i,
> krz< )(—1)q.
k:o(k q:OQqul n—gq
We have the claim if we can show that
1 (2k n+1/2n\ /n\ e 1 [(n—k
_— 221 - _- —1)a k.
#() =5 O (1) o (o)

Second part
Working with the inner sum we obtain
- 1 n—=k
_1)n—F — —1)4.
(=1) §2n2q+1< q >( )

Now with n > k > 0 the binomial coefficient is zero when ¢ > n — k so we
may discard the upper range to obtain
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e iy 1 n—k .
(-1) k;Zn_2q+1( e

Next introduce

=k A1
f(z)_2n+1—2z£loz—r

This has the property that with 0 <¢<n—k

—1 n—k
n—k! S+ 1 1
Res,—,f(z) =
qf() 2n+172qr1;loqfrr:1;[+1qf7"

:2n+1—2qa(n—k—q)!_ 2n+1-2q\ ¢

With the residue at infinity of f(z) being zero by inspection and residues
adding up to zero we get for the sum that it is

n—k)! —1)n—k-a n —
(n—k)! 1 (-1) _(—1)nt 1 < k>(_1)q.

1 1 o
_ReSZ:(2n+1)/2f(Z) = 5(’0 —k)!'x RGSZ:(2n+1)/QZ —ont1)2 Tl;](:) P
n—k n—k
1 1 1
=—(n—k)! =" Ry — k) _
5 )g(2n+1)/2—r (n )g2n+1—2r
When k = 0 the product works out to
n! x 2"
(2n+1)!

When k£ > 1 we find

n 1 n

- Mm+1—2
H2n+172r II Gn+ )
r=0 r=n—k+1

nl x 2n At nlx2n  (2k—1)!

T (2n+1)! E)@k —l-)= @n+ 1) (k— 1)l x 2k—1

n! x 2" (2k)!
(2n + 1) k! x 2k~

We observe that this formula correctly represents the case k = 0. To put it
all together restore the two factors in front to obtain

2n+1 020\ (n\ g, X 2" (2K)!
e () (b2 00 e
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2k (2n)! ol n! (2k)!
GETa vy gy py AT

(2n)! k!
1 [2k
T\ k)

This concludes the argument.
This problem has not appeared at math.stackexchange.com. It is from page
14 eqn. 1.108 of HW.Gould’s Combinatorial Identities [Gou72al.

1.62 Single variable monomial and two binomial coeffi-
cients

We seek to show that with m > n

2 = (—1ymhn 7:2_5 (" é(—l)p ("o

We will prove this for  a positive integer. It then holds for arbitrary z since
both LHS and RHS are polynomials in x.

First part

We get for the inner sum

k k
Sy (m * 1)p” — )[4 2™ 3 (-1 PP exp(pu).
p=0

Here the coefficient extractor in z enforces the upper limit of the sum and
we may raise p to infinity to get

nlfw"][2F](1 + z)mH(—U’“m
_ nl[w”][zk](l _ z)m+1m.

We get from the outer sum (reverse index)

m—+1
(_1)n+mn![wn} [Zerl](l _ Z)erl; Z (13 +m — k) Zk.

1 — zexp(w) = m

Applying the coefficient extractor to limit the sum we find

(L)l ] (- 1) (L) o (L) :

1—zexp(w)1l—2z/(1+v)

171



The contribution from z is

1 1
1—zexp(w)l—2z/(1+wv)
Now put z/(1 — z) = u so that z = u/(1 +u) and dz = 1/(1 + u)? du to get

res

+1
z Zmt2 (1 B Z)m

1 14w 1 1 1
r
W wmt g 1—wexp(w)/(1+u)l—u/(1+0v)/(1+u)(1+u)?
1 1
= 1
res m+2( +u)1+u—uexp(w)1—|—u—u/(l+v)

1 1+w
1 —wu(exp(w) — 1) 1 +v(1 +u)’

_I'SS W( +u)

Extract the coefficient on [w™] to get

1 1+w
1 a .
rgsumH( T 1+v1+u Zu { }

Next do the coefficient on v to find

p=0 b q=0

res WLQ (1+u) Z (3‘" et 1) (=1)™ P (1 + u)™? iuqql{Z}.

Resolve the residue in u and obtain
" (r4+m+1 - n|l/m+1—p
-1)" —1)? ! .
=) pz_;)( p >( ) qz_;q{q}<m+1f)

Second part

The binomial coefficient in ¢ is fine because m > n and ¢ < n so that ¢ < m.
Switch sums to get

e (e (10

We have for the inner sum where we take ¢ > 1:
=\ m=p m+1—gq
= [2™(1 + 2)" T w1 4 w) Y (1) PP (1 4 w)P

p=0
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The coeflicient extractor in z once more enforces the upper limit of the sum
and we may extend to infinity:
(=)™ [™(L + 2)" T [w™ (1 + w)

1+2z+ 2w
(—1)™ (1 + 2)7H ™ ™ (1 4 ) ————

L+ zw/(1+2)

Zm+17q sm=q
e [ S O L

(1+z)m—a
) ) () b
i),

Note that when ¢ = 0 only p = 0 contributes for a contribution of one, so
this is covered by the previous formula as well.

To conclude the argument substitute this into the remaining outer sum to
find

n

q=0 q

Here the coeflicient extractor enforces the range one last time because exp(w)—
1=w+--- and we have

n n 1 _
e e e — D
which is the claim. QED.

(=1)"n!w"™] exp(—zw) = 2"

This problem has not appeared at math.stackexchange.com. It is from page
16 eqn. 1.128 of H'W.Gould’s Combinatorial Identities [Gou'r2a].

1.63 Use of an Iverson bracket
We seek to show that

é(%;l) %{g(l)k<2";3>2k+1}.

We get for the LHS using an Iverson bracket

> <2k + 1) 7] 2"

>0 7 1—2
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= [w](1 + w)[z"] Z(l + w)?k K
k>0

1 1
1—21—2(14w)?
11 1
1+w[z]z—1z—1/(1+w)2'

—Z

=[]0+ w)[="]

= [w?]
The contribution from z is
1 1 1
2tz — 12— 1/(1 4+ w)?’

Residues sum to zero and the residue at infinity is zero by inspection. Hence
we may use minus the residues at z = 1 and z = 1/(1 + w)?. We get from the
first one

Res.—g

o1 1 L
_[w‘]1+w1—1/(1+w)2_ w11+ )w(w—|—2)
j+1 11 (= (=1
:7[w+](1+w)§mf75 S 5
1)+t —1)i+1
- G 1=

This looks good, we have recovered one of the target terms from the RHS.
The next residue is 1/(1 + w)%:

(40 ey = W+

1
w(w + 2)

_[wj}l—i—w

1, . 1 1ES /20 + 3) (—1)iti-k
— Tyl 1 2n+43 —
A+ w) T 2;_0< k > 9i+1-F

_ (= & (2043 1Ykok
BT po)UE

This is the second target term and we may conclude.
This problem has not appeared at math.stackexchange.com. It is from page
17 eqn. 1.129 of HW.Gould’s Combinatorial Identities [Gou'r2a].

1.64 Use of an Iverson bracket 11
‘We seek to show that
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k=0

S (T = S { g (" +1>2k+<—1>f}.

We get for the LHS using an Iverson bracket

S0 (T

>0 7 1—2

= [w’](1 + w)'[z"]

- i . > (=1F A+ w)*

k>0

1 1
1—214+2(14+w)

1 1
z—1z4+1/(1+w)’

= [w’](1 + w)’[2"]

—[w’](1 4+ w)’ ! [z"]
The contribution from z is

1 1 1
2l —124+1/(1+w)’

Residues sum to zero and the residue at infinity is zero by inspection. Hence

Res.—g

we may use minus the residues at z =1 and z = —1/(1 + w). We get from the
first one
. ) 1 1 1
J1(1 Jj=1 —
R o y oy Bl 10 +“’)21+w/2
1~ /7 1 1 S (-1)%
2;() S =01 =

Nice, we have recovered one of the terms. Continuing with minus the residue
at z = —1/(1 4 w) we get

1
—-1/(w+1)—-1
11
214 w/2

[wJ(1 4wy " =) (1 4 w)"

= [w’](1 +w)" T (=1)"
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We have recovered the second term and may conclude.
This problem has not appeared at math.stackexchange.com. It is from page
17 eqn. 1.130 of HW.Gould’s Combinatorial Identities [Gour2al.

1.65 Use of an Iverson bracket III
We seek to show that

ser- 30,700 -HE) ()

We will prove this for x a non-negative integer and it then holds for all x
because both sides are polynomials in x. It also holds by inspection when n =0
and we may assume that n > 1. We have

S () (o) = (0) s S ()

=)+ S (F)weir

k>0

We momentarily omit the term in front:

w0 5 (et

1
= [w](1+ w) [ (L4 w2)"
—z
Examination of this last expression with respect to w reveals a value of zero
when 2x < 2n or x < n, which agrees with the proposed closed form. Henceforth
we shall assume that x > n. The contribution from z is

11 i
ReSZ:0 ;iz(l +'U]Z) .

Residues sum to zero and thus this term contributes through minus the
residue at z = 1 and z = co. We get for the first one

w0+ o = (50).

The negative of the residue at infinity is

(1+w/z)* = —Res,—q . (w+ 2)*.

r—n+1 ]_ — 2z

1 1
Res,—g— 2" ———+—
=027 1-1/z

Expanding the powered term and substituting yields
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_[w2ﬂ(1+w)‘"”§ <k> Z_Z( ><2n—x+k>

Put k =x — q to get

_Z(:c—c)(?n—q) - qz_:< )(%—q)
% ()07

Now when x — n > n we have in the range x — n > p > n that the second
binomial coefficient is zero (residue definition) and we may lower the upper
limit to n. On the other hand when n > z — n we have in the added range
n > p > x — n the first binomial coefficient is zero and we may raise the upper
limit to n, getting at last

_g <” ip) (nfp> = —5n(x).

‘We have shown that

S, (a) = (i)z + (;i) — Su(z).

Solve for S,,(x) to obtain the claim, which we have now verified for = a non-

negative integer and hence for complex x with both sides being polynomials in
z. QED.

This problem has not appeared at math.stackexchange.com. It is from page
22 eqn. 3.6 of H-W.Gould’s Combinatorial Identities [Gou72al.

1.66 Basic example

We seek to show that

o= $ ()07 =30 i ()

k=0

We will prove this for x a non-negative integer and it then holds for all =
because both sides are polynomials in z. We start with the LHS to get

/2]
[2°](1 + 2)%[w"] (1 + w)* Z 22k,
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Here the coefficient extractor in w enforces the upper limit of the sum and
we have

[Zz](l +Z):z:[wn](1 +w):z: ZkaZk
k>0
With
1o 11 1
1—22w? 214wz 21—w:z

we get two pieces. The first one is

1 1 1
n+1 x x
§[w (14 w) Reszzo—zm_i_1 (14 2) eyt

Here the residue at infinity in z is zero so we may take minus the residue at
z = —1/w to obtain

We get for n even

S —wr = 305

Continuing with the second piece we find

1 n+1 x 1 T

We once more have a residue of zero at infinity and hence we may evaluate
at minus the residue at z = 1/w to get

S+ (14 2) = Jurla v w - (%),

Joining the two pieces we have the claim.
This problem has not appeared at math.stackexchange.com. It is from page
22 eqn. 3.8 of H-W.Gould’s Combinatorial Identities [Gou72al.

1.67 Basic example continued

We seek to show that
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£ @) ) or (2]

We will prove this for z a non-negative integer and it then holds for all x
because both sides are polynomials in z. We start with the LHS to get

[n/2]
[Zm](1+z)m[wn](1+w)2n—m Z ZZk’LUzk.
k=0

Here the coefficient extractor in w enforces the upper limit of the sum and
we obtain

[Zw}(l + Z)I[’wn](l + w)Qn—a: Z Zka2lc
k>0

= [0+ 2 )1+ )

With

11111
1—22w?2 214wz 21— wz

we get two pieces. The first one is

1 1
T+l 2n—x T
2[w (14 w) Reszzozmﬂ(l—kz) syt

Here the residue at infinity in z is zero so we may take minus the residue at
z = —1/w to obtain

_%[wn—o—l](l 4 w)2n—x(_1)m+1wx+1 <1 _ 1)
1 n 2n—x x
= S[w")(1+ )P (1= w)

1 1
=sres ——(1+ w)" M (1 4+ w)" (1 — w)®.

Now we put w/(1 + w) = v so that w = v/(1 —v) and dw = 1/(1 — v)? dv
and get

1 1 1 1-20)* 1
— res
2 vt (1—w)r= =2 (1 —0)® (1—0v)?
1 1 1 .
= — res (1 —2v)".

2 v ot (1 — o)t

Next put v(1 —v) = w so that v = (1 — /1 — 4u)/2 and dv = 1/+/1 — 4u du.
We get
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1
V1 —4u

1 1 z—1
= = _ (z=1)/2 _ Z(_q\n92n| "2
R )

1 1 z
— res —1\/1 —4u

2 uw ynt

n

This concludes the computation of the first piece which we recognize from
the proposed closed form. Continuing with the second piece we obtain

1 1
- n+1 2n—x x
_2[w 11 + w) Reszzoizmﬂ(l—i—z)

1
z—1/w’

We once more have a residue of zero at infinity and hence we may evaluate
at minus the residue at z = 1/w to get

1

S+ ) (1 + ;) = )+ = 2(27? )

We also recognize this piece as the second one from the closed form. Joining
the two pieces we have the claim.

This problem has not appeared at math.stackexchange.com. It is from page
23 eqn. 3.12 of H.W.Gould’s Combinatorial Identities [Gou72al.

1.68 An identity by Erik Sparre Andersen

We seek to show that withn>1and 0<r <n

502 () -5 (6

We will prove this for x a positive integer and it then holds for all x because
both sides are polynomials in x. We start with the LHS to get using an Iverson

bracket
Z (33)( —x )[ZT] ok
k/J\n—k 1—=z
k>0

= [T (U w) (1 w2

The contribution from w is

1 1

(1+w2)".
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With n > 1 we have that the residue at infinity is zero by inspection and
we may evaluate through minus the residue at w = —1 because residues sum to
zero. We write

1 1
(1= (w+1)* (1+w)

—(—1)7L+1Resw:0 - (1—z4+(14+w)2)”

1 1
(1= (w+ 1))+ (1 +w)

= (—1)"(1 — 2)"Resy=0 —(1+ (1 +w)z/(1-2)"

This yields

Qe )

Observe that the second binomial coefficient is zero when r > x — 1 which
agrees with the proposed RHS. Thus we may henceforth assume that r < z —1.
We may lower the upper limit to r because the range r < ¢ < = — 1 produces
zero from that same binomial coefficient by construction from the coefficient
extractor in z. We thus have

o S (e (T (),

q=0

Next observe that
r—1-q\(z—-1—-q+n\ _ (x—1-=q+n)!
r—gq n C(r—q@)!x(x—1-7)xn!
_fr—1—-7r+n\(z—-1—qg+n
n n r—gq '
We thus have for our sum

(S (e ()

q=0

Working with the remaining sum,

S D ) [T

q>0
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= (—1)"[z")(1 4 z)*~1+n (1 - ljz)x

rir n— r n—1
=Rt = (M),
We have obtained the preliminary closed form

(_wa<x—1gr+n)<n;1>

which produces zero when n — 1 < r so we may suppose that n — 1 > r, a
refinement of the initial » < n. This is

(1Wﬂ<xlnr+n>nnrcg

n—r 1
- ST — 1 — . S—
n (=)™ (= r+n) rIx (n—r)!
With (this also goes through for r = 0)
n—1 r—1 n—1
(@=1=r+n=][@—r+p=][@-r+p» [[@-r+p)

p=0 p=0 p=r

n—1-r n—1—r

=@-1" [[ @+p=@-0"0" [] (-o-p)
p=0 p=0

= (o — 15 (=17 (—a)n=r
we at last have the claim. QED.

Remark

Apparently we also have

This entails showing

S IAIEAR

This is the case of » = n which was shown to be zero in the previous section.
This problem has not appeared at math.stackexchange.com. It is from page
23 equ. 3.14 of H.W.Gould’s Combinatorial Identities [Gou72al.
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1.69 Very basic example
We seek to show that

LnZ/QJ z\ [ x—k gn—2k _ 2z
k) \n—2k nj)
k=0
We will prove this for z a positive integer and it then holds for all x because
both sides are polynomials in x. We start with the LHS to get

[n/2] " o 52k
e X (7)o

k=0

Here the coeflicient extractor enforces the upper limit of the sum and we get

n(1 T z 2n72k ZQk
e (D) e

k>0

— 27[x"](1 + 2)* <1 + 4(12;))
= 2" [2"](1 + 2 + 22/4)" = 2"[z"](1 + 2/2)%* = (if)

This problem has not appeared at math.stackexchange.com. It is from page
24 eqn. 3.22 of H.W.Gould’s Combinatorial Identities [Gou72al.

1.70 An identity by Karl Goldberg
We seek to show that

AV LTES A " (2 Y & " 22\ (22 4y —k
Z(k)(n—k) Z k)\n—k Z k n—k
k=0 k=0 k=0
We will prove this for z,y positive integers and it then holds for all z and y

because both sides are polynomials in x and y.
We start with the first sum to get

n

=1+ 2 (i) (1+ 2)kzko2k,
k=0

Here the coefficient extractor enforces the upper limit of the sum and we
find

)1+ 2" Y (i) (1+ 2)kzko2k
k>0
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= [2"](1 4+ 2)Y(1 +42(1 4 2))* = [2"](1 + 2)Y(1 + 22)**.

We extract the coefficient to obtain

,é)(?)?k(ngk)'

This is the second sum. Observe carefully that the coefficient extractor
returns zero when n > 2z +y. We may henceforth assume that n < 2z +y. This
yields

1
. Y 2x
res oy (14 2)¥(14 22)

=rTres

es ey (14 2P (1 207101 2217

Next put z/(1 + 2) = w so that z = w/(1 —w) and dz = 1/(1 — w)? dw to
obtain

1 1 14+w)*® 1
res
w wnth (1 —w)y=1=7 (1 —w)?® (1 —w)?
1 1
= res (1 +w)*.

w nt1 (1 _ w)2x+y+1fn
This is using n < 2z +y
zn: 2z (22 +y—n+n—Fk _En: 2x\ (22 +y — k
k n—k B k n—%k )
k=0 k=0

We have found the third sum and may conclude. Note that there is another
substitution we can make by writing

; 1 n+1 Yy 2r—n—1

We put z/(1 +22) = w so that z = w/(1 — 2w) and dz = 1/(1 — 2w)? dw to
get

1 (1—w) 1 1
res
w w™tl (1 —2w)¥ (1 — 2w)2*—"=1 (1 — 2w)?
1 1
=res —w)Y.

w wn—i—l (1 _ 2w)2x+y+1—n (1

This yields a fourth sum:

Z (%) (—1)kgn—t (2:1:+yn—_nl;|—n— k)

n
k=0
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_ " (y \kon—k 2 +y —k
_Z(k>( 1)k2 ( L)
k=0
This problem has not appeared at math.stackexchange.com. It is from page
24 eqn. 3.21 of H.W.Gould’s Combinatorial Identities [Gou72al.

1.71 Sum producing a square root

We seek to show that

(G0 - ) - T

k=0 =0

We will prove this for x a positive integer and it then holds for all  because
both sides are polynomials in z. We need some preliminary observations about
the definition of the binomial coefficients that we are using. We have

r—k 1 o

This is zero when k >norn—k >x —kie n > x and z > k. Otherwise
we may evaluate through minus the residue at infinity to get

1 n—k+1 z—k __ 1 =k _ [T~ k
Reszzoz—zz (1+1/z2) —Reszzoﬁ(l—i—z) =\, )

This residue vanishes when x < n or when x —n >z — k i.e. kK > n and
x > k. As the closed form is also zero when z < n we will henceforth assume
that > n.

We start with the LHS to get

1 e - (22 1
i —— | (1+2)7 (Qk) 1+ 2)F

k=0

Here we may raise the upper limit to x because with z > n for the range
x > k > n the residue is zero:

1 L /(2 1
I z -
P ) ;(zk) (1+2)F

x

1 2x 1
=res ﬁ(l‘i‘z)r ( )
z Z +1 kzz() 2k /1+Z2k

2x
1 2 1 1 —1)k
A k=0 \/1+Z 2
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1 1 N

1 2z 1 2x
T4 — ) +(1-——=) |.
( \/1+z> ( 1+z> 1
Next we put 1 — 1/y/1+ 2 = w so that z = w(2 — w)/(1 — w)? and dz =
2/(1 —w)? dw to get

1 (1 _ w)?x—2n+2 1 . .
2w wr—ntL(2 — q)rntl (1 — )2 [(2 —w)” +w ]

(1—w)?

1 1 2z 2x
= rgs ww—n+1(2 _ w)w—n—i—l (1 _ w)2"+1 [(2 - ’LU) +w }

The term w?* does not contribute and we are left with

1
(1 —w)2nt1”

Extracting the coeflicient yields (recall that z > n)

~— [(z+n—1 koptn—1—k (T tn—k
Z( k >( 12 2n

k=0

~— (x+n—1 z+n—k
:2:E+n71 x _1 k27k
Z< k >( ) r—n—k

k=0

1 .
res ——— (2 —w)*t"!

r—n k

z+n—17_x—mn x+n ‘T+n71 — z
= 9rtn—1[7=n)(] 4 z)t kz_%( . >(1)’€2 ’“m.

The coefficient extractor enforces the upper limit of the sum and we have

T n— Zk
2m+n—1[zm—n](1 + Z)ac+n Z ( + j 1) (_1)k2—k(

&
= 1+2)

x+n—1
_ 2x+n—1[zac—n}(1 + Z)ac+n 1_ 1 z
21+z2

_ 2w+n71[2:p7n](1 4 Z)(]. + 2/2)a:+n71

This gives

gr+n—1 r+n—1 2—(w—n)+2a:+n—1 r+n—1 2—(1:—71—1)
r—n r—n—1

_g2n-1 z+n-—1 4 920 r+n-—1
2n —1 2n '

We thus have for our answer
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92n—1 2n (xz+n +22nxfn r+n) x frtn 92n
T+n\ 2n z4+n\ 2n z+n\ 2n
which is the claim. As for the alternate form we get without the multiplier
227 /(2n)! in front

2n—1 2n—1

x r+n—k)==x r+n—k

P kl;[o( ) kl;[l( )
n 2n—1 n—1 n—1

:xH(x—l—n—k) H (x+n—k) :xH(x—i—k) H(x—k)
k=1 k=n+1 k=0 k=1
We obtain at last
92n

[T -#).

(2n)! k=0

This problem has not appeared at math.stackexchange.com. It is from page
25 eqn. 3.26 of H'W.Gould’s Combinatorial Identities [Gou72a]. For additional
information the reader is asked to consult math.stackexchange.com problem
1098257.

1.72 Sum producing a square root II

We seek to show that

n n—1
20+ 1\ [z —k 20+ 1 /x+n\ 9, 2v+1
= 24T = ((2 1 —(2k+1)7).
kZ_O(QkH)(n—k) 2n—|—1(2n) 2n+1'H #+1) +1)%)
We will prove this for x a positive integer and it then holds for all  because
both sides are polynomials in x. The assumptions here are the same as in the

previous section.
We start with the LHS to get

1 "2+ 1 1
- (1 z -
res (1 +2) kzzo (2k+ 1> (1+2)F

Here we may raise the upper limit to z because with x > n for the range
x > k > n the residue is zero:

1 T (2r+1 1
- 1 z -
18 e (1 F2) kzzo (2k+1> 1+ 2)F

1 2z +1 1
_ $+1/2
- I‘SS pr—n+1 (1 + Z Z <2k +1 ) ka—i—l
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2z+1
_ L etz 2z +1 1 1—(=1F
I'(;‘S r—n+1 ( + Z) k \/ﬁk 2
k=0 z
2x+1 2x+1
1 1 1
. - z+1/2 - _ o
= 3" e (1 F2) (l * m) (l m) 1 ‘

Next we put 1 — 1/y/1+ 2 = w so that z = w(2 — w)/(1 — w)? and dz =
2/(1 —w)? dw to get

2
(1—w)?

1 (1 — w)?z—2n+2 1 [(2 — )2t w2z+1]
2 w wm—n+l(2 _ w)m—n+1 (1 _ w)2z+1

B 1 1
T wanti (2 qp)e—ntl (1 qp)2nt [(

2 _ w)2z+1 o w2z+1}

The term w?**! does not contribute and we are left with

1

(2 _ w)x—&-nm

Extracting the coefficient yields (recall that 2 > n)

% T+n (—1)kgmtn—h z+n+1-k

= k 2n+1

:2x+n§ z+n (—1)koF z+n+1-k
=\ k r—n—k

k

_ 2w+n[zw7n](1 + Z)z+n+1 kz_o <£l’ -]: TL> (71)k27k (1 j_ Z)k'

The coefficient extractor enforces the upper limit of the sum and we have

ok

2m+n[zzfn](1 + Z):c+n+1 Z (I ﬁ]; TL> (_1)k27k (1 ~ Z)k

k>0

rr+n r—n rT+n 1 2 w+n
=P }(1+z)++1(l—21+z>

= 2T (1 + 2) (1 + 2/2)* 1"

This gives

9z+n z+n 27(1’771) + 9r+n T +n 27(x7n71)
T—n r—n-—1

r+n r+n
:22n 22n+1 .
( 2n>+ 2n +1

188



We thus have for our answer

92n T+n +22n+1x—n T+n :296—1—1 T+n 92n
2n 2n+1\ 2n 2n+1\ 2n

which is the claim. As for the alternate form we get without the multiplier

(225111)1 in front
n—1
[Tz +1)% - 2k +1)?)
k=0
n—1 n—1
= [[ @2+ 2k +2)(20 — 2k) = 2" [ (@ + k + 1) (z — k)
k=0 k=0

= 22”(33 + n)ta = 22”(36 + n)an

Restore the multiplier to obtain at last

2r+1 _o, on 2x+1_5,/x+n
ZTTC _gn n 92n
Gnrl EEMT =5 on

as desired.
This problem has not appeared at math.stackexchange.com. It is from page
25 eqn. 3.27 of H.W.Gould’s Combinatorial Identities [Gou72al.

1.73 Use of an Iverson bracket IV
We seek to show that

=5 (") (1) -G+ 0}

We will prove this for x a non-negative integer and it then holds for all x
because both sides are polynomials in z. It also holds by inspection when n =0
and we may assume that n > 1. We have

<—1>”§<—1>k HIAE (j) T w>k§_j (7)o
= <2>2 + ()" (L w)” Y (i)(l)kwk[znl]lz_’cz.

k>0

We momentarily omit the term in front:

R e P D 4 [V

1—=2
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(1)1 + w) e

(1 —wz)".

Examination of this last expression with respect to w reveals a value of zero
when 2z < 2n or x < n, which agrees with the proposed closed form. Henceforth
we shall assume that x > n. The contribution from z is

Residues sum to zero and thus this term contributes through minus the
residue at z = 1 and z = co. We get for the first one

(=)™ w1+ w)* (1 — w)* = (=1)"[w?"](1 — w?)*
= (1) )1 - w)” = (n)

The negative of the residue at infinity is

1 1 1

m(l - U)/Z) = _ReSZ:()Z

g el Ak M

1
Res.—go —Z
z

Expanding the powered term and substituting yields

—(=1)"[w*)(1 + w)* f (i) (L1)7 -kt

k=0

The term being summed is zero by construction when 2n < z — k or 2n —
x+k<0.Put k=2x—q to get

Now when x — n > n we have in the range x — n > p > n that the second
binomial coefficient is zero (residue definition) and we may lower the upper
limit to n. On the other hand when n > 2 — n we have in the added range
n > p > x — n the first binomial coefficient is zero and we may raise the upper
limit to n, getting at last

190



Sy (x) = (Z)Q + (2) — S (2).

Solve for S,,(x) to obtain the claim, which we have now verified for = a non-
negative integer and hence for complex x with both sides being polynomials in
z. QED.

This problem has not appeared at math.stackexchange.com. It is from page
26 eqn. 3.35 of H.W.Gould’s Combinatorial Identities [Gou72al.

1.74 Binomial coefficient manipulation

We seek to show that

- 2n\ (2x — 2n 1 x z\? 2z [2z\ "
—1)k =_(-1)" .
S () = 0 6) 6
k=0
We will prove this for n > 0 a non-negative integer and x > n a non-negative
integer. With

2n\ 2z (2x)! _(2x\ (2 —k

EJ\2n)  klx(2n—k)!'x (2z—2n) \k)\2z—2n
this is equivalent to

= 22\ (22 —k \ (22 —2n 1 x 2\ [2z
—1 k — Z(_1\" )

S () e {00 )
k=0
We also have (the second binomial coefficient vanishes when z + &k —2n < 0

or x < 2n — k in accordance with the residue definition and agrees with the
factorials otherwise)

<22;—2Z) (2?; ) in> T 2n—k)x (;Q—zk)!ki! (x+k—2n) <2;—kk> (271:0— k:)

so the LHS becomes
~ 2z\ 2z — k T
_\k
S (E) (20 ()
k=0
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Next observe that

() - (0)0)

and we may divide by (2;) to get as the goal

Ser(E) (o) -5 {2 ()

This is the identity from the previous section and we are done.
This problem has not appeared at math.stackexchange.com. It is from page
29 eqn. 3.60 of H.W.Gould’s Combinatorial Identities [Gou72al.

1.75 Four binomial sums

We seek to show that

There is a fourth sum which will appear during the computation. We will
prove this for = a positive integer and then it holds for all i.e. complex = because
the expressions involved are all polynomials in x. We start with the first formula
and obtain

[2"](1 + )" * zn:(—nk (i) ",

k=0

Here the coefficient extractor enforces the upper limit of the sum and we get

[Z"](1+ 2)?" % Y (~ 1)k (z) 2

k>0
=["](1+ 2)2"*””(1 —2)".
We can re-write this as
[Zn}(l + Z)2n72m(1 _ ZQ)x.

Extract the coefficient to obtain
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[n/2] Ln/2) o
Z [22K](1 — 22)7[z7 2% (1 4 2)" 2% — Z A1 = 2) (2n 2 )

k=0 k=0 n =2k
_ Lni?(—l)k T\ (2n — 2z
N P k)\n—2k )

This is the second formula. Continuing with the initial closed form we write
res L(1 +2)" T 14 2)" (1 = 2)”
pe Zn+1 :

We put z/(1+ 2z) = v so that z =v/(1 —v) and dz = ﬁ dv to get

1 1 (1-20) 1
res
o ot (1 —v)n—a=1 (1 — ) (1 —v)2

1 1
=res —o (T (1

s ()

k=0

which was not listed in the Gould text. We put v(l — v) = w so that

v=(1-+/1-4w)/2 and dv = 1/+/1 — 4w dw to find

— 20)".

This is

T
res ——vV1—4w —— =res ——
w wn-{-l 1 —411] w wn—i—l

= (—1)"2*" (?)

This is the fifth and last formula. We get for the fourth formula

(1 — 4w)@—1/2

(e LT - 1/2-p) = (172 L -1 2)
p=0 p=0

n—1
L1
=2"= 1'[0(2p+1—x).
p:

It remains to show the third formula. We start with the inital closed form
and write

res — )" 1 4 2)P T (1 — p)* L

z

We now put z/(1 — 2) = v so that z = v/(1 +v) and dz = 1/(1 +v)? dv to

ZnJrl (1
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obtain

1 (14 2v)*n—= 1 1
I’SS vn+1 (1+,U)2nfa: (1+U)zfn71 (1+’U)2

1
(14v)ntt”

1
— 1 2 2n—x
=res ooy (1 +20)

Extracting the coefficient we find

go (an— x) ok (_1)nk (Znn— k>.

This was the missing formula and we may conclude.
This problem has not appeared at math.stackexchange.com. It is from page
27 eqn. 3.42 of H.W.Gould’s Combinatorial Identities [Gou72al.

1.76 Power term and two binomial coefficients

We seek to show that

> (1) -2 () )

We find for the LHS

rwwﬂkio(2>2exp@mo

n

= rl[w"][2"](1 + 2)" Z <Z> 2P exp(kw)

k=0
= rl[w")[z"](1 + 2)"(1 + zexp(w))".

Continuing, we obtain
rlw"][z"](1 + 2)"(1 + z + z(exp(w) — 1))"

— i 1+zn:0() " (exp(w) — 1)*
A
EOC)

Now observe that we may set the upper range to r because if r > n the
first binomial coefficient is zero in the added range r > k > n and if n > r the

5%:

Il
3 ©
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Stirling number is zero in the removed range n > k > r. Hence we obtain

WG]

This problem has not appeared at math.stackexchange.com. It is from page
31 eqn. 3.77 of H-W.Gould’s Combinatorial Identities [Gou72al.

1.77 Use of an Iverson bracket V
We seek to show that
i om\? 1 2n om) 2
_ _1\k — Z(_1\"
o=y (1) = e { )+ G )
k=0
We start by writing for the LHS

() e ()

and introduce an Iverson bracket for the sum

s e (2)

k>0

— [w2n](1 + w)Qn[Zn_l]% Z(_l)k (2]:?) wkzk

k>0

)2n.

= [w?™](1 +w)*[z" ] (1—wz

1—=2
The contribution from z is

1 1
Res,—g— —— (1 — wz)*".
=01 = z( )
Residues sum to zero hence this term is given by minus the sum of the
residues at z = 1 and z = co. We get for the first one

[WP](1 4+ w)?" (1= )" = [w](1 = w?)?" = [w")(1 = w)*"

o)

For minus the residue at infinity we find

1 n 1 2n 1 1 2n
ReSZZO?Z 1_1/2(].—7_0/2) :RGSZ:()W;(Z_/UJ)

195



Restoring the coefficient extractor in w we obtain

n

[ ) S (e — )
k=0
2n _ e
= _[an](l + w)2n kz_:o ( L > (_1)2n kyy2n—k

L) ()

We have shown that S, = (—1)"(2")2 + (—1)"(27:1) — Sy, which is the claim.

n
This problem has not appeared at math.stackexchange.com. It is from page

31 eqn. 3.82 of H.W.Gould’s Combinatorial Identities [Gou72al.

1.78 Use of an Iverson bracket VI
We seek to show that

[n/2] 2 2
2n 1 /4n 1 2n 1+ (=)™ [(2n
= S “(=1)" — .
5= 3 () =3on) 30 () + =0 ()
Start by observing that
LanJ 2n > 14+ (=1)" (2n 2 L L(ni/ﬂ 2n\ >
2k) 2 n 2k)
k=0 k=0

We introduce an Iverson bracket to treat the remaining sum:

[anl] 1 Z 2n 222k
1—2z = 2k
1 on\? 1+ (—1)F
_ r.n—1 k
=l ]l—zz<k>z 2
k>0
;1 2n 1+ (—1)k
— [wZn}(l + w)2n[zn 1} Z ( )wkzk
1—2 = k 2
1 2n 2nr n—1 1 2n 2n
= ST+ ) (1w (1w,
The contribution from z is
1 1 1
iReSZZOZE((I + w2)2n + (1 — ’lUZ)Zn).
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Residues sum to zero so this is minus the sum of the residues at 2 = 1 and
z = 0o. We get for the first one

[ (1 + w)*™ + (1 = w?)*")

N =

S0+ W) (1 w) 4 (1 - w)) =

L) B = () S (),

There remains minus the residue at infinity:

1 1 1

Z 5. _n—2"—— ((1 2n 1— 2n
2Rebz_oz22’ = 1/2(( +w/2)"" + (1 —w/z)™")
1 11 . .
= —iReSZ_OTHm((Z + 'u))2 + (Z — 'u))2 )
— —l[an](l + w)2n zn: (ZTL) w2n—k<1 + (_1)2n—k)
2 k
k=0
77% 2n 21+(1)"3an/2J 2n2775
N k 2 N 2k) T
k=0 k=0

We have shown that S,, = w(?f + 358 + 3(=1)"(*") — S, which
is the claim.

This problem has not appeared at math.stackexchange.com. It is from page
30 eqn. 3.72 of H.W.Gould’s Combinatorial Identities [Gou72al.

1.79 Appearance of constants three and five

We seek to verify the two related sum identities

=2 () - 0o 0)

=S () S ()

k=0 k=0

and

Observe that for k£ > 1

_ k—1 C1\k k—1
() =g Mez-0- 1 55 ey
" q=0 ’ q=0

1 (=%  (2k—1)
El2k (B — 1)l x 2k—1°
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This is
1(=1)F (2)!
k! 2k k! x 2k

which also holds for £ = 0. We get
—1/2\ _ (—=1)* (2k
k) 22k k)

or alternatively

2k 2 _
( > = (-1)*2 k[zk]ﬁ =z Vioiz

k

First identity

We start with the LHS to get
1

y2n 2": (n) <2n - Qk) _pn Wﬁ lé <Z> k

k=0

This is
1 1

22" pog — (1 4 2)" ——.

z z”“( ) V1 —4z

Now put z/(1 + z) = w so that 2 = w/(1 — w) and dz = 1/(1 — w)? dw to

obtain

1 1 1

22" pog —— (1 — w
w w”H( ) 1 —4w/(1—w) (1 —w)?
. 1 1 1
= 2" res
w wtl /T —Bw+/1—w
1 1

:22n[wn]
V1i=-5w+v1l—-w

1 I =2k [2n—2k
4wkzo<k)5 <n—k>

=[] V120w 1 -

This is the claim.

Second identity
This is very similar to the first. We obtain
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-0t () (5 1) = e () o

1
=227 (—1)"[2"] ——=(1 — 2)"
S
This is
22" (—1)" res —(l—z)"#.
z gntl V1—4z

Now put 2/(1 — z) = w so that z = w/(1 + w) and dz = 1/(1 + w)? dw to
obtain

1 1
22 (—1)" res —— (1
(1) rgswn+1( + w) 1—4w/(1+w) (1+w)?
1 1 1
_92n(_1\n
=ENTS GE Ase it e
=2 (=1)"w }\/1—3w\/1+w

1 1 "L 2k 2n — 2k
— n _ -1 k3k )
W e it kz_o<k>( ) (n—k)
Once more we have the claim.

This problem has not appeared at math.stackexchange.com. It is from page
32 equs. 3.88 and 3.87 of HW.Gould’s Combinatorial Identities [GouT2al.

1.80 Generating function of a binomial term

We seek to show that

ﬁ: (Qn— Qk) (%) x 22n<x+n>_l<n+x - 1/2)
o\ n- k k)x+k n n
Note that we get a polynomial in x on the LHS and the RHS on multipli-
cation by (””::”) so we just need to prove it for x a positive integer and it will

hold for all i.e. complex z. We start with the following claim where ¢ > 1 is a
positive integer:

(%) s - e T P
k)k+q q x (2;) ’

We also claim that the first non-zero coefficient of this OGF is on z9. The
constant coefficient is zero by inspection (compare Catalan number GF). We
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have for the coefficient on [2™] where 1 < m < g — 1 without the scalar in ¢ and
the sign

o (2P (e N L m=p| /T — 4z = [2™]] —
Z(p)[z W1—4z=" [F] 1_42[2 W1—4z=1[z"]1=0.

On the other hand for m = q we get
2 72 — 2
a) f\p q

so the coefficient on ¢ is (2qq) /q/(Qqq) =1/q.
This leaves m > ¢ which corresponds to k£ > 0. On differentiating the OGF
we must obtain

2471
VI—4z
Doing the differentiation of the functional term we find
g—1 q—1
__4443144,252 20\ o 1242 N0 () e
\/1—4217:0 p 1—4;:p:1

Without the square root we have
q—1 g—1
2p 2p+2 2p
—2 2P+ +1 P—4 2P
5 () S () - Sa())
p—O p=
The contribution from p < g — 2 is

2<?)+(p+n<?:f>4pCf>0

Restoring the scalar and the sign we get for p=¢ — 1

1/2¢\ " 2 —2 29— 2
) ) s ()]
a\q q—1 q—1
as desired. Using the newly established closed form for the OGF of (%) kiq
we have by convolution of formal power series (in fact two functions that are
analytic in a neighborhood of the origin) that the LHS of the proposed identity

is

o 1=VI= YT ()
1="la q X (2qq) X 24 V1—4z

200



() ) B

p=0

The second term does not contribute to the coefficient eqtractor and we get

o 20\ "' 1 [2¢\ ' (2q+2n
q Vi—4z \g¢q g+n )’
We simplify to the required form:
q!' x q! (2g + 2n)!
(29)! (¢+n)! x (¢ +n)!

B (q+n>1 ¢! % (2¢ +2n)!
U n n! x (29)! x (g +n)!

—1 n—1
q+n q! (29)!
- T e TT(2g+2n—1-2
( n > n! x (2¢)! ;z:;l;[()( gt p)q! x 24

U n n '
With the definition (}) = nk/k! this extends to
T +n _122n x+n—1/2
n n

which is the claim. Note that it can be re-written for n > 1 as

n—1 n
1

n n—1
1
A 2c4+2n—1—2p) =2" 2c+2p+1

,EHP,,E[O( ! ,HHP,EO( )

which shows the singularities and zeros.
This problem is from page 33 eqn. 3.95 of H.W.Gould’s Combinatorial Iden-

tities [Gou72a]. This has also appeared at math.stackexchange.com problem
4461543, Markus Scheuer has written a detailed explanation of the above which
can be found at math.stackexchange.com problem 4537379,

1.81 Double square root
We seek to show that

i (22 _ 2’6) <2kk> 2k — 1)(2jl o) QN(2274:+ - <2:)1.

k=0

Re-write the LHS to obtain
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0y <_nn+—kk_ 1) (2: ) Rl ey

k=0
This is

(1 o (4 ) S (5F) g Dt
k=0

Here the coefficient extractor in w enforces the upper limit of the sum and
we may extend to infinity:

1 1
_1\n+11.2n+1 n 2
(D)™ [z ]IOgl—z[w](ler)"H 14+ 422w(l + w).
The contribution from w is
1 1

" gt g V1T )

Now put w(1l4w) = vso that w = (—14++/1 + 4v)/2 and dw = 1/+/1 + 4v dv:

1 1
res ——\/1 + 4220 ———.
v pntl V1+4v

This could have been obtained by inspection. Continuing,

(22 -1
1+44—
pntl + 1+4v

- wki (3 g U -0
=3 (W) e - (p i)(—n"-w-k

B e

Activating the coefficient extractor in z will produce

(e () (e

For the inner sum we introduce

—
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1 1
= k!
1(z) 2n+1—2sz—p

p=0
which has the property that with 0 < ¢ <k

1 [ A |
Res,—,f(2) = k! —_—
o/ (2) 2n+1—2q1;[0q—pp=111q—p

= k! 1 l(_l)k_q _ k (_1)k_q
4+ 1-2qq¢" (E—q)! \¢/2n+1-2¢

With residues summing to zero and the residue at infinity being zero by
inspection the sum is minus the residue at z = (2n + 1)/2:

k k

1 1 1

K] =2 ] ———

2 0 2n+1)/2—p p:02n—|—1—2p

2™ x n! (2n — 2k — 1)!
2n+ )27kl x (n—k—1)I

_ ok 1 _ ok

Merging in the case k = n yields

2" xnl  (2n—2k)! o2k L) n!  (2n — 2k)!
(2n 4+ 1)!2nk X (n— k) 2n+1)! (n—k)! -

We find for our sum

2k

" k=1
This is
4nn!x(n—1)!i 2k\ (2n—2k\ k.
(2n +1)! —\k n—%k )2k —1
With
k —1+1 1
2%k—1 2 22k—1

we get two pieces.
We can evaluate the first one by inspection and find

gon 1 2n 711[2”] L g 1 o\
n(2n+ 1)\ n 2 1—4z 7 2n(2n+1)\ n '

This is precisely the claim. It remains to show that the other piece is zero.
We get
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1 1
——["V1—-4dz—=—["]1=0
R IV = =
when n > 1. This completes the proof.
Remark. In the above we have used the following coefficient extractors:

1 1 1
—— =res —— ———.
V1—4z z 2l /1 — 4z
With w = 127 =42 V21_4Z we get z = w(l —w) and dz = (1 — 2w) dw and we have

res ! L 19w = (2">

"]

w w1 —w)?tl 1 — 2w n
We also use
1
—["V1 -4z = —res —= V1 -4z
z Z7l
1

_ <2:) +4(2nn 1) 4<2nn 2)
(2:) y [—1+42T; —422(;1_—1)1)}
e

This problem has not appeared at math.stackexchange.com. It is from page
33 eqn. 3.94 of H.W.Gould’s Combinatorial Identities [Gou72al.

1.82 Central Delannoy Numbers
We seek to show that

D\ (4n — 4k\ [4k on
—_ 24n71 22n71
;) <2n - Qk) <2k) * n

k

and

”f dn— 4k =2\ (4E+2) _p 1 gona (20
om—2k—1)\2k+1) nj)
k=0

First sum

We get for the first sum
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]i (427;—2:) (2:) 1+ (2—1)@

1 i (427;—_ Qk) (2:)

— %[2271](1 + Z)4n sz(l 4 2)7216 <2kk>

k=0

The first piece is

Here the coefficient extractor enforces the upper limit of the sum and we
may extend to infinity:

1 2 4 1 1 2 4n+1 1
S+ e = S 2

2n
:lz dn+1 124n+1 9dn—1
2q:0 q 4

Good, we have obtained the first term of the closed form. The second piece

is

1, . 1
—[z*"(1 + 2)™"
171+ 2) 14+ 4z/(1 + 2)2
1 1
= 7[22"}(1 + 2)4"“7.
2 V146z+ 22
Here the contribution from z is
1 1 1
- 1 4n+1 .
9 ' 22”“( 2 V1+6z+ 22

Now put z/(1 + 2) = u so that z = u/(1 —u) and dz = 1/(1 — u)? du to get

1 1 1 1 1
250 W (1= w)? /T4 6u/(1—u) /(L w)? (1 u)?
1 1 1 1
T 9 T gant (1 —u) /(1 —u)? + 6u(l — u) + u?
1 1 1 1

2 @ (1 w2 T du A2
Now put u = (1 — /1 — 4v)/2 so that u(l —u) =v and du = 1/y/1 — 4v dv

to get
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1 1 1 1
— res
2 W T o VT — 4

[1}2"}¥ _ 1[1)"]* _ 1 (2n> qn — <2n> 92n—1
2 VI—1602 20 JI—16v 2\ n “\n '

We have obtained the second piece and may conclude.

Second sum
We get for the second sum
2”2‘:1 dn — 2k\ (2k\ 1 — (=1)*
2n — k k 2 '
k=0

Now we just recombine the pieces from the previous calculation to obtain
the result.

This problem has not appeared at math.stackexchange.com. It is from page
33 eqn. 3.97 and eqn. 3.98 of HW.Gould’s Combinatorial Identities [GouT2a].

1.83 A case of factorization

We seek to show that

- n+k\ (2k\ =z z4+n\ fz—1
—1 k - = (=1 n .
S () ()= (7)) ()
k=0
Note that we get a polynomial in x on the LHS and the RHS on multipli-

cation by (T;’;") so we just need to prove it for x a positive integer and it will
hold for all i.e. complex z. Recall from section that

A ALNa1 2p

<2k) 1 _ [ZkJrq] 1 1 4z 22:;):0 (p )Zp )
q

k)k+q ax (3

Note also that the first non-zero coeflicient of this OGF is on z?. We get for

the LHS
= ok (n R\ (2R @
> () (V)

k=0

=["](14 2)" Z(—l)kzk(l + 2)* (2:) x

Pt z+k

=T+ 4z(1+2) 00 () ()PP (1 + z)p.

x X (2;) x 2% x (14 z)®

= 2(=1)"["](1 + 2)

Here the coefficient extractor has enforced the range of the sum. Continuing,
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rz—1

(—1) @“’) - res Flnﬂa 4 l1 —(1+29)Y @”) (—1)P22(1 4 2)

p=0

We get three pieces here without the scalar in front, the first is

(L)

The second is (write 1 4+ 2z = z + (1 + 2))
z—1
9 —
(e (1),
= \p p
The third is
z—1
2 - 1
_Z ( p>(_1)p<n T+p+ )
—=\p n4a—p

Continuing with the second,

S ()

o r—1—p n+p
r—1
:(_1)x+nz<2x—2—2p>( 2p )
=0 r—1—p n+p
1 1
-1 z4+n — 1 2x—2
Sy TR
rz—1
1 1 P 1 Zp
X B P LS S Y
2700 J =y W T = (14+2)2p wp

The residue in z enforces the range and we may extend the sum to infinity.
For this to converge we need |z/(1+2)?| < |w/(1+w)?|. We have |z/(1+2)?| <
e/(1 —¢e)? and v/(1 +7)? < |w/(1 + w)?|. Note that we have g/(1 — €)% < 2¢
when 1/2 < (1 —¢)? or e < 1 —1/+/2. This will be our choice of . We also have
7/2 < v/(1 4+ 7)% when (1 +7)? < 2 or v < v/2 — 1. This will be our choice
of 7. Now we just need to impose with these two conditions a third, which is

2 < /2 or € < y/4. A possible pair that works is v = 1/5 and ¢ = 1/21.
Continuing,

(—1)”"1/_ (142

21 2z
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1 1 1
— dwd
“omi jwj=y W1 —2(1+w)?/w/(1 + 2)* waz

_ (_1)z+n1/||_ i(1+z)2:c

21 2%

1 1 1
X —— — dw dz
270 )=y W w(1 + 2)2 — 2(1 4+ w)?

1 1
_ (_1\xt+tn+l_~ 2z
=(-1) 57 /|Z|=€ —(1+2)

1 1 1
“2mi /|w|_7 w (= )w—1/2) %

Note here that with e < /4 the pole at w = z is now inside the contour
in addition to the pole at zero. The pole at w = 1/z has norm 1/ > 1 and is
definitely not inside the contour. Since residues sum to zero and the residue at
infinity is zero by inspection our integral in w is minus the residue at w = 1/z,
which yields

1 1 1
-1 r+n _— 1 2z _n d
Corran [ S s

oin 1 1 s 1
= (—1)** /|| () de
z|=€

2mi 1— 22
1 1 1
20 J = 2570 1—-=2

We discover here that we require x > n + 1. We still have agreement at
an infinite number of values for our polynomials, so the initial equality is not
questioned. The remaining integral yields

(—1)””12}1 (2”5; 1).

Next observe that the third piece is just the second with n replaced by n+ 1
so we get

_(—1)tn m_z:n_z <2x - 1).

p=0 p

Adding these two pieces yields

(~1)=*n (ﬁ; ! 1) = (=)= (2;! 1‘1 ) - (Zli)'

We have established the closed form
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20\ ' fn—=x
2 x (_w( ) ( )
x n-+x
Now to morph this into the RHS of the proposed identity:

n+x—1

2 x (—1)3630(!;;)3!3! X (nix)! 1;[0 (n—z—p)
-1 n—1 n+x—1
:(x:n) ><2><(—1)””(2$;)'><7;H(n—:c—p) H (n—a—p)
! Poo b=n
z4+n\ " ! (=" = Ee
:( . ) ><2><(—1)$(2x)’>< ~ [[e+p—n)J](-2z-p)
p=0 p=0

-1
_ (1)n(x+n) (x— 1).
n n
This is the claim and we may conclude. We have a quotient of two polyno-
mials that factor very nicely.

This problem has not appeared at math.stackexchange.com. It is from page
34 eqn. 3.100 of HW.Gould’s Combinatorial Identities [Gou72al.

1.84 Two identities due to Grosswald
We seek to show that

St () (42 o () () (1)

as well as

PR | L (T

First identity
We get for the LHS
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2n[2n+r](1 _|_Z)n+2r zn:(_l)k (Z)Z—k(l —|—Z)k

k=0
= 2" [ (1 4 2)" (L - (14 2)/2)"
_ [Zn+r](1 + Z)n+2r(1 o Z)n

1 n T n
Now put z/(1 + 2) = w so that 2 = w/(1 — w) and dz = 1/(1 — w)? dw to
get

o1 1 (1-2w)" 1
res
w Wt (1 —w) 1 (1—w)m (1—w)?
1 1
= res (1 —2w)™

w ntrt+l (1 _ w>7l+7’+1

Next put w(1—w) = v so that w = (1—+/1 — 4v)/2 and dw = 1/4/1 — 4v dv:

1 n 1 _ [,n+T (n—1)/2
TSSW 1—4v \/ﬁ—[v ](1_4'0) .
Now if n is positive and odd we have n > (n — 1)/2 and the powered term
is a finite series so we obtain zero as per the factor in the RHS. If n is even we

get

(—1)ntronter ((n - 1)/2).

n-+r
This is
1 n+r—1
n+r n+ro2n+2r 1 1
( . ) x (=1)"+72 — IT w/2-1/2-p)
p=0
-1 n+r—1
_(n+T rongr L1
_( . ) x (-2 — I[ n—1-2p)
p=0
1 n/2-1 nt+r—1
_(n+r rontr L1
_< . ) X (-2 = [T m-1-2p) J] (n—1-2p)
p=0 p=n/2
-1 n/24r—1
_(n+T rondtr L1 "
_( . ) X (=1)72" = (n = DN I -1-2p
p=0
—1 n/2+r—1
n+r 11 (n—1)!
= —1)n/2gntr — o2 +1
( n > X ( ) TL' ,,,! 2n/2—1 X (n/2 _ 1)[ pH:O ( p+ )
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-1
n+r 11 n!
= _yM2gnAr — 2 " 2 — 1)
( n ) x(=1) ML TRy AR

o n+r\ ! y (71)71/22“”&1 n! (n+2r—1)!
U n nlrl2n/2 x (n/2)1 27/247=1 % (n/2 +r — 1)!
11 n! (n+2r)!

_ n-+r ! % (_1)n/22n+r77
n nlrl27/2 x (n/2)! 27/247 x (n/2 + 7))

T N e S Sy
( N ) x (=1) /2r!(n+r)!(n/2)!(n/2+T)!

) (7))

Second identity
We get for the LHS where n > r

e, 1) e

k=0
= 2" 2" (1 + 2)" [w" ) (1 4 w)™ T g(—l)kzk(l +w)k27k,
k=0

The coefficient extractor in z enforces the upper limit of the sum:

n—rin—r nr,, n+r n4+r 1
221+ 2) [w*](1+w)+m.

The contribution from w is
1

1 (1 + )n+r
res ——— w —_—
wntrl 1+ 2(1+w)/2

w

Now put w/(1 +w) = v so that w = v/(1 —v) and dw = 1/(1 — v)? dv to

get
L 4y 1 1
res ———(1—wv
v pntrtl 14+2/2/(1—-v)(1—v)?
1 1 1 1 1

T T ot 22 142/2 0 ot T —o/(1+2/2)

v
Substituting into the coefficient extractor in z we obtain
1

2”7"" res (1 + Z)nm

e Zn—r-l—l

Here the residue at infinity is zero and residues sum to zero so we may
evaluate through minus the residue at z = —2. We write
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1 . 1
(D e Al o ey

1
(1= (z+2)/2n 7+

2 1
—22"H1Reg, 4

= (—=1)"2" " Res.—_» (1—(z+2)"

1
(Z + 2)n+r+1 .
This is

= (1)1 4 ) [1 1 i z]n

= (S I )N(T 2) = (<1 (1 - )

This is zero if n and r do not have the same parity, precisely as in the
proposed RHS. If they do have the same parity we obtain

_1\(n—r)/2 n
DO ")
as claimed.

This problem has not appeared at math.stackexchange.com. It is from page
34 eqns. 3.103 and 3.104 of HW.Gould’s Combinatorial Identities [Gou72al.

1.85 Appearance of the constant three
We seek to show that

2 (CE - ()

‘We have for the LHS

2n
Z(—l)k 2n 2n + 2k 32717](}
2n — k n+k

k=0
n 2n 2k
o (LHw) o, 2nz Kok (L+w)™ oy

The coefficient extractor in z enforces the upper range of the sum and we
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may extend to infinity to obtain

1
1+ 2z(1+w)?/w/3

1 2n
32" res 7( +w)

e wn+1 [2’2”](1 + z>2n

The contribution from z is

1
1+ z(1+w)?/w/3
Now put z/(1 + z) = v so that z = v/(1 — v) and dz = 1/(1 — v)? dv to get

I‘ES 22”+1

(1 + Z)Qn

1 1
1+ o(1+w)2/w/3/(1 —v) (1 - v)?
— < 1 1
w2 T —u(1 — (1 + w)2/w/3)"

Substitute into the residue in w to find

res ——(1 —v)

1+ w)?n
32n rgs (u}ni_i_z(]. — (1 + w)2/w/3)2"
1+’LU 2n
= I‘S}S (w;)‘%(gw—(l“y‘W)Q)zn
1 2n
= res %(—1—1—11}—102)2”
1 2n
= res %(1—11}4—102)2”
_ (]' +w3)2n _ 3n 1 3\2n __ n 1 2n __ 2n
= rgsw—[w J(L+w?)™ = [w"](1+w)™ = n )

This is the claim.
This problem has not appeared at math.stackexchange.com. It is from page
34 eqn. 3.106 of HW.Gould’s Combinatorial Identities [Gour2al.

1.86 Very basic example
We seek to show that

Zn: n+1\(k+n _ 92n 3n
= \2n — 2k n ) n)

221 4 2y Y o2 (k i ”) .

n
k=0

The LHS is
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Here the coefficient extractor enforces the upper limit of the sum and we
may extend to infinity:

1 1
2n 1 4n+1 — 2n 1 3n .
0+ 2 e = 0+ 9™
This is
3n
ISS Z2n+1 (1 +Z> (1 _ Z)7L+1’

Now put z/(1+ 2) = v so that z = v/(1 —v) and dz = 1/(1 — v)? dv to get

1 1 (1 — o)+t 1
res
o P2t (1 — o)1 (1 = 20)"t! (1 —v)?
_ 1 1 __ 20 1 __92n 3n __92n 3n
T CR TS [v ]W =2 (Qn) =2 (n)

as claimed.
This problem has not appeared at math.stackexchange.com. It is from page
35 eqn. 3.115 of HW.Gould’s Combinatorial Identities [GouT2al.

1.87 Very basic example II
We seek to show that

i(—l)’“(nz_"k> (2" +22]f - 1) = (—1)"(n + 1)22".

k=0
The LHS is

N P 2n 42k + 1
i St (T )

n
_ [w2n+1](1 + w)2n+1[zn}(1 + Z)Qn Z(_l)kzk(l + w)?k'
k=0
Here the coefficient extractor in z enforces the upper limit of the sum and

we may extend to infinity:
1
2n+1 2n+17_n 2n

1 1 —_—.
e R R e

The contribution from z is

1
14 2(1+w)?
v
z4+1/(1+w)?

1 2n
Resz:()ﬁ(l —+ Z)

1 1 o
T (I+w)? Rese—o 7 (1+2)
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With residues summing to zero this is minus the residue at z = —1/(1+w)?
plus minus the residue at infinity. We get for the first one

1

e A rw® [1 _ 1)}2

— [0y2n+1 1 2n+1
w1+ w) Y

= (—1)" w1 +w) 2w + w?)*" = (=1)"[w'](1 + w)(2 + w)*"

= (-1)" <21"> 9211 4 (—1)n (?) 22" = (—1)"(n +1)2%"

as claimed. Now we just need to verify that the contribution from the residue
at infinity is zero. We obtain

1 (1+2)%" 1
2n+1 1 2n+1 R P n+1
w0+ ) Reseg 2
_ 1, (1+2)n 1
_ 2n+1 1 2n—1 R oz n+1
[w™ (1 + w) €8:=0_7 20 1+ z/(1+w)?
(1+2)%" 1

_ 2n+1 1 2n—1 R _ .
[U) ]( +'LU) €52=0 n 1"‘2/(1 +w)2

Computing the residue,

n—1
1
2n+1 1 2n 1 lq
I+ w) Z<n_1_q> S EEnE

q=0

= Z (n o q)<—1>q[w2"+1]<1 =g

as desired. This went through with the maximum upper range of the sum
in g, it does not work with ¢ = n.

This problem has not appeared at math.stackexchange.com. It is from page
35 eqn. 3.114 of H.W.Gould’s Combinatorial Identities [GouT72al.

1.88 Nested square root
We seek to show that

> () i == ()

k=0
lz”: 2k\ (2n—k -1\ k.
n k n—1 ok

The LHS is
k=0
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B

k 2k

1 n 2n—1 - 2k
= —[")(1+2) kZJ(k)T“(lﬁLz)k

Here we may extend to infinity because of the coefficient extractor in z

1 1 2k\ k  2F
- 1 2n—1 v )
nrgsz"+1( +2) %(k)?k(l+z)k

Now put z/(1 + z) = v so that z = v/(1 —v) and dz = 1/(1 — v)* dv to

obtain
Lo ”
ne U”+1(1—v)”2(1—v2 ok "
1 1 1 1
-= — Ires — .
P N G E w7
Next put v(1—v) = w so that v = (1 —+/1 — 4w)/2 and dv = 1/y/1 — 4w dw
to get
1 res 1 1 !
n w wn" \/ﬁ3 V1—4dw
1 o 1 1
= — T _—
n w wn (1 — 4w)5/4
= l(,l)n7122n72 75/4 _ (71)7171227172 71/4 (74)
n n—1 n

= (—1)"2%" (_;/4)

This is the claim. Here we have made use of the fact that
2 1 -3/2
[zn] < 5 = 2 anl} 5 = 2(_1)n122n2( 3/ )
V1—14z VI—14z n—1
-1/2 -1/2 2
(_1)n—122n—1( / )’I’L(—Q) — (_1)n22nn( / ) — n( n)
n n

n
This problem has not appeared at math.stackexchange.com. It is from page
35 eqn. 3.110 of H.W.Gould’s Combinatorial Identities [GouT72al.
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1.89 Harmonic numbers and a squared binomial coeffi-
cient

We seek to show that

i <Z)2Hk - <2:> (2H,, — Hay).

k=1
The LHS is
n—1 2 n—1 2
n 1 1 n
Hp=[" log —— k
Z(k) k [2]1_20g1_22<k>2
k=0 k=0

Here the contribution from k = n is zero and we may include this value in
our sum:

n

2 Lo, L Zn2k
Zl—zgl—z k:z

k=0
1 1 " (n
= [2"] lo [w™](1 4+ w)" wh 2"
1—2 ®1-» kz:% <k‘>
= [e"] Tog 1 [w"](1+ w)" (1 + w)".

The contribution from w is
I'S}S w1 w wz) .

Now put w/(1 +w) = v so that w = v/(1 —v) and dw = 1/(1 — v)? dv to
get

1 n_ 1
res W(l—v)(l—kzv/(l—v)) 1—0)2
=res ;(1 —(1=2z)v)".

A binomial identity

Introduce with ¢ > 1

£(2) = nl(=1)"—— ] —

z—i—qp Oz—p'

n

This has the property that for 0 <r <n
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1 =1 &1
Reszzrf(z):n!(—l)”rJrqp H —

— (1) 1(1)"(n> (=1)"

r+qr! (n—r)! r+q

With the residue at infinity being zero by inspection we obtain

i (Z) D Res._  f(2)

r=0 T+ q

g—1)! 1/n+q\
=i H—q p_n'Hqup 'q+n)!_< )

q q

Therefore with 1 < k <n
1(n ‘1_”§ oK) (DT nkz n—k\ (1)’
k\k _r:0 r r+k n—r
71 kZ(n_) rzr

1
71n7k
— (- 1)

= [¢"]log 7

= ["]log 7

Processing the first and second piece

Returning to the residue in v we find

1 - n n—~k n—k, n—k

Evaluating at £ = n and substituting into the coefficient extractor in z yields

()

which is our first piece. Restoring the coefficient extractor in z will produce

n 1 1 (S n n—k n—k—1, n—k
[2"]1log T res oI — )T 2 (k) (=11 - 2) v

n 1 - n k n—k_ n+l—~k
[z]logl_zrgsvn+11_vn+1z< > (1—2)""

k=1

218



n

1 n 1/n\ ! i1k
. vt (1 — o)t Z (k - 1>k<k‘> Y

k=1

__i n 1 n\ N ntk—1

- k—1)k\k n ’
k=1

Observe that

n 1/n _1_ n! X k! x (n — k)!
<k—1>k(k> T nH1—-k)!x (k=1 xkxn!
B 1
Cn+1—k

so that our second piece becomes

k= k=1

- 1(2n—k) ms= 1  2F
== =1+ 2" Y

= k\n—k k=1k(1+z)

Here we may extend to infinity owing to the coefficient extractor:

—[z"](l—l—z)% log ——— = 1+ 2)*"log

1 n
1—2z/(1+2) 2" 1+z

Next observe that

(2: ) (2: - qq> N <n(2—nzz!>! xnl (2: ) (Z)

so we obtain

(2 )emmmos o S () e

q=0

Two parts of the second piece

The piece now splits into two subpieces, which are (without the central binomial
coefficient)
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1 1
I'SS (_1)71-&-1@ log E(l — Z)n

and

1 1 om
I‘(z?,b mlog m(l —Z) .

We put 2/(1 —z) = w so that z = w/(1 +w) and dz = 1/(1 4+ w)? dw to get

1
-1 n+1 1 1
ves (CD)" S (I w)los T A )
1 1 1 1 1
= res (—1)" 1 — [w"]—— log —— — H,,
rS)S< )w"+11+w Ogler [w]l—walfw
and
1 1 1 1
_ _1)2n — _ 2ny)_ — -
rgs( 2 w2 Tt w P Tt w Lo ]1— 81° Hon

Collecting all three components we find

2 2 2
< n)Hn + ( n) Hn - ( n>H2n
n n n

as claimed and we may conclude. Regarding this computation consult
for a generalization.

This problem has not appeared at math.stackexchange.com. It is from page
36 eqn. 3.125 of H.-W.Gould’s Combinatorial Identities [GouT72al.

1.90 Harmonic numbers and a double binomial coefficient

We seek to show that

i(—l)k(;l) (n +/]: - 1) H, — (—i)”

as well as

S ()0 - 3

k=1

First identity
The LHS is



1 1 n—1

— 2] ——log — Z(il)nfk (n> <2n —1- k> k-

k n—=k
k=0

Here the contribution from k = n is zero and we may include this value in
our sum:

1 " n wh
(2" log T [w"] (1 + w3 (~1)n k() o
1—z 81— kZ:O (k) (

1—|—w)kz
1 1 wz "
— [T 1 — w™(1 2n—1 -1
g tor 1wt
n 1 1 n n—1 n
:[z]l_zlogm[w (1 +w)" 7 [-1 — w+wz|"™.

The contribution from w is

n—1 n
res W(l—i—w) (=1 —w+wz)™

Now put w/(1 + w) = v so that w = v/(1 — v) and dw = 1/(1 — v)? dv to
get

res (1= 0 (1~ /(1 =) + vz/(1 )"

(1-v)?

1 n
= I'SS m(*l + 'UZ)

k
= res m Z (Z) (v — 1)k (=) k(1 — 2"k,

k=0

Note that this makes for a zero contribution when & = n. Recall from the
previous section that with 1 < k <n

1
= (Z) = [e"]log = (~1)"*(1 — )"

We get for the remaining sum on dividing by 1 — z from the coefficient
extractor in z

n

|
_

(7)o = Doyt - s

=
Il

0
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= En: (k " 1) D L ) Lo

k=1

Applying the coefficient extractor yields

1 - n 1/n\ !
_ . -1 k=1, n+1—k — .
B ot (1 = o)n 2 (k - 1) (=1 ke \k

k=1
Observe that

(R () e

_ 1
T n41-—k

‘We obtain

1 . 1
D e wy U e pern e

= ()

= —[w"]log ; ! > (=1t (Z: Dw“ = —[w"]log _1 —(1—w)"™!

—w
k=1

1 n—1
:—I'S)S Wlogm(l—W) .

Now put w/(1 — w) = v so that w = v/(1 +v) and dw = 1/(1 +v)? dv to
get

1 1
—res ——(1+v)?1
ves St (L)l T s Ay

= —[v"]log(1 +v) = [v"]log 1 j_ o= (_:L)n

This is the claim.

Second identity
Recapitulating the work from the first identity we find

1
1—2 1—=2

Start with the contribution from w. It is given by

[ log [w")(1+w)" T [=1 = w + wz]".

1 n—1 n
res W(ler) [-1 —w+ wz]".
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We put w/(—1 — w + wz) = v so that w = v/(v(z — 1) — 1) and dw =
—1/(v(z — 1) — 1) dv to get

(vz —1)"~t 1
(viz=1) =1t (v(z —=1) = 1)?

o 1 (z—pnt
= (=1)"*! o8 ontt (1—-v(z—=1)"

(v(z—1)—1)

—res ——
v vn+1

This is

(—1)"*t Z: (Z B ;) Z"(—1)r! (n _; - q) (z—1)1

Here ¢ = 0 makes no contribution by the first binomial coefficient and we
have

oy i L e [

Now we apply the quoted identity for inverse binomial coefficients replacing
n by n+¢q—1and k by n to find

nl " /n—1 4fn—1+¢qg\[(n+qg—-1 -1
(_1)HE(HQ)(_1>Q< q )( n >
Observe that
(n—1+q><n+q—l>_1_(n—1+q)!><n!><(q—1)!_n
q n dxn=DIxn+qg-1! ¢
so that we get for our sum

q=1 q=1
" o N O VEPIVEEEI'S SRR |
= (-1) n+q§_%(q)< R R R T

This is the claim. The identity is attributed to R. R. Goldberg.
This problem has not appeared at math.stackexchange.com. It is from pages
36 eqns. 3.123 and 3.124 of HW.Gould’s Combinatorial Identities [Gou72al.

1.91 Two instances of a harmonic number

We seek to show that

223



k=1
The LHS is
n—1
Z( k-1 n\ (2n—Fk\ 1
— E)\n—k/)n—-k
n—1
im 1 k1[N 2n—k\
—k]bgl_zg;(l) ()
- k
log (1 4 w)? ) k= 1( ) Yk
— ") ;j TRr

Note that we get a zero contribution from k& = n hence we may include it in
our sum to obtain

1
—[2"11
[Z}Ogl—z 1+w

-+ [ ]

(1 w) (e 1)~ 1)

Expanding the last powered term yields

= — nl
[Z]Og1

n

—[2"]log : i Z[w"](l +w)" Z (Z) (=D)Fw"=F(z — 1)k,

k=0

Recall from the previous section that with 1 < k <mn

;(Z)_l::knnogliix—1kau——a”—%

In order to apply this formula we first need the term for k£ = 0 from the sum
where it does not apply. We get

1 1
- res log

— (112"

We put z/(1— %) = v so that z = v/(1+v) and dz = 1/(1+v)? dv to obtain

1 1
—(=1)" 1 1
(=1) S g Ogl—v/(l—l—v)( +U)(1—|—1})2
1 1 1
_(_1\n
= (=1 rssv”+11+v10gl+v
1 1 1 1
= (1) "] ——1 = "] ——1 — H,.
(D)l e 1o = i les
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We have produced one instance of the harmonic number and thus the re-
maining sum must produce the second one. We find

n

i S () nter (1) = :1 (1)

k=1

n—1

e ()

— —[z"]log

There is no contribution from k = n and we get

1
"1
—[Z } og 1

(z—1)"=H,.

This is the term that we evaluated for the first instance and hence we get a
second instance of H,, which proves the claim.

This problem has not appeared at math.stackexchange.com. It is from page
36 eqn. 3.122 of H.W.Gould’s Combinatorial Identities [Gou72a).

1.92 Legendre Polynomials

We seek to prove the following identities for Legendre polyomials where we
first show that they are all equivalent and then connect them to the generating
function

1
>0 —2xt+t

The four identities are

and
w50 ]
as well as
Q)]
and
£ 001



We get for the first identity

[n/2]

1 n\ (2n — 2k
Z _1)k n—2k
2n k:O( ) <k><n—2k‘>$
z" 2 LG/2J k(T 2%k 2k
= __[" 1 n —1 - .
110+ 2) = = (k) (1+2)%"

Here the coefficient extractor enforces the upper limit of the sum and we
may extend to infinity, getting

" 2n i "

27[z JA+2) {1_ x2(1+z)2}
1
= on X "
1

- AL L

= (Z) (a+ 1)k (n " k> (- 1) Fah

k=0

20

k=0

[")(2*(1 + 2)* = )"

[2"](2 + 2(z + 1)" (@ + 2(z - 1))"

This is the second identity. Continuing we have
1 1
N x pn I‘SS an+1

Now we put z/(z + z(x + 1)) = w so that z = wa/(1 — w(z + 1)) and
dz =z/(1 —w(x +1))? dw to obtain

(2 + 2(a +1))"(x + 2(c — 1))

1 1 1—w(x+1) z"(1l-2w)" x
res
2 x g w wntl x lI-—wlx+1)" (1 —w(x+1))?2
1 1 (1—2w)"

T on W Wt (1 —w(x + 1))

= 2% i <n Z k) (z+1)F <n " k) (—1)nhonh

k=0
g OEer

This is the third identity. With an alternate substitution we put z/(x +
2(z —1)) = w so that z = wz/(1 —w(z — 1)) and dz = x/(1 — w(z —1))? dw to
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obtain

1 res 1 1T—wlx-1) z"(1+2w)" x
2n x g w wntl x (1-—w(xz-1)"(1—-wx—1))>2
1 1 (1+2w)"

on o wntl (I—-wx-1)"

This is the fourth identity.

Connection to generating function

For the remainder we compute

oL g ;
[t ]m*[t ]\/1—415(93/2—?5/4)

2:) Fle/2— /=3 (2:) 7K (/2 — t/4)}

k=0

"3

k=0

2K\ [k
— -1 n7k4k7n2n72k 2k—n
()2

L5 e

Observe that the second binomial coefficient is zero unless 2k > n. With this
condition we have

<2kk> (n f k) Tk x (n— 15:2)?); 2k—n) <2:> <Z>

The first binomial coefficient enforces the range condition on k and there is
no singular factorial. At last we have

7N\

~
Il
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which links us to the first identity, where with n not negative the condition
2n — 2k > n or n > 2k enforces the upper range of the sum.

This problem has not appeared at math.stackexchange.com. It is from
page 38 eqns. 3.133, 3.134 and 3.135 of H.-W.Gould’s Combinatorial Identi-
ties [Gour2al.

1.93 Legendre Polynomials and a square root

We seek to prove the following identity
n
2k k n—k
= Z (Z) <k>2k\/a:2 -1 [a:— x? — 1]
k=0
as well as

Py(z) = L%%J <2k> (2:)2_% n2k(y2 )k,

k=0
Expanding the powered term we find for the RHS

B0 (Yo

=0

SO e

k=0 q=0

EOEE e

Switching summations we obtain

SR () G

Note that

(Z> (Z:Z> TR X (n—ngi <(g— k)l (Z) (Z)

so we have

ST E Qo

Working with the inner sum we find




k=0
— q z q - q Zk —q
=023 (1) g

This is zero when ¢ is odd and 272P[22P](1 + 22)?P = 272P[2P](1 + 2)* =
272 (2pp) when ¢ is even i.e. ¢ = 2p. We get for our sum (the second identity

appears)
s N\ n-2p/ 2 —op (2P
Z op)® P(z® —1)P27%P .
= \2p p
This is

[n/2]
2
2" [2"](1 4 )" Z z2p;1c_2p(ac2 — 1)p2_2p( p).
p=0 p

Here the coefficient extractor enforces the upper range of the sum and we
may extend to infinity, getting

1

" [2"(1+ 2)" N ST
n n 1
=) =y
. 1
= res W(lJr:cz) e

Now we put z/(1+x2) = w so that 2 = w/(1 —zw) and dz = 1/(1—2w)? dw
to get

1 1
res W(l — zw) VI— w22 — 1)/(1 - zw)? (1—2w)?
1 1
— L \/(1 —zw)? —w?(2?2 - 1)
1 1
= res

w wttl 1 — 2zw + w?’

This is precisely the OGF of the Legendre polynomials which concludes the
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proof.
This problem has not appeared at math.stackexchange.com. It is from page
39 eqns. 3.136 and 3.137 of H-W.Gould’s Combinatorial Identities [Gou72a).

1.94 Legendre Polynomials and a double square root

We seek to prove the following four identities which form two pairs:
"L 2K\ (20— 2K\ or con o m
> () (s h)e = pta s
k=0
2 71'/2
=2z / (22 sin®t 4 cos? )" dt.
T Jo

and

n (1/2) <1/2)x2k = (=1)"z" P, ((z + 1/2)/2)

e () ()

First identity
We have by inspection for the LHS of the first identity

] 1 1
VI—da2t T—4t
The RHS is by the OGF of the Legendre polynomials

1
22n3;‘”[t”]
V1=2x1/2(x + 1/x)t + ¢
1
— 22n[tn}
V1= (22 + 1)t + 222
1

=[t" .
] V1 —4(22 + 1)t + 16222
Now observe that
(1 —42%t)(1 — 4t) = 1 — 4(2* + 1)t + 162°¢?
to conclude. For the trigonometric integral we get

1

2277,7
2

2m
/ (2% sin® ¢ + cos® )™ dt
0
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1 27
— 22”%/0 (2% = 1)sin®t + 1)™ dt

We put z = exp(it) so that dz = iz dt to obtain
1 dz
e (= 0GR 2 1

1 1
__o2n 2 2 2 2\n
=2 5 _/lz:lz%ﬂ((l—x)(z —1)%/4+ 2°)" d=.
Evaluating the residue yields a coefficient extractor:

22n[z2n]((1 _ .132)(2’2 _ 1)2/4 4 Z2)n
= 22 [2M((1 — o) (2 — 1)2/4 + 2)"

— 27" [2"] i (Z) (1 —2)"9(z — 1)%20 /470

q=0

”) (1—az?)" <2n a 2q> (=1)"—9/4ma

q n—q

n

:22712

q=0

7N

= 22°[2")

Vﬁ:t;ﬂé}()

1
= 22" res T
2 2" T+ (01— 22)2

(1+2)".

Next we put 2/(1+ 2) =t so that z = t/(1 —t) and dz = 1/(1 — t)? dt to
find

1 1

27 res _t)\/1+ (1 —22)t/(1—1) A1)
22n 1 !
S Ja- (1 —a22)t(1 —t)

Now 1 —2t+t2+(1—a®)t—(1—=x )t =1— (2% + 1)t + 2°t? and we have
at last
1
V1= (22 — 1)t + 222
1
\/1 — 4(z% — 1)t + 162%¢>
and we may conclude. Gould references R. P. Kelisky for this identity.

22n [tn
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Second identity

The first part of the second identity is very similar to the first and we get for
the LHS

1 1
" ———.
| ]\/1+x2t\/1—|—t
We get for the RHS
n, nftn 1
(=1)"z"[t"]

V1—=2x1/2(z + 1/z)t + 12
= (=D)"[t"]V/1 - (22 + 1)t + 222

= [t"]V/1+ (a2 + 1)t + 22¢2.

Now observe that

(1 +22)(1+t) =14 (2 + 1)t + 242

to conclude. For the second part of the second identity we get

[Zn] 11+ - Z(fl)k (Z) (1 + Z)km2k

k=0
. Zn 1 7582 Py n
)=~ 1+ 2)
1 1 9 n
= 1¢ ﬁﬁ(l_gj (1+2)™

Next we put z/(1 — 2%(1 + 2)) = t to get 2 = t(1 — 22)/(1 + 2°t) and
dz = (1 —22)/(1 + 2%t)? dt for
1 1+a% 1 1—a?
AT V1+ (1 —22) /(1 + 22t) (1 + 22t)?
1 1
¢ VO + 2202 +t(1 — 22)(1 + 22t)
The last step is to note that

=r

(1+ 22 + (1 — 23 (1 + 2%1)
=14 222t + a2+t — 22t + 2%t? — 2>
=14 (2% + 1)t + 222

We have a match of the generating function from the first part and may
conclude.
These identities are from page 39 eqns. 3.138 and 3.139 of H-W.Gould’s
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Combinatorial Identities [GouT2al.

1.95 MSE 4304623
We have from first principles that

n

1 [2r 1 1 1
S"_ZZLT<T> - 21— 21— 2

r=0

and seek to use this to find a closed form of S,,.
Now put 1 — /1 — z = w so that z = w(2 — w) and dz = 2(1 — w) dw to get

1 1 1 2(1 )
res —w
w wrtl(2—w)rtl (1 —w)?21—w

1 1
_ _1\n+1
= 21" res wt (w = 2) ! (w — 1)

The residue at infinity is zero by inspection so we need the residues at w = 1
and w = 2. For the former we get without the scalar in front

1 1 !
wn+1 (U} _ 2)n+1

w=1
1 1 1 1
= [ = 1 _ PN
(- g~ Vo)
=—(n+ (=" —(n+1)(-1)"? =0.
With this our sum is minus the residue at w = 2. We write
1 1 1
2(—1)™ Res,y—
(=1)" Resu= (w—2) + 2)"*+ (w—2)"+ (w—2) + 1)
—1)" 1 1 1
= (=1 Resy—2 .
2 T+ (w=2)/2 (=2 (1 + (w—2))

This will produce

First piece
Now we get two pieces here, where S,, = A,, + B,,, the first is

n—+ R 1 1 1
es,—
2 0 2nH11 =2 (1 — z/2)n 1

A, =
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1 1
ontl o ] (Z _ 2)n+1 '

= (—1)"2(n+ 1) Res,=o

We evaluate this using the residues at z = 1 and z = 2. We get for the former
the value —2(n + 1). We write for the latter

. ‘ 1 1 1
(—1) Q(n + 1) Re5z:2 ((Z — 2) ¥ 2)n+1 (Z _ 2) + 1 (Z _ 2)n+1
o+l 1 1 1
= ) S R o i G 12

This yields

R Ml (i T

Simplify to obtain A,,. With residues adding to zero, we have established
that for the first piece A,, it evaluates to A,, = n + 1.

Second piece

For the second piece we find

B __n—l—li n+gq i__n—&—ln_l n+l+q)1
T 9gn n4+1/2¢0 ontl g n+1 )24a

q=1

n+1 R 1 1 1
=——— Res,—o —

2n+1 O n 1= 2 (1= z/2)n2

1 1 1
— (=1)"2(n+1) Res,—g — —————
(=1)"2(n + 1) Res 02"271(272)7”2

Again evaluate using residues at z = 1 and z = 2. We get for the former the
value 2(n + 1). For the latter we write

ant1 1 1 1
(1) Gt Resems (z—2)/2+1)" (2 —2) +1 (2 —2)n+2

This yields

n+1
= S G [ T e

q=0 q 2
_ n—i—lnz_:l n—1+¢\1 n+1/2n-1 n+1/ 2n
- on-l prd q 20 22n=1\ p 220 \n+1)"
The sum is

n+1 gn—1
~gno1 Al

=—(n+1)
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hence piece B,, evaluates as
n+1/2n—-1 +n+l 2n (n+1)
— —_— —(n .
22n—1 n 2271, n+1

Conclusion

Adding the two pieces we have shown that

2n+1 (2n n+1/2
Sp = —5— = .
22\ n n

as claimed. This may be seen from (evaluate LHS)

— e+ (/)0

n

(2n + 1)[2"] —

— (2n+ 1)(“ _n1/2> _ (n +n1/2).

This was math.stackexchange.com problem 4304623.

1.96 Legendre Polynomials, trigonometric terms and a
contour integral

We seek to prove the following three identities:

1 ™
Pn(x):;/o (x4 Va2 —1xcost)™ dt

and for positive integer m > n

_

m—

o2rk\"
r+vVar2—1xcos— | .
m
k=0

11 (2 —1)"
C 27 2mi fy e (E— )t

1
Pn(ﬂf) = E

as well as

P, (x)

First identity
We get for the first one by symmetry
o
o /. (x 4+ Va2 —1xcost)" dt.

Now we put z = exp(it) so that dt = % to obtain
z
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! (24 Va? —1x (2 41/2)2m &

2 lz]=1 ¥4

1 1
:% ﬁ($2+ x2—1><(22+1)/2)” dZ
|z|=1

Computing the residue we find

"] i: (Z) a0 22 17 (2% 4 1)7/21

q=0
= (n> 2" 1/a? — 17 + 1)7/27,
—o \4

q=0

The only contribution comes from even ¢ = 2p and we get

[n/2] n
Z (2}?) " (2% — 1)P[2P) (2% 4 1) /2%

p=0
n/2]
> <27;) 2" (2 — 1P[P)(2 + 1) /2%

p=0
ln/2]

= Z (n) x”_Qp(xQ - 1P (2;0) L
= \p p) 2%

We have recovered the form from section |1.93| and may conclude.

Second identity
Starting with the second identity we have

m—1 n

1 ¥ <n> 2" /22 — 1" cos? 2mk
m q m

k=0 ¢=0

" /n g ! o2rk
( )x"q\/x2—1 Zcosq—.
0 k=0 m

= \q

For the inner sum we introduce p = exp(2mi/m) so that it becomes

m—1 m—1
1 k gl 11 1\ mzmt
m 2 P sy = ey 2 Reseer (*) P
k=0 k=0
11751{ +1qm/z IR 1(2+ G
= —— es,_ A es,— z
20m =7 & z) zm—1 21 04+t
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This is

1 1
q1( 52 q

Note however that ¢ < n < m as given in the statement of the identity so

that only the constant term from ﬁ contributes, which yields

S22+ 1)

This requires ¢ = 2p and we get
1, N9 1 1 /2p
QTp[ZP](lJFZ)p:Qgp[ PI(1 + 2)% 22p(p .
Substituting this into the sum we obtain the same closed form as in the first
identity and may conclude. This is credited to I.J. Good.
Third identity

We require the derivative

(-

which by the Leibniz rule is

n! q Q'
n n 2
- ( ) (t— 1) 9t + 1)7.
q=0 B

Using the derivative to evaluate the contour integral by the Cauchy Residue

Theorem we obtain
1 n
B
q=0

B [x— 1]2": (n)2 [x+1]q
2 = \a z—1
This is one of the entries in the list from section and we may conclude.
This is credited to L. Schlafli.

These identities are from page 39 eqns. 3.139 and 3.140 of H-W.Gould’s
Combinatorial Identities [GouT72al.
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1.97 Sum independent of a variable

We seek to show that

N (r4ky\ (p—x—ky\ [yt y-D"PTl 0<p<n-—1
2 k n—k ) |t

k=0 y—1 p=mn.

As both sides are polynomials in z and y we may prove it for positive integer
values for z and y and it then holds for all i.e. complex = and y. We have for
the LHS

n P x4+ ky 1
271 +2) g;( ) s

Here we have extended to infinity because the coeflicient extractor enforces
the upper range of the sum. Now note that

x+ ky L (L+w)ky
( K >:r$“+w>(wm3~

Next introduce w/(1 + w)¥ = v and let the inverse be w = f(v) so that
f()/(1+ f(v))Y = v and the binomial coefficient becomes

v

1 !
res W(l + f(W)"Yf(v)

Substitute into our sum to get

)+ Y b ) )

k>0
= ["A+ )P (2/(1+ 2)¥).
We also have

1= f'(0)/(A+ f@) —yf(0)/A+ f(0)"f(v)

or

Fl)= @@+ f)/1 = fo)y - 1).
This gives for the sum

1

e B L

With 0 <p <n—1thisis
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5 ("=

q=0
1 p+1

— (y _ 1)n <1 + yl) _ (y _ 1>n—p—1yp+1

as claimed. For p > n we get
n
p+1 ne
S (" v

q=0 q

which for p = n works out to

1 1 n+1 1 y7z+1 yn+1_1
y—1+(y ) (+y—1> y—1+y—1 y—1

also as claimed. We can simplify the general case some more, getting

SR

q=0 r=0

e £

r=0 q=0

_ O N o P [ Z (pj]- 1> (1) q j_qz)q

<

r n—r[f. n—r 1 _ r(PD—T
=Y ¥ (=) ]W—Z?!(p_n)'

r=0 r=0

This last formula covers all cases if we use a certain type of binomial coeffi-
cient for negative lower index. We get the case p = n by inspection. With p < n
we write

T

r(P—T n r_ %
;y (n_r> =[z ](1+z)p§)y At
1
1—yz/(1+2)

This is the closed form we obtained earlier.
This problem is from page 41 eqn. 3.145 of H.W.Gould’s Combinatorial

1

=[2"](1 4+ 2)? [Eym—

= [)(1+ 2"
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Identities [Gou72al.

1.98 Polynomial in three variables

We seek to show that

n n
kt — Kkt —k
Y (" M 4 =3 (7 AT
k n—k n—k
k=0 k=0
As both sides are polynomials in z,y and ¢ we may prove it for positive

integer values for x,y and ¢ and it then holds for all i.e. complex z,y and ¢t. We
have for the LHS

k>0

Here we have extended to infinity because the coefficient extractor enforces
the upper range of the sum. Now note that

x+kt L (T +w)kt
( k ): res (1+w) (wT)

Next introduce w/(1 + w)? = v and let the inverse be w = f(v) so that
f(v)/(1+ f(v))! = v and the binomial coefficient becomes

1 t pl
res W(l + f()""f ()

v

Substitute into our sum to get

S
[2"](1 + 2)¥ Z m[”k](l + ()" ' (v)

E>0
= [2"(1 4 2)" V7 (2/ (1 + 2)").

We also have

1= f'(0)/(1+ f(0) = tf(0)/(1+ f(0) T f (v)

or

fl0) = 1+ f)™/1~ fo)(t 1))
This gives for the sum

1
1—2(t—1)

This duplicates the calculation from the previous section. We may also write

[2")(1+ )0+
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Zk

(14 2)k

1
1—tz/(1+ %)

S (e

k=0

= [2"](1 + 2)"*Y zn: tk

k=0

[2"](1 + 2)" "

which is the claim.
This problem is from page 41 eqn. 3.144 of H.W.Gould’s Combinatorial
Identities [Gou72al.

1.99 An identity by Van der Corput
We seek to show that

S kx\ (nx — kx 1 _ 2 (nx § 1
—\ k n—k )kr(nz—kxr) nx\n kzlnx—n—&—k'

As we get a polynomial in x on multiplication by x? we may prove it for
x a positive integer and it then holds for all i.e. complex . Observe how the
binomial coefficient cancels the rational terms.

First phase

A first simplification we can make to the LHS is
n—1
2 kx\ (nx —kz\ 1
mz(kz)<n—k>k
k=1
2 [nx 2 w1 (kz—1\ [(nz — kx
__n2x2<n>+nx;k<k—l><n—k>

2 (nx 2 1/kx—1 P
- __“ 21 n = -~
n2x2<n>+nm[z [ +2) kz;lk(k—l)(l—i—z)’”

Here we have extended the sum to infinity because the coefficient extractor
enforces the upper range. Observe that

kr —1 1 ko1
(kl) = rgsﬁ(l—i—w) v
Next introduce w/(1 + w)* = v and let the inverse be w = f(v) so that

f()/(1+ f(v))* = v and the binomial coefficient becomes

S T
res v771+f(v)f(v)'

Substitute into our sum to get
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k

l[zn](l + Z)nz Z (Zil[vkil];f/(’lﬂ

kx
n = 14 z)k k

Integrating the functional term in v yields

1 1
—log ————.
S
Note that owing to f(0) = 0 we did not pick up a constant. Substitute once
more to obtain

2

= n 1 TL'EI .
[+ ) log

We get without the scalar and using that x is a positive integer

L (e

7q.

Second phase

Recall from section that with 1 <k <n

;(Z) = 2" log o (~1)"¥(1 — 2"

We let n be nx — ¢ and k be n — ¢ and obtain

pnﬂloglj_zfif<”x>(_1ywq("xq>(1-zyw”z%

= \a n—q

Next observe that

(T) (T:f_ qq) T x(n— 517)1'32' (nz—n)! (T:C) (Z)

Working with the remainder of the sum,

"2_:1 (n) (D)™t = —(=1)" T+ (1) (1 - =)™

q=0 q

Just to recapitulate, we are now left with two pieces, the first being

2 (e

nr\n

(1 _ Z)naz—n

and
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nx
We are therefore tasked with
1 1 .
We use the standard substitution z/(1 + z) = w so that z = w/(1 — w) and
dz=1/(1 —w)? dw to get

res L lo ! (1—w)#
w w8 T w1 — w)

1 1

Collecting everything we have so far we get

2 nT 2 (nx
- - Hnw - anfn .
n2x2(n>+n:c(n>( )

The top term from the first harmonic number is canceled and we have at
last

2 (m> (oo 1 — Huo )

nr\n

We want to manipulate this to obtain a rational function in x with the
variable x not in the summation limits so we write for the harmonic numbers

nr—1 —1

I D
k=nzx—n+1 k k=—n+1 ne + k
- ne—k nr—n-+k
k=1 k=1
and we get
2 <mc> d 1
nr\n )~ nr—n-+k
as claimed.

This problem is from page 41 eqn. 3.147 of H.W.Gould’s Combinatorial
Identities [Gou72al. It was credited to Van der Corput.
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1.100 MSE 4316307: Logarithm, binomial coefficient and
harmonic numbers

We seek to show that

n
1 =
e o8 n

1—2z
with a a non-negative integer.
Recall from section that with 1 <k <n

1 1 (n+a)(Hn+a—Ha).

H(3) Ees

We get for the LHS from first principles that it is (apply identity setting n
ton+ «)

z":(n—q+a>1
n—q q

q=1

— [+ log — zn: (” * a) (" -t O‘) (—1)rta=a(] — pyntaq,

o
q=1 q

Note that for ¢ = 0 we get

1
(n + (Jé) [Zn-&-(!] IOg .

. O

This will be our first piece. We include it in our sum at this time. Next
observe that

() = = () G

We have for the augmented sum without the binomial scalar in front

2" log - ! - an (”) (2 — 1)m+aa

q

(z — 1)t [1+ ! r

—z z—1

1
(z = 1)%2" = [2“]log 1

(z— 1)~

This is the second piece. Now to evaluate these two pieces we evidently
require

1 1 m m
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This was evaluated e.g. in section and found to be —H,,. Hence our first
piece is —(”Za) H, . while the second is —(”Za) H,. Subtract the first from
the second to obtain our claim,

<n+ a) (Hoyoo — Ho).

n

This was math.stackexchange.com problem 4316307.

1.101 An identity credited to Chung

We seek to show that
1 (kx—2\(nx—kx\ 1/(nz
<k\ k-1 n—k ) ax\n)
As we get a polynomial in z on both sides we may prove it for z a positive
integer and it then holds for all i.e. complex . Observe how the binomial

coefficient cancels the rational term.
We have from first principles for the LHS

n na 1 /(kx —2 P
["](1+2) Zk<k_l>(1+z)m~

k>1

NE

~
Il

Here we have extended the sum to infinity because the coefficient extractor
enforces the upper range. Observe that

kxr —2 1 ko2
<k:—1> = res (LW

Next introduce w/(1 + w)® = v and let the inverse be w = f(v) so that
f()/(1+ f(v))* = v and the binomial coefficient becomes

1 1 ,
S RS T ERA
Substitute into our sum to get

EOISIIETED A Y3 . T
(1+z2)k= k (1+ f(v))?

E>1

Integrating the functional term in v yields

__ 1
1+ f(v)

We have picked up a constant minus one which we have canceled. Continu-

ing,
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o (1o ) = et = (M) = (),

This problem is from page 41 eqn. 3.148 of H.W.Gould’s Combinatorial
Identities [GouT72al. It was credited to Chung.

1.102 A Catalan number convolution

In seeking to evaluate where the sum is zero when n < 2

%?2"_% n—2\1(2k-2
s n—2k)k\ k-1

we recognize the Catalan number and obtain

L§J2n_2k(n—2>[2k]1—m

P n — 2k 2

[n/2]
1—+v1—-4z
= [w™(1 n—2 277,—2k 2kr k )

w1+ ) S o Y
k=1
We get a zero contribution when k& = 0 from the coefficient extractor in z as
well as when 2k > n from the coefficient extractor in w so we may extend the
sum to

1—-+1-4z

Qn[wn](l + w)n72 Z 272kw2k[zk] 5

k>0
1—V1I—w?
= 2" [w"](1 + w)"_Q%.
This is
1—v1—w?
—

Now we put w/(1 +w) = v so that w = v/(1 —v) and dw = 1/(1 — v)? dv
to get

n 1 n—2
2 res W(l +w)

1ol VI— /002 1

20X 2 1—0)2
ol — U —v1—=2v il —2v—+1—-4v
= 2"y = V"] 5
1-20—1—4 1-V1—4
= S = (-1 5 ).
v v
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This is the Catalan number C, 1 when n > 2 and when n = 1 we get
-1+ Cy=0.
This was math.stackexchange.com problem 4317353\

1.103 0Odd index binomial coefficients
We seek to show that

S 2z r—k—-1\ n 92n z+n
= \2k+1/\n—-k—1 CT+n 2n

and

i: 2z r—k—-1 _a:+n22n+1 r+n—1
= \2k+1 n—k ) 2n+1 2n ’
As these are polynomials in x on the LHS and the RHS we may prove them
for positive x > n and we then have the results for all i.e. complex x.

First identity
We get for the LHS

Lan 1 2x _ ok
| ](l—z)"];)(%—kl)(l )

Here we have extended to infinity because the remaining binomial coefficient
enforces © > k + 1/2 so that with k& > n the term [z~ "](1 — 2)*~" is zero.
Continuing,

I~ 1 1 2x /
A= ()2

Caemy 1 1 2 1—(=1)*
-k ]wm;(k>“‘z>mz

Now put 1 — /1 — z = w so that z = u(2 —u) and dz = 2(1 — u) du to get

1 1 1
res

u L (2 — y)rontl (1 — y)2ntl [(2— u)% - uh](l - u).

The second term in the square bracket cancels the pole at zero and hence
we are left with
1 1

+n—1
R vap——| 1 —u)" (2 =)™
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This is

— n+k—1 r+n—1 z—n—ko2n—1+k
Z( 2n —1 )(z—n—k>( 2 2

k=0
Observe that

2n+k—1\[/z+n—-1Y\ (r+n—1)!
2n—1 r—n—k) (©n—1)xkl x(z—n—k)
_(rt+n—=1\[x—n
S\ 2n-1 k
Substitute into the sum to get
t4+n—1\= [z—n x+n—1
-1 :Efn22n71 - - -1 k2k — 227171 -
(=1) (2n—1 )I;)( k >( ) 2n -1

_ g2n-1 2n [(x+n _ 92 n r+n
a z+n\ 2n ) x+n\ 2n )’

This is the claim.

Second identity

This is obviously very similar to the first. Here we prove it for x > n + 1. We
find

o 1 2x
[Z 1] (1 _ Z)n—i—l ]CZZO <2k + 1) (1 - Z)k'

The binomial coefficient once more enforces > k+1/2 so that with £ > n+1
the term [z~ 71](1 + 2)*~"~1 is zero. Repeating the previous computation we
obtain

1 1

: +
res —— A —uze (2 —u)™™.

This is
rx—n—1

3 n+k+1 T+n (—1)7n—1-kg2ntith

P 2n+1 r—n—1—k '

‘We once more observe that

2n+k+1 x+n _ (z+n)!
2n+1 r—-n—-1-k) @n+1)!xklx(z-—n—-1-k)
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_(x+n r—n—1
S \2n+1 k '
Substitute into the sum to get

—-n

x —1
r—n—102n+1 T+n z—n-—1 kok
(=1) 2 (2n+1> D ( k )(_1)2
k=0
_ g2nt1 T+n 22n+1x—|—n z+n-—1
2n+1 2n + 1 2n '
We have the claim.

This problem is from page 42 eqns. 3.157 and 3.158 of H.-W.Gould’s Com-
binatorial Identities [Gou72al.

1.104 A sum of inverse binomial coefficients
We seek to show that

a—b

M

(a—b— k: _ 171 (a0
a+1— b | al

k:l

Recall from section the following identity which was proved there: with
1<k<n

(Z) o k[="] log - i (-1 h - 2R,

We thus have with positive integers a,b where a — b > 1 that

z‘: (a—b—k Q‘Zb‘l k! “‘Zb‘l(b+1+k>
— (a+1-k = (b+1+k) b+1 =
11 N b1k
S+ 0+ & k
1 1 a—b—1

RGN (b+1 Z k[P H1HR log ( DPHL(1 = 2)PH

We may lower k to zero because there is zero contribution and get for the
sum term

a—b—1

1
Z k[zb+1+k] log:(—l)b"'l(l _ Z)b+1

k=0
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i Z(—l)b+1(1 — 2)b*L

Two pieces
We thus require two pieces, the first is

Zw log ! (=1)PH(1 — 2)P*L,

—z
k>0

This is

[w™ 1] 1 log L (z—1)*! I
1—w 1—2

Z=w

1

— [wmfl]m <—(z ~ 1)’ + (b+1)log - i

= 0" (0= 07 = 0+ Do

The second main piece is

—(b+ 1) 1 E w” log (—1)PH(1 — 2)b*!
- —z
Y=o

= b+ 1)[w™]log 1 _1

Evaluating the pieces at m =a and m =05

Evaluating at m = a and m = b we get for the first one
_b +1/a—1\""
a—b\a—-0

1
-1 b—1
L w-1)

Evaluate the second piece again at m = a and m = b we find
b+1/ a \ '
a—b\a—>b

_1w(w — 1)

and the second one

1—(b+1)[w’ ]log 1

and

(b + 1)[w’]log :
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We evidently require

b b
(-1 res 3 (1 —w)’log T

This was also evaluated at the cited section and found to be —Hp.

Collecting everything

We obtain at last for the sum component

“a—b\a—b

_l_b—l—l a 7lg+b—|—1 a 71_1+b+1 a\ 'b—a
b a—-b\b b a—0b\b b a—-0b\b b

We get for the complete sum

b+1/a—-1
a—b\a—0»

>11(b+1)Hb_1+ b“( ¢ >1+(b+1)Hb

1 1 (a —b)!
(b+1)!+b><(b+1)!_ bxal’

which is the claim.
This was math.stackexchange.com problem 4325592,

1.105 Inverted sum index

We seek to show that

S () (et ()

k=a

We will henceforth assume n > a. First observe that

n+k 2n+1_2 n+k+1 n+k
2k J2k+1 2k +1 2k )

We thus have two pieces, the first is

() (1)

(= ()

— k+a n+a+k+1
:_1a22a+1 _1k 22/(:
o2t et rath
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Here we may extend to infinity because of the coefficient extractor for the
second binomial coefficient:

(_1)a22a+1[zn—u}(1 + Z)n-‘ra—i-l Z(_l)k (k ‘Cfl' a) 22k;zk;(1 + Z)k

k>0
1
— (-1 a22a+1 n—a 1 n+a+1
( ) [Z K +Z) (1+4Z(1+2))a+1
1

= (=1 a22a+1 n—a 1 n+a+1 .
( ) [Z ]( +Z) (1+22)2a+2

We get for the second piece

- k n+k
_1)k o2k

2 ()G

n—a

S R 0 chrey

k=0

We extend to infinity same as before

(_1)a22a[zn7a}(l+z)n+a Z(_l)k(k:a>22kzk(1+z)k
k>0

ag2a n—a n+a 1

= (=1)*22*[2" (1 + 2)"*t (FTPEC=S

Subtract the second from the first to get

1

(_1)(122(1[2”7(1](1 + Z)nJra (1 + 2Z)2a+1 '

This is

e (e ()

k=

o

Note that

(n Z a) (n +20;_ k) Tk x (2@(7;(?!_ a—k)! (n;;a) (n ; a)

which gives for the sum

n

(ayeee (") > (") o
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— (—1)ngnta (Tj;a) 2nlﬂl _ (—1)ro% (n + a>.

This is the claim.
This problem is from page 43 eqn. 3.161 of H.W.Gould’s Combinatorial
Identities [Gou72a].

1.106 MSE 4351714: A Catalan number recurrence

We seek to show that with regular Catalan numbers

n+1 ’I'L+j )
> <2j —~ 1) (1) Cnyja = 0.

j=1
The LHS is setting j ton+1—j
n .
n+1—j ) 1
> , (=170 ;.
= <2n —-25+1
This is (discarding the sign because we are trying to verify that the sum is

z€ero):

[w2n+1](1 =+ ,w)2n+1 ;(—1)j (1 ’l_lf;)j Z]’.

1—-+v1—-4z

e

Here we have extended the sum to infinity because of the coefficient extractor
in w and obtain

ol —=V1I—4z o 1y 2n+1 1
[ —— [T+ )"
2z 1+ w?z/(1+w)
_ [Z2n}1 — v 1—4z [w2n+l](1 + w)2n+2 1 )
2z 1+w+w?z

The contribution from z is
1 1—-+1-4z 1
res
z z2ntl 2z 1+ w+ w2z

Now put 1 —+/1 —4z = v so that z = v(2 —v)/4 and dz = (1 — v)/2 dv to
get

42n+l v (1-v)/2
res
v 2ntl(2 — )2t (2 —0) /2 1+ w4 wu(2 —v) /4
42n+1 1—v
= res
v Y22 — )22 1 4w 4 wu(2 —v)/4

= 27" res ! v .
o 21 —p/2)27 2 1 4w+ wv(2 —v)/4

253



Observe that

1—-wv _ v n 2—-w
1+w+w2v2—v)/4  24+ovw  2(1+w)—vw’

The contribution from the first term is

1 1 2n+1 1
2n - 2n+1 2n+2 _1\9 _—_,,9,,,4
27 res V2] — y)2)2n+2 (_2U> [w™ (1 + w) z:: (-1) 5q VW

2n+1
1 2n+2 1
— _2277,71 ~-1 q_— ..q
e 021 (1 — v/2)2n+2 ng (2n+1—q>( ) 94"
_o2n— 12 2n + 2 )i 2n—1—qg+2n+1 1
q+1 24 2n+1 22n—l-q

3 (e ()

The contribution from the second term is

22" res ! 1-— 1v [w? (1 + w)? 2§1 ivqwiq
v p2ntl(1 — g /2)2n+2 2 = 2 (1+w)e

22n 2§1 ntl—gq iyfl
2”“( v/2 )2ntl 2n+1—gq) 29

2n 2n
1 /2n—qg+2n 1 in —q
_ 22n i = .
> 5 ( on ) Sa = O ( on >
q=0 q=0
‘We thus have to show that

> (e G -5

The LHS is
%1 m+2 (71)(171 2m+1q>
g q m+1

q=0
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m—+2
2m+1 11 2ma1 1 *
( m ) = J(A+2) 142

- <2mm+ 1) — (L4 )R = <2mm+ 1)_
The RHS is
qﬁ: (2,7,7 - qq) = [2")(1+2)*" Z ﬁ
g~ B = (),

=["|(1+ 2)277171 /A7)

This concludes the argument.
This was math.stackexchange.com problem 4351714l

1.107 An identity by Graham and Riordan

We seek to show that
i 2k +1 (x—k—l) (w—f—k) B (33)2
k:OnJrkJrl n—k n+k n
As both sides are polynomials of degree 2n in x we prove it for = a positive
integer such that z > n and we then have it for all i.e. complex x. This sum is

> (506

the difference of

and
zn: n—=k r—k—1\/x+k
kZOn—f—k—i—l n—=k n+k)

First piece

We get

D

(50
:[zn](1+z)r1§(li’;)k<ijz),

Here we may extend the sum to infinity because the coefficient extractor

n

enforces the upper limit. Continuing,
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ok

(1+2)k

[2"](1+ 2)" w1+ w)" Y (14 w)*
k>0

1
1—2(14+w)/(1+2)

="+ )" w1+ w)”

= [+ ) o )

Second piece

This is very similar to the first. We find
nil(a:—n) z—k—1 T+ k 1
n—k—1/)\n+k+1)xz—n
n—1
:Z<x—k‘—l)< z+k )
— n—k—1/\n+k+1
n—1 k
+ k
_ n—1 1 x—1 z € .

Once more we extend the sum to infinity because the coefficient extractor
enforces the upper limit. Continuing,

k

2z
k(l +w)k

P+ )" (L w)” Y T oF

k>0
1
1—z(1+w)/(1+2)

_ [Zn_l](l—I—Z)w_l[’wz_n_l](l-l-w)x

="+ 2) w1+ w)”

1—wz’
Collecting everything
Observe that the second piece may be written as
wz
n 1 T r—n 1 x .
271+ 27w )1+ )

Subtract the second piece from the first to get

e = ()7 ) = ()

as claimed.
This problem is from page 44 eqn. 3.168 of H.W.Gould’s Combinatorial
Identities [Gou72a)].
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1.108 Square root term

We seek to prove that

and

L(TH_ZI)/QJ n+1\/z+k  (2z+1
2k n - n '
k=0

As these are both polynomials in z of degree n we prove it for x > n a
positive integer and then have it for all i.e. complex .

First formula

We get for the LHS

n+1 n L 1\k
[z"](lJrz)‘”Z( 21)1(21)(1+Z)(k1)/2

k=0
n+1 k
1 n+1\1—(-1) "
= [2"](1 + 2)* L (14 2)k2
I e > (M) e )
The first piece here is
1[z"](l +2)* ! (1++V1+2)"*!
2 VvV1i+z
1 1 B T O e e
=—res —(1+2) .
2z pntl V1+z(1—+/1+z)nH

Now we put 1 — /1 + 2z = w so that z = w(w —2) and dz = 2(w — 1) dw to
obtain

= res

o - = (3).

It remains to show that the second piece is zero and we get

(1—V1+2)"

With the same substitution as before we have
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1 1 1 2x
2w wnt (w — 2)n+t (1=w) 1—w

1 T
=1 (1w =0

w" 2w — 1)

Second formula

This is very similar to the first. We get

n+1 n 1\k
42y ( Zl> Oy
k=0

The first piece is

1 1 " "

5 Tes Znﬁ(l—l—z)' (1++1+z)" !
1 1 (1) tigntt
=-res —(1+2) —————.

( ) (1—+1+z)ntt

2z Zn+1

Repeat the substitution to get

1 2x n+1
5 Tes (1 —w)**(-1) ) 2(w—1)
- 1 n 2eq1  [2@x+1

To conclude show that the second piece is zero as in

1 1
- L x _ n+1
5 Tes z"+1(1+z) (1-vV1+2)
which becomes
1 1
—rtes ——— (1 — w)Qmw”+12(w -1

2w wn-l—l(w _ 2)n+1
1 2x+1

This problem is from page 44 eqns. 3.169 and 3.170 of H-W.Gould’s Com-
binatorial Identities [Gou72al.

1.109 Identity by Machover and Gould

> () ()= )
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We seek to prove that



and

Z”: TN (7= 2k o _ (2042
2k+1/\n—k 2n+1)"
k=0
As these are both polynomials in z of degree 2n and 2n + 1 we prove it for
x > 2n a positive integer and then have it for all i.e. complex .

First formula

We get for the LHS

X zk 2%k
"1+ 2)" ) (%) mz .

k>0

Here we have extended the sum to infinity because the coefficient extractor
enforces the upper limit. Continuing,

e S (F)

The first piece is

20+ ) (1 n f\fz) L (14 2vE + )"

1

S+ VR

Incorporating the second piece we have

DO =

S+ VP 4 (1 - Va)

“3(an) #3 ) - (2)

This is the claim.

Second formula

We get for the LHS
z+1 P ot
0427 Y ()
= 2k+1) (14 2)
This was the same extension to infinity of the sum. Continuing,

<x+1> 2k /71— (—1)k
)0+ 1 2

"1 +2)" )

k>0
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The first piece is

r+1
7[2”](1+Z)I+1% <1+ 2\/g> _ [Zn}iz (1+2\/g+z)x+1

N |

Incorporate the second piece to get

ST (L VAP - S e

:1 20 + 2 71 2z + 2 (71)%“: 2¢ + 2
2\2n+1 2\2n+1 n+1)
Once more we have the claim.

This problem is from page 44 eqns. 3.175 and 3.176 of H-W.Gould’s Com-
binatorial Identities [Gou72al.

1

1.110 Moriarty identity by H.T.Davis et al.
We seek to prove that with n > p

Ti 2n+1 p+k _ 2n—p 92n—2p
£ 2p+2k+1 k D

=0

n—p n p+k __n 2n —p 92n—2p.
— 2p + 2k k 2n —p P

First formula

We get for the LHS

and

”z‘f 2n+1 p+k

= 2n — 2p — 2k k

_ [z2n—2p](1 + Z>2n+1 Z (p ‘]: k?) ng-
E>0

Here we have extended the sum to infinity because the coefficient extractor
enforces the range. Continuing,

1
(1= z2)ptl

1

[Z2n72p](1 4 Z)2n+1 m

— [Z2n72p](1 =+ Z)2n7p
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This is
1
(1 — z)ptt’

Now put 2/(1 + z) = w so that z = w/(1 — w) and dz = 1/(1 — w)? dw to
get

1
2n—p
1S on—2pt1 (1+2)

1 1 1-wpt 1
res
w w2n=2r+1 (1 — )P~ (1 — 2w)P+! (1 — w)?

- 1 1 (2 =D\ 2n—2p
= rgs w22 (1= 2 )p ] = ( » >2 .

This is the claim.

Second formula
Re-capitulating the previous computation we get

1

1
e A e

z Z2n72p+1

which leads to

res — 1 1—w _ 2n — p 22n72p . 2n —pP— 1 22n72p71
w w2n—2p+1 (1 — Qw)p-‘rl P P

_ <2n —p) o2n-2p {1 _12n-— 2p} _ (2n - p) g2n-2p_ M
p 22n—p P 2n —p

again as claimed.
This problem is from page 44 eqns. 3.177 and 3.178 of H-W.Gould’s Com-
binatorial Identities [Gou72al.

1.111 Inverse Moriarty identity by Marcia Ascher
We seek to prove that with n > 2r

B (O

k=r

and

St (W - e(p)

k=r
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First formula

We have for the LHS

Eor( e

n n sz k n—2
=" +2) Z(fnk(l—kz)k (r>2 -

k>r

Here we have extended the sum to infinity because the coefficient extractor
enforces the upper range. Continuing,

L2k ”
(_1)7'2n—2r[zn—2r](1 + Z)n—r Z(_l)ki (k + >2_2k

= (1 + z)k r
ron—2r[ n—2r ner .
= (02 " ey
1

= (=1 7'2n+2 n—2r 1 n+1 .
( ) [Z ]( +Z) (4—|—4Z+22)T+1

This is
L
(2 + 2)27‘+2 :

Now we put 2/(1+ 2) = w so that z = w/(1 — w) and dz = 1/(1 — w)? dw
to obtain

1
(=172 xes g (L 2)™

1 1 L !
71 r2n+2
2 o T ) B w/( = w2 (- w)?
1 1
o ron+2
=(-1)"2 I“S)S whH1=2r (2 — )22
1 1

o ron—2r
=(-1)"2 oS onti—2r (1—w/2)2r+2

-2 2 1 1 1
= (cpyrgne (MTTEAE Ly (M),
2r +1 on—2r 2r 4+ 1

This is the claim.

Second formula

The LHS is the sum of
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and

S () (e

k=r
The first one was evaluated in the previous section and yields

1 An+1

—(=1)" .

2( ) <2r+ 1)
For the second one we get

(e Ben( (e

k=r k=r

Recapitulating the previous computation this becomes

1
ron+1 . n
(=072 res S (U2 gy
Continuing,
1 1—-w

ron—1—2r .
(-1)"2 oS pn+i—2r (1 —w/2)2r+2

— (—1yron-ior n—2r+2r+1 1
B 2r + 1 2n—2r

—2r—142r+1 1
(-1 T2n7172'r n
(=1) < 2+ 1 gn—2r—1

),

Collecting the three binomial coefficients now yields

) -or(, ) ore)

Once more we have the claim.
This problem is from page 45 eqns. 3.179 and 3.180 of H-W.Gould’s Com-

binatorial Identities [Gou72al.
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1.112 Moriarty identity by Egorychev

Suppose we seek to evaluate

_ " \ko2k k n n+k
Sn,m—Z( 12 <m n+k\ 2k )

k=m

n n+k\ (n+k 71 n+k—1
n+k\ 2k ) \ 2% 2\ 2k—1 /)
Therefore we get for the first component
- k
Sena () (2 75)
= m)\n—k

— (14 ) 3 (—1)ReR <:1) (14 2)F,

k>m

‘We have

Here we have extended the sum to infinity because the coefficient extractor
enforces the upper limit of the range. Continuing,

o ey S (B

k>0 m
1
= (=1 m22m n—m 1 n+m
(=1 [2" "1+ 2) 1+ 42(1 1 2))m+L
1
_ (_1\mo2m n+m
=(-D"2 e g— (1+2) (1 + 2z)2m+2

Now we put z/(1 + 2) = w so that z = w/(1 —w) and dz = 1/(1 — w)? dw
to get

1 1 1— 2m+-2 1
(_1)m22m res ( U})
w qn—mtl (1 _ w)Qm—l (1 + w)2m+2 (1 _ w)2
1 1—w

_ 2
= (=1)m2°™ res w1 )2t

Repeating the above calculation we get for the second component

1 mo2m 1 (1 — w)2
—5(—1) 27 res wr—mAL (1 4 w)2mt2’

Observing
1 9 1 9
(1—w)—§(1—w) =(14w)—-(1+w)

we thus obtain
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(O s | B WA I e

= (~1)no2m (" N m) .

n-+m

This was page 11 from [Ego84].

1.113 MSE 4462359: Two binomial coefficients

Suppose for we seek to verify that

> (05000

=0
where 1 < m < k. This is (Iverson bracket)

B0
-t ey () (01

= L[Zm]iz[wk](l + w)ktt Z 29(—1)771 (k‘ '(11' 61> Wi

The contribution from w is

1
(1+ wz)kt1’

We put w/(1 +w) = v so that w = v/(1 —v) and dw = 1/(1 —v)? dv to get

res

k1
e (1+w)

1 1 1
B R (14 20/(1 — 0)F+ (1 — )2

o 1 (1 —v)k-t
= (1 —ov(l—z))ktt"

Applying the coefficient extractor in z we find

This is
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—nm-1 = k—1\ (2k—q\ (k—1-

(1) S (-1 q 7\

k+1 q k—q m

q=0

Observe that
kE—1\(k—1-q\ (k—1)! _(kE=1\(k—=1-m
q m g xm!x (k—1—q¢g—m)!  \ m q '
This will correctly evaluate to zero when k — 1 —m < ¢. Continuing we find

(1™ [k —1) & 1(71)q 2% —q\ (k—1-m

kE+1 m kE—gq q ’

q
Working with the sum we see that we may lower to ¢ = k — 1 — m due to
the third binomial coefficient and the condition 1 < m < k. We thus obtain

T

I
o

q=0
= [2* 1+22’“kq§1:m 1+Z) (k’—z—m)
= [*)(1+ 2)** [1 -1 i Z]k_l_m = [2F](1 4 2)kH1Am = (k + 2+ m>.

Collecting everything we finally have

(—lj)ﬁ(k;1><k+2+m)_

This was math.stackexchange.com problem 4462359.

1.114 Polynomial identity

We seek to prove that with f(z) = ZZ:O aqx? a polynomial of degree at most
n we have

S0 () P = s - £
k=1

Substituting into the LHS we find

n

>0 (1)1 X aale— ke

k=1 q=0
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log

;)aqz )k 1( >zk(x—n+k)q.

We may raise & to n due to the coefficient extractor and the fact that
. Continuing with the sum term,

logi:Z—i—...
" aqq'lw? exp((z —n)w Y —1)n k1 (M) 2R exp(kw
qgo q@'[w*] exp((z —n) )kEZO( 1) (k) p(kw)

= =" agqlfw?] exp((x — n)w)(z exp(w) — 1)"

q=0

== agq![w] exp(ew)(z — exp(—w))"

q=0
= =Y agqfw) explaw) Y (") (1 — exp(—w))"P(z — 1)P.
q=0 p=0 p
First piece
Now for p = n we get
—[z" ]log z—l Za x? = x)[z"]log ! (z—1™
1-=2

q=0
The contribution from z is

1 1 .
— I'SS ﬁlogm(z— 1) .

Now put z/(z —1) = v so that z = v/(v—1) and dz = —1/(v —1)? dv to get
-
(v—1)

1 1 1
- v”“l—legl—v:Hn'

(v=1)

es lo !
: 1 v/(v—1)

v Un-l—l

l
= 71
res og(l —v)

We have recovered the first term f(z)H,.
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Second piece

Recall from section that with 1 < k <mn

() T

Here we put k£ :=n — p to obtain including the logarithm in front

- Z aqq'|w?] exp(zw) i (1 —exp(—w))"7?

q=0 p=0 nop
n n 1 _ _ p
= =3 agw explow) 3 LT O
q=0 p=1 p

Now we can certainly extend p to infinity because (1 —exp(—w))? = wP+---
so there is no contribution when p > n. We get

1
1= (1 — oxp(—w))

- Z aqq'w?] exp(azw) log
q=0

=— Z aqq![wi] exp(zw)w = — Z aqq! [w? ] exp(zw)

q=0 g=1

=— > a4z GgqT —f(z).
qul Z h=—f(x)

We have recovered the second term — f’ (:v) This formula will produce e.g. the

identity
S (i) = O S

Note that here both sides are polynomials in .
This problem is from page 82 eqn. Z.7 of H.W.Gould’s Combinatorial Iden-
tities [Gou72al.

q—l

1.115 Polynomial identity II

We seek to prove that with f(z) = ZZ:O aqz? a polynomial of degree at most
n we have

e =o(" ) Senr(f) L

k=0

Starting with the sum term, proving it for y a positive integer (we have the
result because the LHS and RHS are polynomials in = and y)
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e ()

= [z""Y]log i i . Z(fl)”*]C <Z> P Z ag(x —n+k)?

k=0 q=0

= log 1 3 agalle] (-0 () expl (e - ot k)
q=0 k=0

n

= [2""Y]log 1 i . Z aqq'[wi] exp((z — n)w) Z(—l)”_k <Z> 2F exp(kw)
q=0

k=0

" agq!fw] exp((x — n)w)(z exp(uw) — 1)"
q=0

= [xnt¥]]
[=""¥]log 7—

= [z""¥]log

> aga!fw] explaw)(z — exp(—w))”

1—=2

n

= o 1 Yoyl esplen) 3 (1) 1070 - exp(-w)

q=0 p=0

Now the contribution from z is

1
[z""]log 1

(z —1)P.

Recall from section that with 1 <k <n

;(Z) o [2"]log - i ~(= - 1)k,

Here we put n:=n+y and k := n+y — p to get (we have k > 1 because
we chose y > 1)

S )

q=0 p=0
Next observe that

(n) (n—|—y)_1 _onlx(n+y—p)! <n+y>_1<n+y—p>

p P (n—p)!x (n+y)! n n—p )
Restoring the binomial factor in front from the beginning, which now disap-

pears,
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n

(1-— —w))"P
5> agqlw?) explow Z (nﬂ/ p) oxpl-w)
= - y—p

=y aga![wexplew) )y (y +p) (1 —exp(—w))?

= =\ v y+p

= aqq'[w?] exp(zw) Z (y yiirp) (1 — exp(—w))P.

q=0 p=0

Finally observe that (1 — exp(—w))? = wP + - - - so we may extend p beyond
n with no contribution due to the coefficient extractor in w to get

n . 1
Z aqq![w } exp(mw) (1 _ (1 — exp(—w)))y

q=0

= Z wY] exp(zw) exp(yw) Zaqq [w9) exp((z + y)w) = f(z +y)
=0

and we have the claim.
This problem is from page 82 eqn. Z.5 of H.W.Gould’s Combinatorial Iden-

tities [Gou72al.

1.116 Worpitzky-Nielsen series

We seek to prove that with f(z) = EZ:O aqz? a polynomial of degree at most
n we have for m > n

ﬂx+w—wnmgf(m+i‘l)§3<1v(mj‘)ﬂjk+y»

k=0 3=0

With both sides polynomials in x and y it will suffice to prove this for x and
y positive integers. We get for the RHS

(_I)m%(x+il>

k=0

(m 1 Zaqj—k:+y

m+1 k (

—1ym zn: agq!w] <x +:l_ 1) Z
q=0 k=0
=(-n™ zn:aqq![wq] exp(yw) %1 (x +:L_ 1) zkzo(—l)k_j (TZ:;) exp(—jw).

q=0 k=0 j=

Jj= O

e )wpg—k+y>>

Continuing with the innermost sum,
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k
m+1 —ij_'w—_ Zw
#1004+ 2™ S (17 exp(—g) = (DM e

Here we have extended j to infinity due to the coefficient extractor in front
With the second binomial coefficient (which comes before the first) we find

mz+:1 (33 +m — k) (_1)m+l—k[zm+1—k]%

m

pars 1+ zexp(—w)
- m+1 k
= (=) 1 E|—1:_exi)(— ) ™) +0)™ ];J (1 —I—ll)z) <

Here the coefficient extractor in z is applied a second time to enforce the

upper limit of the sum so we may raise to infinity to get (we will restore the
factor (—1)™*! in the next phase)

m+1 (1+Z)m+1 m x+m 1
ey OO T AT

— [Zm—i-l (1+Z)m+1

1
m 1 x+m—+1
1+ zexp(—w) P+ )

1+v+z2
_ [-m+1 (1_,’_2)m m z+m-+1 1
= e T
_ ey (1427 - 1) (z+m+1
=1 }l—i-zexp jgo ( m—j )
vtm+1 e A VI B
Zo( )( 1) kz—o( i )( 1) exp(—(m+ 1 — k)w).

We merge in the factor (—1)™*! and note that with m — j > 0 and k& > 0
we have (mk ]) = 0 when k > m — j which yields

We at last compute the coefficient on a, which is given by
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el explyw)exp(~(m+ 0wy Y (T

Jj=0

)10 expoy.

Now with ¢ <n < m we may extend j to x +m+ 1 beyond m because there
is no contribution due to (exp(w) — 1)/ = w? + - - -, getting

S agalfu] exp(yw) exp(—(m + L)w) exp((z + m + w)
q=0

n
:Z w] exp(( Zaq +y)?=flr+y)
q=0

and we have the claim. Note that the formula will prove e.g.

() E (R CT0)

k=0 §=0
This problem is from page 82 eqn. Z.4 of H-W.Gould’s Combinatorial Iden-
tities [Gou72al.

1.117 MSE 4517120: A sum of inverse binomial coeffi-
cients

We seek to show that for m > 1

" /m+k -1 m m+n\ "
Sm’"_kz_%< m ) _m—1[1_<m—1> 1

We have for the LHS using an Iverson bracket:

w7 ’“)w

k>0

Recall the following identity from withl1 <k<n

(Z) Tl K=" log - i

We get with m > 1 as per requirement on k

1 1 k —k k
m r(:,s prowE log 1 1 — Zw
k>0

Z(z — 1)k
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1 1 1

1
= m res log

z zmtl 1—z[w]1—w1—w(z—1)/z
11 1 1 1 1
=mres — lo res .
S T wrtll—wz —w(z—1)

Now residues sum to zero and the residue at infinity in w is zero by inspec-
tion, so we may evaluate by taking minus the residue at w = 1 and minus the
residue at w = z/(z — 1). For w = 1 start by writing

1 1 1 1

—mres — lo res .
Som T L wrtlw —1z—w(z—1)

The residue then leaves

11 1 1
— T —_— = — — .
mgszm Ogl—z mm_1

On flipping the sign we get m/(m — 1) which is the first term so we are on
the right track. Note that when m = 1 this term will produce zero. For the
residue at w = z/(1 — z) we write

1 1 1 1 1 1

—mres — lo res .
S 1 %12 wrtll—ww—z/(z—1)

Doing the evaluation of the residue yields

[ 1 (z—1)ntt 1
—m res — 0,
S amy 1 81 1—2z2/(z-1)
1 1

_ < _ n+1
_mrgbszrnHlogl_z(z 1)

— m+n1 71n+1.

m[=" " log T— (2 — 1)

Using the cited formula a second time we put n:=m+n and k :=m —1 to

get
1 m+n\ "
m—— .
m—1\m-—1
On flipping the sign we get the second term as required and we have the

claim.
Remark. In the above we have m > 1. We get for m =1

"] log

1
(z— 1) = res log ——(z — 1)"*,
z z

1—=2 1-—

Now we put z/(z — 1) = v so that z = v/(v —1) and dz = —1/(v —1)? dv to
get

Zn+2

1 1 1 ( 1) 1
. I
w2 BT - 1) T =)
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1 1
= I'SS Wﬁ log(l — 'U).

On flipping the sign we obtain

1 1 1

res lo =
v "2 1 — o gl*U n+1,

again as claimed. This particular value follows by inspection, of course.
This was math.stackexchange.com problem 4517120,

1.118 MSE 4520057: Symmetric Bernoulli number iden-
tity

We are trying to prove the statement about Bernoulli numbers

", B m " B n 1 n+m\
(_1)n Z n+g+1 _|_(_1)7n Z m+g+1 _
g:0n+g+1 g g:0m+g+1 g n+m+1 m

We prove this for n > m, it then follows by symmetry for m > n. Using

we get for the first piece

g+l
i 1 m (_1)g+1"29: n+g+1 B,
n+g+1\g k ’

9=0

Extracting k = 0 we get

Sy ()0 = L ()

g=0 g=0
1 & m _
i log 3 (M) (-
9=0 g
= () log (1 2)™ = e log (2~ 1)
— -

Recall from that with 1 <k <n

(Z) : = k[2"]log 7 i ~(z - 1)nk,

Weput n:=n+m+1and k:=n+1 to get
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1 (mn+m+1 _1_ 1 n4+m\ "
n+1 n+1  on4+m41 n '
This also could have been obtained by summing residues of a suitable func-
tion. Good, we have the RHS. Now we get for the remainder

m n+g+1
i: 1 m\ (et 3 n+g+1 B,
g:0n+g+l g k

k=1
n+g+1
— k—1/) k
m n—+
-3 (””‘) 3 ()
pur AN k Jk+1
We get two components, the first is,
m m—1
> () ()
g k=0 1

g=0
m—1 m

_ Bi+1 3 (m g+1<n+g).
= k+1 =\y k

\_/

The inner sum is

Zk: an m _1\9+1 Zg:—Zk 2\ (=1 ™ =
41+ 2) Z(g)( DI 4 2)9 = M4 2) (1) = 0

9=0

since k < m. That leaves
m n—+
> (M) s (1)) B
g +1
m n—m-+g
- ") (—1)o+ Z nt9\ Bmikir
— \9 m+k/m+k+1

_ = Bmiki - m\  \g+1[Nt9g
Zm+k+1 Z <g>( b (m+k>’

g=k+m—n

Now when n 4+ g < m+ k or g < m —n + k the second binomial coefficient
is zero, so we may lower g to zero (observe that the first binomial coefficient is
zero when g < 0 so we also may raise to zero when k +m —n < 0):

275



zn: Brtk+1 i <m>(_1)g+1(n+g>.
k:0m+k+1g:0 g m-+k

The inner sum is

‘We have obtained

n

Bm k+1 n
(=) S DPmtktl
(=1) kz:%m+k+1<k)’

which is minus the second piece and concludes the argument.
Addendum. Obviously what we have proved here is with b, = (—1)" >, () ax
then

m n -1
bn+ +1 m Am+4g+1 n ag n+m

1" g —1)m 9 - - A
(=1) gz:%n-i-g—i-l g +=1) gz:;)m—l—g—kl g n+m-+1 m

We get for an ordinary binomial transform b, = >"7_, (Z)ak the relation
m n —1
Z(—l)g+1 bn+g+1 m +(_1)mz Am+g+1 n _ agp n+m .
g n+g+1\g g:0m+g+1 g n+m+1 m

This was math.stackexchange.com problem 4520057.

1.119 Polynomial identity III
We seek to prove that with f(z) = EZ:O aqz? a polynomial of degree at most

n we have
" m \fly+ k) S@ ) (ern) T 120 f(y)
2 () e e () ()
Consider
9(2)=(—1)"(2n)!f(22+y>zix 11 Ziq'

qg=—n
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The residues of g(z) sum to zero and the residue at infinity is zero because
we have degree 2n in the numerator and degree 2n+2 in the denominator. Here
we have that z is an integer with |z| > n which is necessary for the original LHS
and RHS to be defined. We have polynomials in x and y upon multiplication

by
2(x —n) (x;n”)

so that the identity then holds for all z,y including complex. We get for the
residue at z =z

(=1

The residue at z = 0 yields

—(-1)"(2n)!f(y H Hf (2")@)

q_ n

rT—n 2n

2 f@ +y) (x+n>

The residues at |z| = k with 1 < k < n will produce

(1" @) (y + ) 7 H qu H qu

q*—n q=k+1

_1\n—k
= (0" @)y + Ky . = +1 P ((nl) B

_ (_1)k< 2n )f(y—l—k?).

n—=k k—x
Adding these last we get

e (n%k> W ’ ki . (nznk> ﬂ%ﬂj)

=—n

- i(‘l)k <n2nk> %@ + i(_l)k (n2+nk> %

P n—*k) k%—a?
20\ 22f(y) | wf 2n \2zf(y+k?)
(n) x? +kZ:O(71) <n—k) k2 — 22

Collecting everything and dividing by 2z we have

277



o- (1)1 ()
wr g () ()

Upon re-arrangeing we have the claim. Note that this will produce e.g. the

identity
n 2
Z(_l)k<n2—fl€> (y—'?_zk >x2 i k2
k=0
—(—1)m 22 +y 1 x+n _1+1 2n\ (y\ 1
N n 2z(x —n) \ 2n 2\ n )\n/)a?

This problem is from page 83 eqn. Z.10 of H-W.Gould’s Combinatorial
Identities [Gou72al.

1.120 Polynomial identity IV

We seek to prove that with f(z) = 22:5_1 aqz? a polynomial of degree at most
n+r — 1 we have where n,r > 1

S Q)Y - Er ) e

k k=1
Note that
—1 T T r
T+ 1 1 1
=l =7l Resyp—_m —_—
r 1 m—1 1 r 1
1y 11—+
m=1 z+m =1 —-m+ ¢ {=m+1 —m ¢
e L D Lt S | | (-1
:! = _]_m .
rmzlaz—&—m(m—l)!(r—m)! Tmz::lx—km( ) m—1

We get for the LHS

e () Eor ()t

k=0

We have for the inner sum
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S0 (5) i -4

k=0
emtog 1 S04 (1) sty — o+ )
k=0
n+r—1 1 n n
= > gl exp((y — mu) [ log T D (-1 A (k) exp(kw)

q=0 k=0

n+r—1 1

= > aga[w? exp((y —n)w)[="""]log T (zexp(w) — )"
q=0

We get for the coefficient extractor in z

1
n+m 1
[""] log 1

(zexp(w) — 1)"

= [2"""]log I i . Z (Z) 2 (exp(w) — 1) (z — 1)" 74

=0
Recall from section that with 1 < k <n

HE) =

so this becomes

n

Z (Z) (exp(w) — 1)4% <n +Z - Z) _1'

£=0

Let us recapitulate what we have so far:

ET: (=ymt (;) nfl agq![w?] exp((y — n)w)

q=0

o5

Next observe that

() w0

We get
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S (D) ()T ety —nw

m=1 q=0

<3 ("5 ) -1

£=0

Extending ¢ to n+m we obtain exp((n+m)w) for the innermost sum which
will produce

S (DY) e

m=1

which is the claim. It remains to show that there is a zero contribution from

Z_f: ("7 et = =3 (0 Yot -

We get

m=1

This is

el 07+ S () () S (1 et -

m=1

We also have

<;> (njnm>1 (T—m;iiz%—m)! - (le)l(:j:z)

Therefore we get

expo)-1+("7 ”) S (Cay () 3 (5% expla -1+

m=1 /=0

Including m = 0 we have

() S (7Y 5 (2 st 1

m=0 =0
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Working with the sum we find

3 (-1t ( " ”) 2714+ 2 S 2 exp(w) — 1)’

r—m
m=0 £>0

T
T+n 1 1
— -1 m—1 1 n+m .
0( ) (7’ - m) S mt (1+2) 1 — z(exp(w) — 1)

m=

Now put 2/(1+ 2) = v so that z =v/(1 —v) and dz = 1/(1 — v)? dv to get
for the residue

1 1 1 1
0 omH (1 — o)1 1 — v(exp(w) — 1)/(1 — ) (1 — )2
1 1 1
= Tres .

o ™t (1 —o)? 1 —vexp(w)

Substituting into the sum we have

r r+n — 1) ™ 1 1
—[’LL ](1+u) * mzzo( 1) [ ](1—v)"1—vexp(w)
I e = - 3 () (0ol - )

p=0
= —(1 —exp(w))” = (=1)" " (exp(w) —1)".
We have computed for the remainder term that it is
r+n) "
Cort (M) o) - 1
n

Note however that (exp(w)—1)"T" = w"™*" +- - yet the coefficient extractor
[w] has ¢ < n+r — 1 as per the initial conditions. Hence it returns zero and
the remainder term vanishes as claimed, concluding the proof.

Observe that with this identity we can prove special cases like

" k+r\ " y—k . N\ (k+n\"" y+k
—1 k(T = — —1 k .
S () () )
k=0 k=1
This problem is from page 85 eqn. Z.16 of H-W.Gould’s Combinatorial
Identities [Gou72al.
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1.121 MSE 4540192: Symmetry in a simple proof

We seek to show that

anm (n — 2¢)" (Z) (—1)7 = 2"~ Ipl.

q=0
Observe that

=20 (1)1t = [ =20 (U)ot g - ()0

Hence we get for our sum

e 20 (1) -1+ Lnf(zq SO B (G

q=0

Introducing a coefficient extractor,

1 zn: n (=1)n![z"] exp((n — 2q)z)
2 q
q=0

n

— Lnllz"]exp(n2) > (Z) (—1)7 exp((~29)2)

= %n'[z"] exp(nz)(1 — exp(—22))".

Note however that (1 — exp(—22))" = (2z — 222 & ---)" so the only contri-
bution to the coefficient extractor [2"] is from the first term of the series so that
[2"] exp(nz)(2z — 222 & ---)™ = 2" and we finally have

on—1n)

as claimed.

Alternative computation

We might try to use an Iverson bracket [[2¢ < n]] in attempting to evaluate
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We obtain

[U"]% Z v?(n — 2q)" (Z) (—1)

q>0

Using a coefficient extractor,

- i = > v exp(—242) (Z) (—1)¢

q=0

1
1[x™ .
n![z"] exp(nz) res

(1 —v?exp(—22))".

1
= nl[z" e a—
nl[z"] exp(nz) RS

Now residues sum to zero and the residue at one yields

—nl[z"] exp(nz)(1l — exp(—22))".

We have that since (1 —exp(—22))" = (22 — 2224+ )" = 272" + ... 50 this
evaluates to —2"n!. We find for the residue at infinity

1 1
n+1 2\n
el o (1 —exp(—2z)/v%)

= nl[z"] exp(nz) reS i L (vz —exp(—2z2))"

—n![z"] exp(nz) res
v

nl—w

= nl[z"] exp(

() Y1 exp(~2(n — g)z)?

q

_Z<) 9(n —2q)"[[2¢ < n —1]].

Now when n is odd this gives the upper limit |[n/2]| and when n is even
|n/2] — 1 however in the latter case we may raise to |n/2] because the added
term is zero in the sum per (n — 2¢)™ = 0. We have obtained

[n/2]

> (1) -2 =,

q=0

Collecting everything we have shown that S, —2"n!+S, = 0or S, = 2" 'nl.
This was math.stackexchange.com problem 4540192,
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1.122 Free functional term
We seek to verify that

() S (B 6= con (1) e (1) 2

, n k)x—Fk
=0 k=0

As both sides are polynomials in x it will suffice to prove it for z > n a
positive integer. We get for the LHS

J=0 k=j
We thus have for the coefficient on f(j)

(—1) é(_l)k (n j?r 1) (n Z! 1)! (n i;f k) 1(1 (k>

nr 1R\
- ()R ()G 6)
- o, 7)) g%(l)’“("z N(,E) o

Here we have lowered the lower range because the coefficient extractor re-
turns zero when k < j.

Recall from section that with 1 <k <n
T E—
This yields for our sum
(nf— 1) (=1’
—(z— 1) é(—nk (" Z 1) (n+1—k)2"(1 +w)F

—e(, 7, )

oo (e = D7 S0 () 0wt
k=0

][] log —
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T

nt1 (z—=1)"7"11 — 2 —wz)"

=), 7 ) -1 og

T
n+1

(z—1)""" N wz 42— 1)"

— -1+ 1)

Continuing with the coefficient extractor in w,

(2 hoe 2
= (1) e ety = (N (1)

Restoring the scalar we find

(5 ) ()it

With some algebra we arrive at

(—1)+ z—1\(n\ =
n j)x—7
which is the claim.

Note that with this identity we can prove e.g.

S5O (S ()

k=0 §=0 k=0

)1l og

(z — 1)’”_"_1zj(z — 1)

This problem is from page 87 eqn. Z.24 of H-W.Gould’s Combinatorial
Identities [Gou72a)].
1.123 MSE 4547110: Inverse central binomial coefficient
We seek to verify that

n (_1)k+122k n 2%k *17 B
27;@ i = 2H,, — H,,.

k=1
Recall from the following identity which was proved there: with 1 <
k<n

L) = g e -1
K\k) TEIeT TV '

We get for our sum
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n

192k (T, 2 1
S () o e 1)
_ (_1)n22n z_: (2) (_1)k+1272k[22n72k] log i i Z(Z _ 1)n7k
k=0

(21" Z() Y22k 2k, — 1)k,

k=0

= (=122 log

We see that we may raise k£ to n because this is a zero contribution owing
to the fact that log —— 1 — does not have a constant term, getting

1
(71>n+122n[22n] 10g :

Seo-msy]

1 -
p, [4z—4—z]

This is

1 1 om
— I'SS m log :(Z — 2)

Now put 2/(z — 2) = v so that z = 2v/(v — 1) and dz = —2/(v — 1)?

dv to
obtain
res 1 log ! v 12 !
v p2ntl 1-2v/(v—=1) 2 (v—1)2
= —res L L log vl
v op2tl]l —y —v—1
1 1 1—wv

= —res lo .
v p2ntl] g g1—|—1}

We get two pieces, the first is

1 1 1
1 = Hoy,.
1rgsv%ﬂl—vOgl—v 2
The second is
(S S i‘:(—l)q z":1 ’il 1
— res (o) = — — — -
v p2ntl] gy g1+v = p:12p p:02p+1
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1 1
5 + 3 ZQq 2

g=1

Collecting the two pieces we obtain

as claimed.

This was math.stackexchange.com problem 4547110.

1.124 MSE 1402886: Inverse binomial coefficient

We seek to find a closed form of
n n —1
>car(?)
r=0

Recall from the following identity which was proved there: with 1 <
k<n

]1(;‘) M log 1 S -1

We get for our sum

14 (1) log (2~ 1)
r=0

=1+ [zn] log - Z(Z — ]_)”[1)71] 7 i " Z(_I)TT'(Z — 1)_7‘1)7‘
r>0
=1+ [£"log (s = )"["] - . 1 f{)(/i;j)l))z
14 [Zn] log (Z i 1)n+1[vn71] 1 1

1—2z v—1(z—1+0v)%
The contribution from v is

1 1 1
res — .
v v —1(z—1+v)?

The residue at infinity is zero so we may compute this by taking minus the
residue at one and minus the residue at v = 1 — z. (Residues sum to zero.) We
get for the former

-1
1 n+2 1

_ 7l+21 - _1n+1:_ —

(&) log —— (=~ 1) ( ! ) —

and the latter
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n 1 1 1

=— <v”+1v_1 s (v—1)2>

v=1-—2

n + 1
2(1—2)ntl (1 — z)m22’

We get for the first term

(=1l log —— = (1"

and for the second

(=1)"[z"**]log (z=1)=(=D"

1-=2 n+1
Collecting everything we find

(1) = (1 (1))

n—+ 2 '

This will produce zero when n is odd. For n even we find

1
ottt
n+2

This was math.stackexchange.com problem 1402886.

1.125 MSE 4552694: A pair of binomial transforms

We seek to show that

N~ (n+k KN wep2k+1(2n+1
an_Z(n—k)ﬁk@Bn_Z( 2 2n+1<n—k>ak

k=0 k=0

By substituting the left into the right and vice versa and interchanging sum-
mations we obtain multiples of the inner sequence times a sum, which must be
shown to be an indicator variable / Iverson bracket [[n = j]].

First indicator

We seek to evaluate where n > j

Z”:(_l)n_k2k+1 2n 41\ [k +j
/ n+1\n—k)\k—j)

k=j

This is
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n—

<.

(71)k2n72k+1 2n+1\(/n—k+j
‘ 2n +1 k n—k—j

, , 2n—2k+1/2n+1
= [z"77|(1 n+j —1)* k(1 —k
0 A S T ( 8 )z< +2)

>
Il

Here we have extended to infinity due to the coefficient extractor. Continuing
we get two pieces, the first is

) (14 ) S (1) (2“; 1) H(142)7"

k>0

:|2n+1

= "1+ 2)"H [1 -1

=g = (7))

The second is

(14 2 S (1) (2”; 1) (14 2)7

=0 2n+1

— g o nn( )

2n + 1 1

= ol (14 2)"H Y (1) (k2”1) (14 2) 7

k>1
=2[z")z(1 + 2)" Tt Z(—l)k (2]:> (14 2)7k
k>0

This will produce zero when n = j. Continuing with n > j,

2n
202" (1 4 2y [l 1 -T-J

: 1 2n—-25 -1
— o[ ] neA )

e =2(-1)" !
A G

Collecting the contributions we find for n = j

o () -

and for n > j
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om — 24 o
(1)’”( " .]) {12 z ‘7,] = 0.
n—7j 2n —2j
This is the claim.
Second indicator

We seek to evaluate where n > j

3 n+k (s H L 2k + 1Y)
n—k 2% +1\ k—j

n
k=j

Expanding the sum term we find

(nJrk)!(_l)kﬂ- 1
(n—k)! =) x k+j+D)!

(e (et

We get for the sum

n—j .
. n—7j vn—k—j(2n—k 1
(2]+1)Z<n—k—j)( 2 (n—j)n+j—k+1

k=0

(25 +1)

— : n—j ZQ’nn_j n—7j _1\n—k—J 1 1
= @+ DA+ 2) kz_o( k >( Hrt O+2)fn+j—k+1

. ) 1 w n—i
— (2] 1 n=731(1 2n n+]+11 - -1
(204 DB+ 2 o |

=(2j+ 1)[2”_j}(1 + z)"+j [w"'”“} log % [w—1-— z]"ij .
—w

For n = j this will produce

(2n + 1)[2°](1 + 2)*" T 1

as required. Continuing with n > j and the extractor in w,

1—wq:O q

W log 5 ("7 )w vy

Recall from the following identity which was proved there: with 1 <
k<n

L) e
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so this becomes

n—j . . —1
) . , n—j 1 n+j7+1 g n—i—
2j4+1)[z" 9] (1+42)" ( )( ) )Ty
el 3 (") g () e

Ry e S R !

q=0

‘We have

(n—|—j><n—|—j+1)_1: (n+j)!'x (n+j+1-q)
q q m+j—g!'x(n+j+1)

and we obtain at last

iU+1§f(n—j>@4w<fq=un=ﬂy

n+j+1q:0 q

Once more we have the claim. It appears that the special case n = j was
subsumed by the above computation.
This was math.stackexchange.com problem 4552694.

1.126 Polynomial with inverse binomial coefficients

We seek to verify that
n —1 n+1n+1 k k
(M T 11+42" (142
kzzox <k> (n+ )<1+x) kl+a ( x

First term

We get two terms for the sum on the RHS, the first is

L R I A | 1 /1+2\" ,
ZE T =l ]I—UZE T v
k=1 k>1
1 1
= [t 1 :
v ]1—v0g1—v(1+x)/m

On multiplying by the term in front of the sum this becomes

n+1 o 1 1
1
1+:L'[v ]1fv$/(1+x) %1 %
1 1
= 1)[o" 1
(n+ D ]l—x(v—l) 1
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Extracting the coefficient on 2% where 0 < k < n we find

iv(v — 1)~

Recall from section that with 1 <k <n

1/m\ " 1
k;(k) 7[v}log1_

Making the subsitution yields

() =G0 = ()

This is the required result so the second term on the RHS must cancel the
powers x* and coefficients thereon where k > n.

(n+1)[v" ] log .

U(v — 1)k,

Second term
We get

n+1 1

Z E(l + )k = [p" )

k=1

1
1—w

1 .
0g1—v(1+m)

Multiplying by the term in front this becomes

n+1

1 1
o og
1+ 1—z(v-1) 1—zv
1 1
= 1)[o" ! 1 :
(n+ 1 }l—x(v—l) 1

Extracting the coefficient on k yields

k
q
(n+1)[ "t Zv—v—l
qzlq

This is zero when k& < n because the degree of the sum term in v is k. Good,
so it does not affect the inverse binomial coefficients in that range. On the other
hand for & > n we find

(n+ 1)[0" (v — 1)*[u*] - i - > %q(v — 1)~ %9
g>1

1 1 1
Ogl—uv/(v—l)'

= (n+ DR = D

Here we get two pieces, the first is

292



1 1

—(n+ D (0 = DF[ut) r—log T—

(v — 1)~

1
=—(n+ )" log .

This precisely cancels the upper range from the first term as required. The
second piece must make a zero contribution:

(n+ D" (v = 1)* ') - PR v(ll —u)
= (n+ D "I - D log T m—s
= (n+ 1)[uf] :Zj:j (1_;)q—1 (n +l; - q) A
= (n+ 1)?:1 é(—l)"ﬂ_q (q ; 1) (n +]i - q>'

Note that with £ > n the binomial coefficient (qzl) is zero. This concludes
the argument.

Addendum

Observe that with the above polynomial being called S, (x) we have the following
functional equation:

1 n+2 1
<1+ ) Sw() = 225, w) 4 amt 4 2

This is because we get starting on the LHS
z n+1n+211+l’k 1+1: k
(n+2) -
1+ kl4+zx x
k=1
n+2 z \"T 1 142t 142\
= Sp(x) + (n+2) ( )

n+1"" 1+ n+2 1l4+zx x

n—+2 14+z"2 142

:7571
n+1 (x)—|— 1+z T

n+2 n 1
=y Sa@ e

This problem is from page 18 eqns. 2.4 and 2.5 of H.W.Gould’s Combinato-
rial Identities [Gou72al.
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1.127 Harmonic numbers with inverse binomial coefficients

We seek to verify that with harmonic numbers

2n—1 —1
2n 1 n 1 1
—1)k1 Hy == - Ho,.
;( ) (k> LR Y P AR P R

We start with the LHS

on—1 —1

2n 1 1
Z k=1 k
:( 1) (k) [Z]I—ZIOgl—z

k=1
2n—1 -1
2n 1 1
— E _1 k—1 QTL—kil
k:l( ) (k}) 2 ]lszglfz
2n—1 -1
1 1 2n
_[s2n)_ - _1\k—-1 k
=[z ]17210g17,z E (-1 (k) 2",

k=1
Recall from section that with 1 <k <n

I

Making the substitution yields

2n—1

Z (1)L k(w —1)7F2F,

k=1

1 1
(’LU _ 1)2n[z2n} - lOg

2n
1
[w ]Ogl—w 1—=2 1—=2

Given that log le =z + --- we may extend k to infinity, getting

[w*"]log g (w = 1)*"[z*"]7 i 18] i 2 (1 j/z(/u(]z;—l)n)?
= [w*]log 1- w(w — D7 1 i z log 1 i z (wz<—wl_—|-1i)2
S M B e
The contribution from w is
res ﬁ log ﬁ(w - 1)2”“ﬁ.

Now put w/(w — 1) = v so that w = v/(v — 1) and dw = —1/(v — 1)? dv to
get
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1 1 1 1

—res log 1—v/o—1)(1—-z—v/(v—1))2(v—1)2
= — res # log(1 — U)(l—zﬁ
= [v%] log 1 iv 1- zl—i- vz)2
_ M§2(2”_Q+1)(_1)q(1z2:;q.
We get from z
1 . ! 1

[22”*1] log = [qu] log

1— 2 (1—z)nt34 1=z (1—z)2n3a"

This is zero when ¢ = 1 so we finally have

2n q—1
1 1/2 1-—

S Z(@2n— g+ 1)(-1) <”+ p)
q —p

g : q—1-p
2n—1 2n
1 1 2 1-—
=Y 1> e ar e ()

p=1 pq:p-i-l q q p

2n—1 , 2n—1—p
= 1 Z %(ZH—q—p)(—l)q“’ﬂ <2n—|—1—p).

— P = 4 +p+ q

Now we can certainly raise ¢ to 2n — p as the inner sum term is zero there.
We will raise to 2n + 1 — p to get

2n—1 2n+1—p
1 1 1 on+1—p
Hypr+ Y = > ————(2n—q—p)(-1)r*H! .
12 2n—1 p:1p o q+p+1( q—p)(-1) q

We omit the zero contribution to get (note that er:orl*p(—l)q (2"+q1_p) =0)

2n—1 2n+1—p
1 —1)p+t 1 2 1-—
(G0l (_1)q( n+ p)_

e Hyp o+ (2041
g 1 @) 3 g+p+1 q

p=1 q=0

Now introduce the function
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2n+1—p

f(z)=02n+1 —p)!(_l)p-‘rl# UO 1

z—1r

z+p+1

We have that with 0 < ¢g<2n+1—p

1 q‘Hl 1 Q”ﬁ"’ 1

—-T
r=0 q r=q+1

Res(f(2);2=¢q) = (2n+1—p)!(-1)P*"

q+p+1 g—r

1 1 (—1)2ntl-p=a
(+p+1¢ 2n+1—p—yg)
1 on+1—
(),

qg+p+1 q

With residues summing to zero and the residue at infinity being zero we can
thus evaluate the inner sum as minus the residue at z = —p — 1 to get

=2n+1- p)!(fl)p+1

2n+1—p 1 2n+1—p 1
—(2n 41 —p)!(-1)P*! =2n+1-p)! _—
( p!(-1) 1T ( ' ] P

r=0 P 1—r r=0

2n+2 '
p:

=(2 1—p)! Z=(2 1—p)—2
N T

Substituting into the outer sum we have

2n—1

L LS (2
n+2 " an g2 p—1

2n—2

1 1 2n\
= My —1)P
2 1+2n+2g;( )(p>

2n 1
1 11 1 1 n
:7Hn7 RN _1])
2 T o a0 2n+2+2n+2§:( )(p>

p=0
2n —1
1 1 1 o
= g, S .
2 2n+2+2n+222( )(p>

Recall from [I.124] that

r=0

so we finally have
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1 2n+1
Hs, -1+2
m 427 Jr271—&—2{ - 2n—|—2]
11 1 n
Ton+1 " 2(n+ )2

This is the claim.
This problem is from page 20 eqn. 2.18 of H.-W.Gould’s Combinatorial Iden-
tities [Gou72al.

1.128 Simon’s identity
We seek to verify that

2 () () - (03 een

We get for the RHS

(1+ 2)F(=1)"*(z + 1)

5
M:
N
=

k=0
=E"0+2)"(1+2)(z+1)-1)"
=["(1+2)"(z+z+z2)" =[z"](1+2)"(z +2(1+2)"

= [2"](1+ 2)" f (14 2)Fzn =k = Z (k) 2*[2F)(1 + 2)nF

k=0 k=0

This is the claim.

1.129 Identity from Abramowitz and Stegun

We seek to verify the two identities
n| nzr:n n—1+k 2n—m n—m-+k and
m| = n—m+k)\n—m-—£k k ’

n—m
n n—1+k 2n—m n—m-+k
— (—1)r—m _1k .
{m} (=1) kzz;)( ) (n—m—i—k)(n—m—k){ k }
These two are close variations on Schlafli’s formula:
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First identity
We get for the RHS

ni”(—l)k 2n—1—m—k\ (2n—m\ [2n—2m —k
2n —2m — k k n—m-—k

k=0
_"—m_ & Mm—1—m-—%k o —m
-3 (ot ()
X W[m2"—2m—k](exp(w) _ ]_)n—m—k
= ((;L_—ll))" [w2n72m](exp(w) —
nim_ k(2n—1-—m—k\ (2n—m wF(exp(w) —1)7*
sz—:o(l)( n—1 )(k;)(p()l)
This is
((:1_11))" [w2n72m](exp(w) _ 1)nfm
n—m n—1—-—m—=k 9 —m
X (7]-)1C wk(ex (w) B 1)*]@
;’ < n-m-—k ) < k ) P
= ((;L__ll))" [w2n—2m](exp(w) _ 1)n—m[zn_m](1 N Z)2n—1—m
2n—m k[ 2Zn—m w (exco(w) — *’CL
szzo( 1)( k > (exp(w) — 1) e

Here we have extended to 2n — m due to the coefficient extractor in z.
Continuing,

((:1—_11))" [w2n72m](exp( ) — 1)”*m[zn7m](1 + 2)2"71*7”
X [1— (exp(w) — 1)(1+ 2)
(=D 1 o
x [(exp(w) = 1)(1+ z) — wz}anm
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gt q
= (=T é:f T e

’ Zm <2n . m) (=1)%(exp(w) = 1 — w)?(exp(w) — 1)~
= ()

x[exp(w) — 1 — exp(w) + 1 + w]**~™

_1\n—m (ni )' wh ™ w"
B T R Cr
This is
(—1yn=m (n—1)! wml

(m— 1w (exp(w) — )7
Now put exp(w) — 1 = v so that w = log(1 + v) and dw = 1%1 dv to get

(1 g v oL+ )™ o

1
14+wv

() o g1 +0)"

This is the claim.
Second identity

Replacing exp(w) — 1 by log ﬁ and re-capitulating the above computation we
arrive at

(_1)n_m((:;__11))!![w”—m}w" (10g 1 —1 w) B '

This is
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Now put log ﬁ = v so that w = 1 — exp(—v) and dw = exp(—v) dv to get

(- = s (1 exp(-0)™ 1 exp(0)
= (1 N = exp(—o) exp(—o)
= (1P E (= exp(—a)™ = ()™ 01— explo))”
— e -1 ={ .

This is from page 824 numbers 24.1.3 and 24.1.4 of Abramowitz and Stegun,
Handbook of Mathematical Functions, [AST2].

1.130 Bernoulli number / Stirling number identity

(—1)" n+1\(n+k\ (n+k\ "
‘ kE+1 k k ’
We get for the RHS

(Y

k=0

- () (20) e me e -1

0 :

We seek to show that

NE

B, =

o~
Il

n+1

= n![z*"](exp(z) — 1)" Z(—l)"k( i )zk(exp(z) —1)7"
k=0

We add in the k = n + 1 term and cancel the extra contribution to get

Zn+1 - n+1
n![z*"] — nl[2%"](exp(z) — 1)" [ - 1}

exp(z) — 1 exp(z) — 1

= nl[z"] L

exp(z) — 1

z 1[227] [+ 2 — exp(z)]"+1.

exp(z) —1 "
Now since exp(z) = 1+ z + 22/2+ - - - the exponentiated zerm in z starts at
22"*t2 and the denominator at z, for a total of a start at 22”1 and hence the
second term is zero. That leaves just the first term which is B,, by the canonical
EGF.
This was DLMF [DLMF| Eq. 24.15.7].
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1.131 Recurrence relation from DLMF

We seek to show that with n >k > h

OIAER OIS

j=k—h

G2, 00 )

We get from the basic EGF for Stirling cycle numbers that the RHS of the
identity is

and

First identity

()2 8 s et

J=k—

_ (z)::w <logliz>h ni:h 2 [w] (logl_lw>kh.

j=k—h

We claim we can extend the sum to infinity. This is because in fact we have

ENnl w1 1 " I 1 o
<h)k'[2 |z (leglz) Z 27 [w?] IOgl—w

j=k—h

) 8 v e d)

j=k—h

Here we see immediately that the coefficient extractor in z enforces the upper
limit of the sum through the 27 term. We obtain

() 7t (Groe 2 ) > ] (1og 1_1w)“,

j>k—h

But now we have covered the entire range of the logarithmic term in w so

we find
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= ()i s 2) = G

This is the claim.

Second identity
This identity now follows by inspection using the EGF

{Z} = n![z"]%(exp(z) -1

We have that exp(z) — 1 is a formal power series that starts at z, just like
log 1;. Hence the computation from the Stirling set numbers goes through just
as with the Stirling cycle numbers, where we use the fact that both %log 1;
and 1 (exp(z) — 1) are formal power series. There is no pole at zero here.

This was DLMF [DLMF] Eq. 26.8.19] and [DLMF] Eq. 26.8.23].

1.132 Bernoulli, Fibonacci and Lucas numbers

We seek to show that

Rk n 5\" n n
— | BopFh_or = —Ln_1+ —Lop_o.
kZ:O (2k;> (9) 2kfn—2k = & 1+ 30 L2n—2

Using the fact that odd-index Bernoulli numbers are zero except for k = 1
this is equivalent to

" k
— | BipFy_x=—=L,_ —Loy_o— —F,_1.
kz_o(k><3> K-k = g 1+3n22 g in-1

Now observe that

G\ B3
() B = a3 -1

and

Pl = H#—(expl(p2) — exp((2)

We thus obtain for the LHS by convolution of EGFs the following closed
form:
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—nl[z"]

3 exp(2v/5/3) — 1

Expanding we find

(exp(pz) — exp(v2)).

—nllz"

3n.[z ]exp(zx/5/3) -1
x (exp(pz) — exp(2(3 + v/5)/6) + exp(z(3 + V5)/6) — exp(¥2)).
Here we get for the first piece

%n'[z”]z exp(2(3 + v5)/6) = %n![z”fl] exp(2(3 + v/5)/6)

= %n((3 +v5)/6)" "

We get for the second piece

1
—nl[z"]

3 exp(zv/5/3) — 1
x (exp(z(3 + v/5)/6) — exp(2(3 — V/5)/6) + exp(2(3 — V5)/6) — exp(1)z)).
This has the component
%n'[z”]z exp(yz) = %mp”*l.

The last remaining component is

exp(z/2)(exp(2v/5/6) — exp(—2V/5/6))

—nl[z"]

3 exp(2v/5/3) — 1
= %n'[z"]z exp(2/2) exp(—2v/5/6) = én((i’) —V5)/6)" L.

If we factor out the n/3 we have to show that the following holds:

1 1 V5

((3 + \/5)/6)n_1 + ((3 - \/5)/6)n_1 + wn—l = iLn—l + WL2n72 - Tanb
Now we have e.g. by induction
1
wn_l =-Lp1— ﬁanl-

2 2
This leaves us with

(3+V5)/6)"" + (3= VE)/6)" ™ = 2 Lan .

303




Here the RHS is

1 n— n—
3’”,71 (@2 2 + wQ 2)

but with ¢?/3 = (34++/5)/6 and 1% /3 = (3—+/5)/6 this follows immediately,

which concludes the argument.
This was DLMF [DLMF] Eq. 24.15.11].

1.133 Bernoulli / exponential convolution

We seek to show that with n > 1 and m > 2

n—1 m—1
1 n
B,=— mk( >Bk j"_k.
m(l —mn) kz k Jz::l

=0

Extending k£ to n we find

n m—1
1 1 n
B,+——m"B,(m—1)= ——— k B nk,
+m(1—m”)m (m—1) m(l—m”)zm (k) ¥ Zj

Multiply by m(1 —m™) to get

n m—1
B,m(l—m")4+m"B,(m—1) = ka (n) By, gk

or

m" By, = k'[Zk]eXp(::j) -1
and
i J* = Kl X_: exp(jz) = k!["] exp(2) i exp(jz)
j=1 j=1 =0
i exp(2) 1 —exp((m —1)z)

1 —exp(z)
We therefore have by convolution of EGFs the EGF of the RHS:

mz exp(z) — exp(mz)

nl[z"] — =
exp(mz) — 1 1 —exp(z)
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i mz exp(z) — 14+ 1 — exp(mz)

exp(mz) — 1 1 —exp(z)
mz 1 — exp(mz) mz
nilz ]exp(mz) -1 1 —exp(z) " il }exp(z) -1

=-m"B, + mB, = (m —m")B,.
This is the claim.
This was WFS [WES| Eq. 04.13.17.0001].

1.134 Bernoulli identity by Munch
We seek to show that

st E R ()
where n > 1. The RHS is
() e (i)
_ n![z"]ni 1 é (Z) - jz:(—nf exp(jz) (Z*j)

Here we have included j = 0 because it makes no contribution to the coeffi-
cient extractor in z. Continuing,

n 71
() e S enion

k=1 7>0

We have extended j to infinity because of the coefficient extractor in w.
Continuing,

Ly (7) S — —

= 1+ wexp(z)
1 =\t 1
= nllz" n—k 1 n+tl1 -
nilz ]n—l—l P (k) w1 4 w) 1+ wexp(z)

= n'[z”]n _1'_ 1 [w"](1 + w)™ ];) (Z) i w® !

1+ wexp(z)
Introducing the Beta function,
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n—1

[ [w"](1 + w) "+ kZ:oB(k +1,n—k+ 1)w"1++exp(z)
=nllz w”+17 y lw (a=u u
=l 1+ ) / "2

Zn![z"}[w”](lﬂu)n-i_)/ unl_ w"(1— )n/u

1+ wexp(z 1—w(l—u)/u

Now the second term in the fraction in the integral makes no contribution
because the constant term respective w does not contain a term in z and we get

nl[z"][w u.
1+wexp(z) Jo u—w+ wu

The contribution from w is
1L (14wt /1 unt
res
w w1l +wexp(z) Jo u— w4+ wu

Now put w/(1 +w) = v so that w = v/(1 —v) and dw = 1/(1 — v)? dv to
get

du.

1 1 1 ! 1—v
n+1 d
e vt T+ vexp(z)/(1 —v) (1—1})2/0 ou—e ™

1 1 ! 1
= res / u™tt du
v vt 1T —v+vexp(z) Jo u—v

1 1 /1 N
= res u'——— du
v "l —w(l—exp(z)) Jo 1—v/u

n 1 n

1 1-— a
=St [l = 35 LA
q=0 0 un—e q+1

q=0

Returning to the coefficient extractor in z and noting that 1 — exp(z) has no
constant term we finally obtain

n|[zn] 1 Z (1 — exp(z))q'H

L-exp(z) &5 g+1
" 1 1 = nl[z" # —Z
=nllz ]1—exp(2’) 1Ogl—(l—exp(z)) = }l_eXp( )( )
:n![z"]m = By

and we have the claim.
This was from H.W. Goulds Ezplicit formulas for Bernoulli numbers, page
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45, [Gou72bl Eq. 3].

1.135 Bernoulli identity by Kronecker
We seek to show that

2n+1 -1
. 2 1\ 1

= 3 0 (M) 2
J

j=2 J k=1
We get for the RHS

2n+1

(2n)![z27] 3 (1) <%”4) E:wpkz

Jj=2

Here we have lowered k to zero because there is no contribution to the
coefficient extractor in that case. Continuing,

et 3 0 () s > el

= (2n)1[22"[w?"* ] log 1 2§1(_1)j <2n + 1) i exp((2n —j+1)z) — 1.

1—w = J exp(z) — 1

Evaluating for j = 2n we get

(2n 4+ Dw?™ =0

(2n) 122" "] log T——

owing to the coefficient extractor in z. We also get zero when j = 2n + 1
since log ;= starts at w. Hence we are justified in raising j to 2n + 1. We find

2n+1 . e
()2 log 1 3 (-1 (2’” 1>wjexp(<2n j+1z) -1

= i exp(z) — 1

The first piece here is

2n+1
—(2”)![22“1]%[102”“] log L S (-1 (2” + 1) w

exp(z) — 1—w =

Note that

2n+1 Z Ban+1 —0
K ]exp(z) -1 (2n+1)!

This leaves
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e g L S (ay (P14 w22l C0 T D

1—w = J exp(z) — 1

2n—1

_ 2o XP(2n+1)2)  gpyqyy 1 Pt W exp(—iz
- o) T e a2 /(7" Y el

exp((2n + 1)z)

exp(z) — 1 [w2n+1] (1 — weXp(—Z))2”+1

— (2n)![z*"]

1
Ogl—w

< 2n+1

— (2n)![z2n+1} 2n+1]

log

[w (exp(z) — w)

1—w
z

exp(z) — 1
= (n)[z2 ) —=
*(2 )'[ ]exp(z)—l

2n+1 om+1 1
— 1) 2n+1 1 —— (1= 2n+1—q.
<3 (%) emple) — 171 iog 21— w)

Splitting the sum into the initial value for ¢ = 0 and the rest we get for the
latter with the term in w and 1 < g <2n+1

2n+1] (1 _ w)2n+1—q.

[w log

1—w
Recall from section that with 1 <k <n

;(Z) = [w"]log 7 _1w<—1>”*’“<1 —w)" .

We thus have

(2n)![22”+1]7exp(z) —
L o+ o vemiigl 201\
> (2 ) empte) - ve-ppreioan (27 1)
2n+1
_ 2n+1 ? (1 —exp(2))?
= —(2n)![z>"F ]exp(z)fl ; p :

Due to the coefficient extractor we may raise g to infinity to get

(S Y o))

exp(z) — 1 q>1 1
5 1
— _(9p)! 22n+1 0]
=—(2n)![ ]exp(z)_11 ST (1 —exp(2))
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= (n)e2 2
exp(z)—l( )= @l exp(z) —1

This is the claim. It remains to show that the contribution from ¢ = 0
is zero. This follows by inspection as we are again extracting an odd index
Bernoulli number.

This was from H.W. Goulds Ezxplicit formulas for Bernoulli numbers, page
46, [Gou72b, Eq. 4].

—(2n)![z2 ! = By,.

1.136 Computing Bernoulli numbers

We seek to show that

_ on+1 "L (—1)k Jn
B"+1_2(1_2n+1)z ok k! k

as well as
n+1 - [y n+1 ,
Buri = g =y Z (k—j)".
k:o

First identity

We have for the sum component using the Stirling set number EGF

Z 2k exp — 1)k

k=0

We may extend to infinity due to the coefficient extractor and the fact that
exp(z) —1=2z+4--- to get
1 "] 2
1+ (exp(z) —1)/2 1+ exp(z)
On the other hand we have the following EGF

By 1 1
=nl[z" | —= - -
n+1 nilz ]< z+exp(z)—1>'

The sum component must therefore have EGF

2 N 2 4 n 4

2 exp(z)—1 2z exp(22)—1/°
This is

2(exp(z) +1) 4 _ 2(exp(z) —1) 2

exp(2z) — 1 exp(2z) =1 exp(2z) — 1 exp(z) +1°

n![z"]

‘We have the claim.

309



Second identity
We get for the double sum

n k
nl[z"] z:(—l)k‘H exp(kz) Z(—l)j (n_; 1) exp(—jz)
k=0 7=0
= 3o enpka) ot S (" exp(-i)
k=0 >0
=[] S (1) exp(kz)[wk]ﬁ(l — wexp(—z))"*
k=0
= nl[z" - _ k-‘rlwk; _wn—i-l
= )Y
= nlz" n _qyn—kAlp,n—k ; w) L
= !z [w™ S o n7k+1wk 1 w n+1
=l Y )
= 2™ [w™ o kwk; w — n+1'
S e

Here we have extended k to infinity due to the coefficient extractor in w. We
finally have

1 1

n![2"][w"] 1+wl—wexp(2)

(w—1)"1,

Here the contribution from w is

1 1 1
res
w w1+ wl— wexp(z)

(w _ 1)n+1_

Now we put w/(w — 1) = v so that w = v/(v —1) and dw = —1/(v — 1)? dv
to get

1 1 1 1
TP +o/(v—1)1—vexp(z)/(v—1) (v—1)2
1 1 1
T T — e —1— vexp(z)
1 1 1
= — res .

v vt 1 — 201 —ou(l — exp(z))

Restoring the coefficient extractor in z we have
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n

—nl[z"] 22”*‘1(1 —exp(z))? = —nl2"[z Z 279(1 — exp(2))?.

q=0 q>0

Here we have extended ¢ to infinity due to the coefficient extractor and the

fact that 1 — exp(z) = —z — - - -. Continuing,
1 2
—nlan[" — _plonf,n— =
ni2"lz ]1—(1fexp(z))/2 G ey
2
| - -
—nl] 1+ exp(22)°

Repeating the construction of the EGF from the first identity we must repli-
cate this through

(‘Ji*m‘b—l)‘(‘i*w%)

B 4 ~ 2(exp(22) +1)
 exp(4z) — 1 exp(4z) — 1

_ 2exp(22) -1) 2

T exp(42)—1  exp(22)+1

and we have the claim.
This was from H.W. Goulds Ezplicit formulas for Bernoulli numbers, page
49, [Gou72b, Eq. 18,19].
1.137 From the Saalschiitz text
1.137.1 Bernoulli numbers I
We seek to show that

n 2
m+1\ (s 1 11
Z <2k _ 1) ( " ontl-k Bantz-21 = (20 +1) YRS

=1

We get for the LHS

" 20+ 1\ [ oonio—ok 1
2 (2k — 1) (2 — 2+ Sgnraar ) Banva-an
k=1

Using the fact that odd-index Bernoulli numbers are zero except for B; = —
this becomes

N[
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2n
n+1 2n+2—k 1
;<k1>(2n _2+W Bonto_i

2n—1
2n+1 Intl—k 1
:Z( i )(2" — 2+ Soorir ) Bontik
k=0

Raising the upper range we find (the contribution from 2n + 1 is zero):

2n-+1
1 o+ 1 1 1
(2n+1)x1+ E < k ) <22 +1 k2+22n+1—k) BQn+1_k.
k=0

Hence we have reduced the claim to

2n+1

214+ 1\ [ sonsi1k 1 2n +1
Z ( k ) (2 -2+ 92n+1—k Bont1-k = 92n+1 "
k=0

We have by convolution of EGFs that the LHS is

. 22 2z z/2

(2n + 1)![*" ] exp(2) (eXP(Qz) —1  exp(z) —1 i exp(z/2) — 1>
. 9 2 1/2

= (2n =+ 1)'[2 ]exp(z) (exp(QZ) -1 a eXp(Z) -1 eXp(Z/2) - 1> .

Working with the parenthesized term we find
2 ~ 2(exp(2) +1) N 1/2 x (exp(z/2) + 1)
exp(2z) =1  exp(2z) —1 exp(z) — 1
_ 2exp(?) n 1/2 x (exp(z/2) + 1)(exp(z) + 1)
 exp(22) -1 exp(2z) — 1
_ 11+4exp(2/2) — 3exp(z) + exp(3z/2)
) exp(2z) — 1
We thus have to show that

1 2)—3 3z/2 1
(277,)'[22”} exp(z) + exp(z/ ) exp(z) + exp( Z/ ) ——
exp(2z) — 1 22n
As we are only using even index coefficients we prepare to eliminate the odd
index ones:

1+ exp(—z/2) — 3exp(—z) + exp(—32/2)
exp(—2z) — 1

exp(—2)
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1+ exp(—z/2) — 3exp(—z) + exp(—32/2)
1 — exp(22)

= exp(z) .

Add and multiply by 1/2 to get

}(QTL)![ZQ”] exp(z)

exp(2z) — 1
x (exp(z/2) — exp(—z/2) — 3exp(z) + 3exp(—z) + exp(3z/2) — exp(—32/2))
= %(Qn)![zzn] exp(—z/2)(exp(z) — 3exp(z/2) + 1).
With n > 1 this becomes
SO ep(:/2) +exp(-2/2) = 5 (g3 + 537 ) =

This is the claim.

This was page 47 eqn. 8 from Saalschiitz on Bernoulli, [Saa93].
1.137.2 Bernoulli numbers II
We seek to show that

2
S (27;) 94k By = dn — 1 — (22" — 2) Boy.
k=1

n

Now using the fact that odd-index Bernoulli numbers are zero except for
B; = —1/2 the LHS becomes

2n
2
~1+4n+ > (;)22’“&
k=0

SO we require

2n o,
> ( L )2%3,c = (2 — 2°")Byy,.

k=0
By convolution of EGFs we have for the LHS

4z
exp(4z) — 1
As we are using only even index coefficients we prepare to eliminate the odd
ones:

(2n)![z*"] exp(2)

—4z —4z 4z

exp(2) = ep(2) Ty ~ PG s

exp(—4z) — 1

to obtain
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14 exp(z) +exp(3z) 9y exp(z)

2% exp(4z) —1  Texp(2z) - 1°
We get for the RHS
2z 2z
1[ 527 _
@n)t="] <exp(z) -1  exp(22) — 1>
_ 17,21 zexp(z)
2(2n)![z ]7@@(22) —

We have equality and hence the claim.
This was page 50 eqn. XLIX from Saalschiitz on Bernoulli, [Saa93].

1.137.3 Bernoulli numbers 111
We seek to show that

and

First identity
We get for the LHS

N1
2™y ——(=1)* — 1"
(m)![z ];k+1( )" (exp(z) — 1)
Now here we can extend to infinity because the coefficient extractor enforces

the upper limit owing to exp(z) — 1 = z + - -+, and we also may include k = 0
because it does not contribute to the extractor. We find

("S- g (D exp(a) - D

k>0
") 3 (D ()~ )
k>0
= e =1 ¥ T enp(e) -1
_ (m)![zm}ﬁ = B,.

314



Second identity
With
1 1 1
k(k+1) k k+1
we get two pieces, the second is B,, so we must show the first is zero.
We get

(m)E" Y 2 (1) exp(z) - 1)

k=1

We may once more extend k to infinity and obtain

([ £ (-1 fexp(z) — 1)
(m)![z™]z=0

© 1+exp(z) —1 -
and we have the claim.
This was page 83 eqn. LXIV and LXV from Saalschiitz on Bernoulli,
[Saa93].
1.137.4 Bernoulli numbers IV
We seek to show that

< [2m _ (2m—1)(2m —1)!
Z[ ]B%_ 2(2m + 1)

and

First identity

With odd-index Bernoulli numbers being zero except for By = —1/2 we get for
the LHS

%(Qm RN in: [2;”] By

k=1

Continuing with the sum we have

o 2m 1 1 k z
(2m)![w ]Zk!<log1—w> el P

k=1
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2m 1 ' :
— m)w] (10% . w) e

k>0

Here we have included £ = 0 and k£ > 2m because they do not contribute
due to the coefficient extractor in w. We get

1 1
1—wexplog = —1

T—w
1 1
1l—w-L —1

1—w

(2m)![w*™] log

= (2m)![w*™]log

1 1-w N 1
= (2m)![w*™]log o w (2m)![w*™ ] log m(l —w)

= (2m)! <2m1—|- 1 27ln> ‘

Collecting everything we find

@m_mx( 2m 1+1):@m_n! (m—1/2)

2m—+1 2 2m + 1

which is the claim.

Second identity

Incorporating B; we have as before

2m
1 2m +1
_ |
2(2m).—|—]§_1{ k; ]Bk.

We may raise to 2m + 1 because this is an odd-index Bernoulli number:

2m—+1
1 2m+1
—(2m)! By.
Q(m)—i—kg:l[k}k

Recycling the earlier computation we obtain

1 1
(2m+1)! - .
2m+2 2m+1

Collecting everything we find

2m +1 1 m
2m)! 1+ =@2m) .
(2m) (2m—|—2 +2> m) s

again as claimed.
This was page 90 eqn. LXVI and LXVII from Saalschiitz on Bernoulli,
[Saa93].
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1.137.5 Bernoulli and Eulerian numbers I

We seek to show that as given

Bop, = m %—:1(—1)’6(27;1 —1—2k) <2mk_ 1)_1 <2;”> .

Note that -
Seren-ra(7) ()
RS URA
= 7:Z:<—1>’f+1<—2m + 1+ 26) (ka_ 1)1 <2;n> |

This is the same as the original sum. Therefore it will suffice to show that

By = m 2fl(—n’v@m 1 2k) (2mk_ 1) - <2ZL> .

k=0

Considering this alternate form as it appears in the source we can do better
and actually prove that with n > 2

n—1
n—1

Bnmz:(l)k(nl%)( . > <Z>

k=0

Here we get two pieces, where we subtract the second from the first,

LS e ()

and

nil g‘”k(kil)_l <Z>

We suppose as given that

t—1

Z <7IZ:> ¥ = n![z”]t —exp((t —1)2)°

k=0
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First piece

We find using the Beta function

;kzo( )’“B(nfk,k+1)<z>
= ;/01 :_:( 1)ku"’17k(1fu)k<z> du

:7/ n- 12 Yeu=k( u)k<Z> du.

Now we may include n in the range of the sum because the Eulerian number
is zero there i.e. <Z> = 0. Continuing,

1 ! u Inllzn (u — 1)/“ -1 "

2/0 ' ](uf1)/ufexp((u71)/ufl)z) d
1 ! n—1 n 1

- 5/0 il ]1—u+uexp((u—1)/u—1)z) du

1/11 12" 1
=— [ —-nlz
2 /o u 1 —u+uexp(—z)

(=™ 1o 1
T2 /0 En'[z ]1 —u(l —exp(z)) du

Taking into account the possible contributions to the coefficient extractor in
=n”
2

du

the limits of the sum to appear we find without the scalar

n

1 n
1
—n! u?[2™)(1 — ex )9 du = nl[z (1 —exp(
/ou ;:1 [2"]( p(2)) E p(z

We may extend to infinity due to the coefficient extractor and get

) 1
nl[z }logm

because we said that n > 2. The first piece vanishes.

=nl[z"](-z) = 0.

Second piece

This piece differs from the first one in that there is a term B(n—k, k+2) instead
of B(n — k,k + 1) which produces an extra (1 — u) and there is no scalar like
the 1/2 in the first piece. This gives

Y VA, 1
(=1) /0 u n![z]l—u(l—exp(z)) du.




Again taking into account the possible contributions to the coefficient ex-
tractor in the limits of the sum to appear we find without the scalar (—1)"

/ 1_un'Zuq ](1 — exp(2))? du

m\e atl
_ 2_: (g _qlf(fl)q {Z}

This is an interesting intermediate form. Note that we may extend ¢ to
infinity due to the Stirling number.

We get as our first subpiece the multiple of 1/q which is the same as the first
piece and evaluates to zero. Our second subpiece has a minus on it and is

n![z"] Z(_l)q-&-lw

=1 qg+1
1 exp(z) — 1)7t1
= n![zn]m q;(l)qﬂ(p(q)—kl)
n 1 1
=nllz ]exp(z) — (exp(z) —1+log Hexp(z)—l)

= nl[2"] (1 - exp(;_l) = —B,.

Observe that multiplication by (—1)™ does not affect this value since the odd
Bernoulli numbers with index n > 2 are zero.

Conclusion

The conclusion is quite simply that we subtract —B,, from a zero value and
hence get B,, as claimed.
This was page 94 eqn. LXVIII from Saalschiitz on Bernoulli, [Saa93].

1.137.6 Bernoulli and Eulerian numbers II

We seek to show that as given
122" By, (m—1 2m—1 +2m1 2m — 1
22m=1 2m  \ 2m k—1 /"
k=1
The LHS is
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() G =2 (D))
2m Pt k '
Observe that
QiQ(k—l—é)<2m—1>_mz:2<2m—k—§>< 2m — 1 >
=\ 2m k P 2m 2m—2—-k/°

But we have (Qm;f;%) = (k;m%) by upper negation which means that this

sum is the same as the double one from the source. This gives for the RHS

Qi‘f k+ 1\ /2m—1
2m k '
k=0
We now extend this formula to include odd index Bernoulli numbers and set
out to prove that for n > 2

n—2
1-2"B, k+3\ /n—1
w0

Observe that

We write for the RHS

- —1
Z (1+2) .
We can raise k to infinity because again there is zero contribution due to the
Eulerian number. We find

T CUNEEE) BIELD B G (G e C L

k>0 q=0

n—

= (n - DI VI F 2 3 (-1 (exp(w) — 1)7

q=0
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y kzzo (” ‘; - q) (=1)F(1 + 2)*

n—1
= —Dw" "W+ 2D (=1 exp(w) — 1)9(=1)" 9z
q=0
— (- D WVTTE 3 (explw) — 171700,
q=0

Continuing,

1 — 27/ (exp(w) = 1)"
1

(n = Dtf(expw) = ) VI 2 e

The first piece here is

— D!w™ ) (exp(w) — -1y 2y . 1t
(n— 1! (explar) 1) q§0<q><exp<w>—1>"-q

=m-1w" ") (1/2) (exp(w) — 1)7".

q=0 9

Once more we may raise to infinity and we get

exp(w/2)

_ wexp(w/2)
exp(w) — 1

(n = 1)!fw"™] exp(w) —1°

(n = Dlw"]

The second piece is

o A

- e 0,

1 w
= (n— DMw™ ! = (n — I'Nw™
(n — D)w ]exp(w) —7 (n— DNw }exp(w) —3
We have brought it down to
(n— 1" ——

exp(w/2) +1°
On the other hand the LHS of the closed form is

1-2"B, 2B, _B

- Tn_ T _9fn
an—1 27 n n

=2(n — 1)![w"] (exp(w/2) -1 exp(w) — 1)
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n1 [ W/2 % (exp(w/2) + 1) w
= 2(n = Dlfw"] < exp(w) — 1  exp(w) —1)
w/2 x (exp(w/2) — 1)
exp(w) — 1
exp(w/2) +1

=2(n — 1)w"]

This is the claim.

Proof of auxiliary identity

This identity is from section 6.2 of Concrete Mathematics [GKP89]. In trying
to show that

(1) =t 3 (7 ) et -

q=0

we expand the powered term to get

We find for the inner sum

g qg+p\(n—p—gq 3 9+pY . 1 1
P k B P 2 pnmpma—kAl (1 — p)k+1T

q=0 q=0

Here we have extended to infinity because the residue vanishes when g moves
beyond n — p. We find

res L L (q+p)zq
“p—k+1 (1 _ \k+1
z ZnP (1-2) S\ P

R 1 1 _(n—p—k+p+tk+1) n-+1
Tz gnepmhHL (1 — ekt p+k+1 C\ptk+1)

Returning to the outer sum we have

n— n S D n+1
(-1) kn![w ]p;)(—l) exp(pw) <p—|—k:—|—1>.

With the indices on the binomial coefficient being positive we require n+1 >
p+k+1lorn—k>ptoget

322



n—=k
SR DIEVE ] S

=0 p+k+1
n+1
= (=) Fnl[w"] exp(— w 1P+ axn(pw n+1 )
(—1)™ ] exp(—(k + 1) >p§1< 0 p(p >( ; )

Taking all terms on the sum i.e. from p=0top=n-+1 we get

(=)™ nl[w™] exp(—(k + Dw)(1 — exp(w))" T =0

owing to the remaining coefficient extractor. That means for our sum that it is
given by

k
n+1
—1)™nlw"] exp(—(k + Dw exppw< >
(=1)"n![w"] )Y (1 )

p=0

Z Pk+1—p)" <n;1).

We have obtained the deﬁning sum which concludes the argument.
This was page 95 eqn. LXIX from Saalschiitz on Bernoulli, [Saa93].

1.137.7 Bernoulli numbers V

We seek to show that as given with Euler numbers

1 " 2m 41
J 4 1— Bop2%F %
2 2m+1{m—|— Z( 2%k ) 2k }

k=1

Using the fact that odd-index Bernoulli numbers vanish the parenthesized
term becomes

2m—+1
2m + 1 1
> (mk+ )Bk22k—1+(2m+1)><2><4
k=0

so that we have

2m—+1
1 om+1\ o
- B2,
2m + 1 kz_% ( k ) F

E2m =

We hence seek to evaluate with n even
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n+1

1 n+1 ok

R By2°".

n+1 2 ( k ) F
k=0

We have by convolution of EGFs for the RHS

4z exp(z)

(n+ 1)![z”+1]m exp(z) = —4n![z”}m.

n+1

We prepare to restrict to the even coefficients

w_ eXp(=2) n_exp(32)
—4nl[z ]W = —4nl[z ]m
Add and halve to get
n€XP(32) —exp(z) _ n !
2nl[z"] o) —1 2n![z ]exp(z)m
BT e R )

This is the claim.
This was page 96 eqn. LXX from Saalschiitz on Bernoulli, [Saa93].

1.137.8 Bernoulli numbers and roots of unity

We seek to show that as given

By, = W&%[zm} ql;[o (exp((3,,2) + exp(—(3,,2))

where (o, = exp(27i/(2m))

We will prove the more general (here n > 2)

n! foms
b= gme = qg()(exp@f{z) +exp(=(i2))

where ¢, = exp(2wi/n).
We introduce

n—1

Fa2) = ] (exp(Ciz) + exp(—Ci2)-

q=0

‘We have
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n—1
log fn(2) = Y _ log(exp(¢2) + exp(—(i2))
q=0
=n Z 277 [k log(exp(w) + exp(—w)).
k>0

Exponentiating
P

fn(z) = Z L n Z 2FTw™] log (exp(w) + exp(—w))

o !
p>0 p: k>0
But we are extracting the coefficient on [2"] so the only contribution comes

from k =0, 1.
[2"] Z l' [nlog2 + nz"[w™] log(exp(w) + exp(—w))]”

= 2"[z"] exp(nz"[w"]log(exp(w) + exp(—w)))

1
= 2"[2"] Z —'(nz"[w"} log(exp(w) + exp(—w)))?.
p>0""
Here we may again restrict due to the coefficient extractor, this time to

p=0,1. We get

= 2"n[w"]log(exp(w) + exp(—w)).

2"[z"](1 + nz"[w"]log(exp(w) + exp(—w)))
Collecting everything we get as our task

B n! ")
n = mn[w Jlog(exp(w) + exp(—w))

exp(w) — exp(=w)

TL' n—1
) ) + exp(w)

2n (20 — 1)

‘We re-write this as
Bn2n(2n _ 1) — n|[wn] w(exp(w) B exp(—w))
exp(w) + exp(—w)

=t (= TR ).

The term w does not contribute with n > 2 and we get

2w

] — 2
nifw ]exp(Qw) +1°
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But we also have for the LHS

n dw B 2w TR 4w — 2w(exp(2w) + 1)
nlfw (exp(4w) -1  exp2w) — 1) = niw’] exp(dw) — 1
_ n|[wn] 2’(1)(1 — eXp(2w)) — _n|[wn]27w
' exp(2w) — 1 ' exp(2w) +1°

This is the claim.
This was page 108 eqn. LXXXI from Saalschiitz on Bernoulli, [Saa93].

1.138 Worpitzky’s identity

We seek to show that
T+ k n

[u

n—

|
ilng

We write for the RHS

n—1

2+ 27 >+ ()

k=0
Observe that as shown in section [L137.6]

(7Y =13 (7)ot

q=0
‘We thus obtain

alfw™[z"](1 + 2)°® Z1+zkz("q> )P0k (exp(w) — 1)°.

k>0 q=0

Here we have raised k to infinity owing to the Eulerian number being zero.
Continuing,

n

o7+ 2 Y0 espw) - 07 Y (M) ()t

q=0 k>0

n
= nlw"][z"](1 + 2) ’”Z )P (exp(w) — 1)4(=1)" "9z
q=0
n
= nl{w" 1+z$ZeXp 1)"=9z4
q=0
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= nlfw"](exp(w) — 1)"["] (1 + 2)”

The first piece is

(exp(w) — 1)

= nl{w"] Z

Here we may raise ¢ to infinity owing to the coefficient extractor in w and
the fact that exp(w) — 1 =w + - - -, getting

3
=}
7N
Q8
~

nlw"] exp(wz) = ™.
We have the claim if we can show that the second piece is zero. But this is

"] (exp(w) — 1)"[z"](1 + z)mm ~ 0

owing to the coefficient extractor in z. This concludes the argument.
This is from the canonical Worpitzky paper [Wor83].

1.139 MSE 4627726: Quadruple binomial coefficient

We seek to verify as given that with V> 1 and 0 < n < N we have

i i i et gy n\(m\(N—-r\/N-s
—~ r)\ s m n '
We can re-write the RHS as

S () (S () ()

m=0

Working with the inner sum we get

Y32 (M)

= ["A+ )N A -2/ +2)" =[]+ )V T (= - )™
The middle sum yields

1+wNi ()1+w)r
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= [w™(1+w)N (1 =2/(1+w))" = [w™](1+w)¥ " (w—1)".

Combining these in the outer sum we have

N
(=D)"z")(1 + 2)N Z (14 2)""(z = )™ [w™(1 4+ w)V " (w —1)"
=0

N
= (D)"Y D )Y (L) TN =)V T N T (L) VT (w0 1)"

m=0
N
= (=1)" N NZ (14 2)"(z—=1) " w14 w)V T (w - 1)
" N
= ()" V=DV N A+ o) YT w1 Y ()™ (14 2) (2= 1) T e
m=0

We may extend the sum to infinity owing to the coefficient extractor in w :

1
1+ (1+2)w/(z-1)

1
(

(=D)" Nz = DV [w"] (1 + w)V " (w - )"

= (=" "]z = DV w1+ w) VT (w - 1)

z—14+(1+2)w
1

= ()" = DY (4 w) Y (w0 = 1)

The contribution from w is

1

1 Nenyy — 1)
(1+w) (w )lfsz—wz

res
w wN+L

Now put w/(1 +w) = v so that w = v/(1 —v) and dw = 1/(1 — v)? dv and
1+w=1/(1—-wv) to get

1 1

1_71)(21)_1)”1—2—@/(17@)va/(lf’U) 1—v)?

I'SS W(

1 1
= 2 — 1)"
rgstH(v ) 1-2)(1-v)—v—wz
1 , 1
R e U p
=1 rﬁsm(l_%) 1—2—-2v
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1

= (—=1)" res =220

¢ W(l — 2'1))”71

Extracting the coefficient in z we get

" /N +1 1 1
_1\N+1 _1\N+1—¢q _ n—1
(1) ;( e 2
n
N +1 _ 1 _
=M (Y e 2o
q=0

T e ()
=S (Ve (1)

We almost have the claim. We get for the remaining sum

n

2N ()N (N + 1)21(—1)‘1( N ) (q]_vl)

i’ q—1

The only non-zero pair of binomial coefficients is when ¢ = N+1. But ¢ <n
and n < N as per the original problem, so we get zero and may conclude. We
also see that when n > N the sum contributes with one term for a total of

2N N (—)N(NV + 1)ﬂ =0
N+1

Remark. For the case when N = 0 there is only one possible value for n,
which is zero also. Recall the closed form

1

(=)™ M (2 = DM A w) T (= 1)

In this case we are extracting the constant coefficients. We get starting with

(_1)n+N+1[zn](Z _ 1)N+1 (1__1)Z — (_1)N+1(_1)N+1 = 1.

This means that the formula holds for N = 0 as well.
This was math.stackexchange.com problem 4627726.
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1.140 MSE 4627918: Alternating power sum

We seek to evaluate

This is

SO0l

As a remark observe carefully that the coefficient extractor construction for
the second binomial coefficient will produce zero when k > m without any kind
of singularity. Continuing we note that the problem statement says that ¢ < n.
That means we get zero from the Stirling number when ¢ < k < n. Hence we
may set the upper limit to ¢ and get the formula (Stirling number is zero when

k=0):
2 @054
Actually we have for k < m
05 ) =50 )05 )
- nﬁkk!x (m—l(cT)l!;l()T!L—m—l)! - nﬁk<nT;1)<nl:>

so the first boxed formula simplifies to
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o) St ()

Note that (Zl)k' = mE so this is

Coma(" ) S e}

k=1

This will also correctly produce a zero contribution when k > m.
We get for { =3 and n > 3

(") [ {8} e ) mins D n )

This was math.stackexchange.com problem 4627918|

1.141 MSE 4227433: Squared power sum

We can evaluate the following general sum:

a7 et () (") = B0+ o) (2

= Af!][z"](1 + 2 + 2(exp(w) — 1))"(1 + 2)"

> (Z) 2F(exp(w) — 1)F(1 + z)2*

k=0
k)J\n—k k
k=0
Note that when n > ¢ we may lower to ¢ due to the Stirling number. On the
other hand when n < ¢ we may raise to ¢ due to the first binomial coefficient.

We get
d (2n—k> k{f}
Z nt
k=1 n
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We find e.g. for £ =3

S R G R Gy WA

This was math.stackexchange.com problem 4227433\

1.142 MSE 4428892: Ordinary power sum

S {a(17)

We seek to simplify

This is

Observe that with &k > 1 this is

z zexp((n+1)z)

_k![zk+1}exp(z) -1 + R exp(z) — 1
_ 1y 2(exp((n+1)2) — 1)
= K[ exp(z) — 1

n

= k![z") explgz) = Y "
q=0 qg=1

Note that when we regard k as a parameter we can write the initial sum as
(kY (n+1

2 \gfge1)

= la) " \q

This is because if n < k we may raise to k because the binomial coefficient
is zero on the added range. If n > k we may lower to k due to the Stirling
number. We then have
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We find e.g. letting k = 3 that

S )5t ()

q=1

This was math.stackexchange.com problem 4428892,

1.143 MSE 3932757: Stirling numbers and a tree-function
like term

We seek to prove the following identity:

i (7:> {n ij 1}’“! = i (7;:) (k)™ *(k + 1)"F.

k=0 k=0
For the RHS we introduce the polynomial

m

3 (TZ) (—k)™F (@ + k)R

k=0

and extract the coefficient on [z9] where 0 < g < n+ m to get

B G (e

— - (m) (_1>m—k <n + k> k,n+m—q
k=0 k a

= (n+m—q)[z""""] z”': <n]z> (—pm=* (n ;r k) exp(kz)

= (= () S () () 0 explve),
Working with the inner extractor,

[w?](1 4 w)"((1 + w) exp(z) = 1)™
= [w(1 +w)" (1 + w)(exp(z) — 1) + w)™.
Expanding the power,
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m

(= (10 ()0 0 ) - )fen
k=0

This is (here the second binomial coefficient is zero by construction if ¢ <

m — k)
S

We require the value at x = 1 which means we must sum over all ¢ from the
range. We get for the component that is dependent on ¢:

S0 Yoem g

=0 n+m-—gq

| —

(exp(z) —1)"

o

|
—HZM(“’“) 127 (exp(z) — 1)F
_q:() . 2" 77 (exp(= .

Here we may lower to n + k£ due to the binomial coefficient:

n+k

> (" Tt exnte) - 1)

q=0
We have by convolution of EGFs that this is
1
(n+ W] exp(z) = (exp(z) — 1)*

el -0 =

as required. This concludes the argument.
This was math.stackexchange.com problem 3932757.

= (n+k+ 1)z

n+k+1
k+1

1.144 MSE 4641290: A vanishing variable

We seek to prove the following identity where 1 <m < n:

i ngrgn,r?ém(‘r + k — T) -1
—1 ngrgn,r;ék(k —-r)

Observe that the denominator is

1
(k— Dl(n— k)I(—1)*

so that the identity becomes
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z": (Z)k(—l)"_k f[ (x+k—7r)=nl

k=1 =
The LHS is
Z() D" R+ k- 1)L (r+k—1—m)=,
k=1
This is

i() )" '“(gc:;]:1>(m—1)!<m+:::_1>(n—m)!.

Hence an alternate form is

n—1 )k r+k—1\(x+k-—m-1Y\ n
S (e ()T =)
We will prove it for x being an integer, equality for complex x then follows
by equality of polynomials. The LHS is

n—1

nlz™ (14 2)" w14 w)t 12 ( 1)(—1)"—’“(1 +w)*(1+2)*
= n[e" (1) [w" T (L4w) P (Z _ 1) (=)D (1) (142)
k=1
Working with the sum term,
(T+w)(1+2)—1)" = (w+z+wz)""t = (w+2(1 +w)" 1,
restoring the extractors,
A1+ 2P W)+ ) S (" . 1) w1+ w)

q=0 q

Here we may lower the upper limit to m —1 owing to the coefficient extractor
in z:
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Note very carefully that the middle binomial coefficient is zero when ¢+ 1 <
m. This is because the coefficient extractor in w yields zero when n — 1 — g >
n—m or m—1 > ¢. This means that the only non-zero contribution to the sum
originates with ¢ = m — 1 and we get

n(n_l) x 1 x 1:m<n>
m—1 m
as claimed.

This was math.stackexchange.com problem 4641290.

1.145 MSE 4644963: From trigonometric to rational
We seek to show that

N
kT N, . kT 1+ (=™ N
— k N _ 9
SNm = ;(—1) (cos <) (sin )" = ———— (=)™ o5
Observe that
2N
km k
> (=1 (eos )V (sin )"
k=N+1

k=1
so that
2N
1 L ET N—m km
S = 5 D (=1 feos ) " sn )

With p = exp(kim/N) the roots of 22 — 1 = 0 this becomes

1
= 1 Mm——(pp — 1 m
Z 2N —(px + /i)Y 2mim(ﬂk /P

Now introduce

F(2) = g2 (2 4 1/2)N (2 — 1/

We then have by inspection that the sum is given by the residues due to the
rational term at p; = exp(kim/N) with 1 < k < 2N. Here we use that

lim 2Pk _ L
2= Pk 22N 1 2NpiN71 ’
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Note that should z+1/z or z — 1/z be zero the corresponding trigonometric
sum term would have been zero as well. In that case the simple pole from the
rational term is canceled, making for a zero contribution and everything is in
order. Continuing,

N 1 1

f(Z) — SR ;(Z2 + 1)N—m(22 _ 1)mZ2N —

With residues adding to zero we must compute minus the residue at zero
and minus the residue at infinity. We get for the former (including the switched
sign)

N
(=0T
2Ngm

and the latter (the residue at infinity is —Res.—o25 f (1))

N
2Ngm

1
1/22N —1
N 1 2 1 N—m 1— 2\m 2N

R L e
aN;m 2 22N—2m 22m 1 — 22N
1 N

1 2 N—m 2\m
Reszzog(z +1) (17’2 ) 1 — 22N - IN;m’

1
Resz:0—2z(1/z2 + )N (122 - )™
z

N
- 9N ;m

Therefore we have

N 14(-)™1 N

CU"H oNm = g man 1

SNm = v
M 9Nym

This is zero when m is odd as claimed. When m is even the term 1/i™

simplfies and we have at last

N

L+ (=™
oN—1

-1 m/2

as desired.
This was math.stackexchange.com problem 4644963.

1.146 MSE 4657112: Triple combinatorial numbers to con-
stant

We seek to show that with 0 < g <n

1= i(—l)p(ni_;i 1) (anLf 1) <p-;q)_

p=0

We see that p = n does not really contribute owing to the first binomial
coefficient. We write
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1 (1 4 2)e S (1) (nﬁ; P 1) <p; q).

p=>0

Here we have extended to infinity due to the coefficient extractor. Continu-
ing,

2P+ 2) (1 )t S (1P (14 )P (” . ")

= [+ 2 )

= A+ T e T T+ ) zw/(ll +2))ett
— ZTL*I anl wnflfq wnn_l P N pwpi.
= [+ )" T+ w) ;( p >( T

The upper limit on this sum is due to the factor 2P and the coefficient

extractor in z. Note that (Z:tp) =1 so this becomes
P
n—1 +
[U}n_l_q](l + ,w)n Z (p q) (_1)Pwp‘
p=0 p

At this point we are now permitted to raise to infinity again, this time due
to the coefficient extractor in w:

w1+ w)” = [ ) =

(1+ w)att
This is the claim. Note that we have used the condition 0 < ¢ < n in the
coefficient extractor on w.
A companion identity
We also have with 0 < g <n
1=y () (L .
= n—-p—1/\n—q—1 p

We again see that p = n does not really contribute owing to the first binomial
coefficient. We write

L (RPN DI (R |

250 n—q-—1 D

Here we have extended to infinity due to the coefficient extractor. Continu-
ing,
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We first evaluate this for ¢ = 0:

[+ 2) w1+ w)™ > (—1)P2P(1+ w)?
p=0
1
14+ 2(14+w)’
But this is precisely the case ¢ = 0 of the hypergeometric from the previous
section, and hence equal to one. Continung with ¢ > 1 we have

="+ 2)" w1+ w)"

(“) 1+ 2 (14 w)t S (1P (14 w)? [p , q]

p>1

— q n— n+qp, n—1—gq n+1 _1yPap w)? p+qg+1
= P rfrery.

Recall from 77 that

@ =3 "t (1_21)2“];)<<Tik>>zk

n>0

‘We thus have

1
(T+ 2(1+ w))2a+d

X ki:io <<q E k>> (=1)F2F (1 4+ w)*.

Working with the term in front of the evaluated Eulerian polynomial we
obtain

(—1) 2 (14 2) (1 )

1

R N N (e R v

or alternatively
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n—1

R R R T IRVl ol () [BToec
— (1+2)p’

The upper limit was due to the coefficient extractor in w. Continuing with
entire expression,

n—1—q

e DY N

1+ 2z)p
q
X -1 .

E:«q—k»( )Z<n—1—q—p

k=0
For the remaining coefficient extractor we require

n—2—-p—k<n—-1—q—p

because (1 + 2)"~1797P is a polynomial. This simplifies to ¢ — 1 < k.

Hence only the values for £ = g and k = ¢ — 1 contribute. But the Eulerian
number is zero for the former and one for the latter. This yields

(—1)"+1[z"‘2](1+z)"‘1‘qn_zl_q(p“q)(—mp(lzp(—1)q—1zq—1< n+a )

=\ +2)P n—l—q-p)

The binomial coefficient from the extractor is (nf;f(;zz){p) = 1 which leaves

us with
n—1—q
Z (p + 2q) 1)p( n—+q )
= n—1l—-q—p
_ n—1— n+ p + 2(] _ n—1— n+ 1
= [w N(1+w) qg:( ) 1Pw? = [w N(1+w) qi(l—i—w)?q“

— [wn—l—q}(l + w)n—l—q -1
This is the claim.
This was math.stackexchange.com problem 4657112,

1.147 Computer search
1.147.1 OEIS A106800

We seek to prove withn>1and 0 <m<n
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N R Sl [ b

Here we define the first binomial coefficient to be (m;_lfk) so as not to

have a negative lower index. With the second binomial coefficient we will use a
coefficient extractor that produces zero for negative lower indices. We find

oS () ()6

:( l)n m[n 1}(1+Z)m 1[ nm](1+w2n mz 1+Z>k k{k}

k=0
— (71)n7m[zn71](1 + Z)mfl[wnfm](l +w)2n7m

n exXplv) — k
xnl[v"] Y (~1)F(1 + z)kwk%.

k=0

Now with v enforcing the upper limit of the sum due to exp(v) —1=v+---
this becomes (recall m < n)

(=)™ A+ )™ " T (4 w) Tl [0 exp(— (1 + 2)w(exp(v) — 1))

= (=1)" """ (1 + w)* Tl "] exp(—w(exp(v) — 1))
- m—1 (_1>n—1—p wn—l—p e v) — n—1—p
;( ) e e -y,

With the functional terms in w all being FPS, we must haven—1—p <n—m
or m — 1 < p which means just one term contributes which is p = m — 1,
producing

(_1)n7m[wnfm] (1 4 w)2n7m

xn![v"] exp(—w(exp(v) — 1))((;1_)7177;;7:w"_m(exp(v) -1
:(_ n m[ ]<1+w)2n m
<nlfo"] expl(~w(exp(r) - ))in” ED" (o) — 1

m)!

= nl[o" ](eXp((n_ { ”m}

This is the claim.
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This identity was found by a computer search which pointed to [OEIS
A106800 (Stirling numbers of the second kind)} (https://oeis.org/A106800).

1.147.2 OEIS A079901

We seek to prove with n > 1

oo g

k=0
We get from basic EGF's that the sum is

n!

_Ly (")(—1>qu7ﬁ<—q+p>-

g

Now observe that for all —g there is a matching p to get a zero factor in the
product except for ¢ = n. We thus have

% (Z) (=)™ jj:(—” +p)=n"

which is the claim.
This identity was found by a computer search which pointed to OEIS A079901,
triangle of powers.

1.147.3 OEIS A104684

We seek to prove withn > 0andn >m >0
n\ (2n—m o L (n+E\’( 2n—m
= (=)™ —1 .
() () = e () ()
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We have for the RHS

1)n—m T;Zy:(—l)’“ (n : k) (n : k) (nQ—n ”_1 Tk)

= (-1)" 1+z"7§1 <n+k)(1+z)’“<n21;fbk>

=0
= (=)™ [2")(1 4 2)" [w" ") (1 4+ w)? ™ Z <n+k>(1+z)’“w’“.

Here we can certainly extend the sum to infinity owing to the coefficient
extractor in w and we obtain

n—mfn np,,,n—m 2n—m 1
n—mf.n nfr,, n—m 2n—m 1
= (CU ) T ) s
1

—_ (71)n7m[zn](1 + Z)n[w2nfm+1](1 +w)2n7m

(z+ (1+w)/w)m+

The contribution from z is

1
(z + (14 w)/w)r*+1
Fortunately here the residue at infinity is zero, so we can evaluate by com-

puting minus the residue at z = —(1 + w)/w since residues sum to zero. This
requires the Leibniz rule:

1
res W(l +2)"

;(;H(ljtz)”)( = Z< >znﬁ+tl) n74(] 4 z)

an( >2n+1:q (n;—q>( —Q)!<nnq>(1+z)q

E(ET)

q=0

Evaluate at the pole and flip the sign:

SO

Substitute into the extractor for w:
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(-1 Z () (" T vt 4wy

q

- () ()

q=0

With upper negation this becomes

EOCI)

q
Note that with ¢ > n —m

<Z><n3m> B <n_q)1x<n_$1x (q+m—n)
()G = G)G)

This will correctly produce zero when ¢ < n — m. Returning to the sum we

now have
L) Gn,)

q=0

This at last becomes

o (B (M) o

o~ 9

Here we have again extended to infinity owing to the coefficient extractor.
Continuing,

n 1

()0 s =~ () e

()= ()

This is the claim. See also [.165.60l
This identity was found by a computer search which pointed to OEIS A104684,
lattice paths|

1.147.4 OEIS A003056

We seek to prove withn>1andn>m>1
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L W Kt sty

Here the third binomial coefficient could go negative on the lower index so

we re-write as
e m+k m+n m—1+k
Z ( )(n—k—l n—1 '

‘We then have

S (T Dt (Al (e

k>0

Here we have extended to infinity due to the coefficient extractor. Continu-

ing,
(_1>n+1[zn—1](1+Z)7rz+7z[wn )m 12 (m—i—k‘) k(1+w)k
k>0
n+lr,n—1 m4nf, n—1 m—1 1
= (=D)" P 4 2w (1 + w) (1+ 2(1 + w))™ T
1

_ (_1)n+1[zn+m}(1 + Z)m+n[wn—1](1 + w)m—l (w " (1 n Z)/z)m+1 .

The contribution from w is

res i(1 +aw)™ ! !
w Wn (w+ (14 2)/z)m+t

Fortunately here the residue at infinity is zero so using the fact that residues
sum to zero we can evaluate with minus the residue at w = —(1 + z)/z. This

requires the Leibniz rule:

(m) m I
1 1 e 1 m\ (—1)nd e _
m!<wn<”“’> ) :mz(q>(ww<m—1>q<1+w>“

Substitute the value of the pole to get
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Restore the coefficient extractor in z (flip sign):

m

2"t n+q—1\/m-—1\(-1)4
_ n+m 1 m+n
[Z +Z Z 1_|_Zn+q( q )(m_q) Zq_l‘

q=0

m—q
m—1

e (GG

The only way for the product of the two mutually flipped binomial coeffi-
cients to be non-zero is to have m — 1 = m — q or ¢ = 1. This yields at last

which is the claim.

This identity was found by a computer search which pointed to/ OEIS A003056,
inverse of triangular numbers.

Now from z we get [z !](1+ 2z)™~7 = (" _7) so that we have

1.147.5 OEIS A155865

We seek to prove withn > 1andn >m >1

() =S e (DG )
S (e

n+1 n
=B e S

=1

The sum is

= +

1)( DL+ 251+ w)*

o

Merging in the value for k = 0 we have

<nm 1>(_1)m1m [zn m— 1](1+Z)n 1[ ](1_|_w) (1—(1—|—Z)(1—|—w2))n+1.

Working with the coefficient extractor including the sign we have

346


https://oeis.org/A003056
https://oeis.org/A003056

(_1)71,[Zn—m—1](1 _’_Z)n—l[wm—l}(l +w)—2(2+w2 +Zw2)n+1

n+1
= (D)"[" A+ )" T (1 4 w) 7 Z (” . 1) (1 + 2)9w?2z" 174,
q=0

Now from the coefficient extractors we must have 0 <n—m—1—(n+1—¢q) <
n — 1+ ¢ (extracting from a polynomial in z) and 2¢ < m — 1. The first of these
works out to the pair m +2 < ¢ and —m — (n + 1) < 0 which holds trivially.
Putting these together we have m + 2 < ¢ < (m — 1)/2 which is the empty set
given that m > 1. There is no contribution from any ¢ and the sum vanishes.
We are left with

(") e = ()

which is the claim.
This identity was found by a computer search which pointed to OEIS A155865,
Leibniz harmonic triangle.

1.147.6 OEIS A033276

We seek to prove withn >1andn>m >0

n+m)/n—-1\1 " wf K 1 [2k\ (n+Ek
— = (=" -1 — .
(m—l)(m—l)m ( )kz::()( )<m>k—|—1(k>(n—k‘)
For the sum start by re-writing the Catalan number:
1 (2k\(n+k\ 1 (n+k)!
E+1\k)\n—k) k+1k xkl'x(n—k)

B 1 n\ [n+k _ 1 n+1\ /n+k
k+1\k E ) n+1\k+1 k)

We get for the sum
o () ) (1)
_ 7(;3: ::ii(l)k(kml) (n; 1) <n+s - 1)'

Here we may include k& = 0 because the third binomial coefficient is zero
there when n > 1. We obtain
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" n+1 i

. (71)n [wm] 1
n+1 1+w
1 1
= [w™]
14w
n+1
1 1
e (DS (n . )‘/’%1 )t

q=0

S ()G )

q=0

["J(1+2)" (1 = (1 4+ w)(1+ 2)™F

[2"](1 + z)”*l(w + 2+ wz)"+1

1+w

Note here that the middle binomial coefficient is zero when ¢ = 0 so we may
skip this:

LT PA [ [V |

Now we have

<qi1) (m—&-qq_—il—l) - (n+1—q)!><(m+Z!—n—1)!x(n—m)!

() ) = )G

We get for our sum

(9D 351G [ BRI 119 Dol (A TP |

q=0

Here we have lowered to include ¢ = 0 due to the range of m, which is
non-negative and at most n. We finally have

% (:l) (1 + ) an (”) 2

=0 q

(s ()10

To conclude and match the data from the OEIS we re-write the binomial
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coefficients and get

n—1 i m-+n
m—1/m\m-—1
which is the claim.

This identity was found by a computer search which pointed to [OEIS
A033276/7, diagonal dissections}(https://oeis.org/A033276).

1.147.7 OEIS A051162

We seek to prove withn >1andn>m >0

n+m:§<-m(nizz)(m—;+k) (rrmehy,

We have for the sum using basic relations that it is

n—1 n+mrp, n n+m m—1+k k k
1 1 1 .
(R T (CR D Y (S EXCERY
k>0
Here we have raised to infinity because the coefficient extractor in z enforces
k<n-—1. We find
1
(14 z+ zw)™
1
(w+(1+2)/2)m™

(14 2 w1+ w)

= (1 2 (0 )

The contribution from w is
1
(w+ (L+2)/z)™

Observe carefully that here the residue at infinity does not vanish. Hence
we evaluate using minus the residues at w = —(1+ z)/z and at infinity. We get
for the former using the Leibniz rule

(m—-1)
1 1
(G vr)

res (1 + w)™tm™

w wn—i—l

(m =1 \wn !
Gt & () Y 4 o
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m—1

n+q\ (—1)¢ n+m nt14q
q=o< )w"+1+q m—1-gq (1+w) .

Substitute w = —(1

+ z)/z and flip the sign to get

m—1

Z <n+q) (1)”2”“*‘1( n+m

=\ g JAtz)mtraim—1—-¢

Apply the coefficient extractor in z to obtain

)

ontltq”

m—1
S (Y i st
A m—1-—g¢
We have for minus the residue at infinity that it is
1 1
= ntl 1 1 n+m
ves v (LA V) e T
1 nil 1 wm
. 1 n+m
res (L) AT w2 )™
1 1
res — (1 + w)™t™
w w

14+w(l+2)/2)™
The coefficient extractor in z now yields

[z"+m1](1+z)”+m=< nem )=n+m

n+m-—1
which is the claim.

This identity was found by a computer search which pointed to OEIS A051162
a triangular array defined by the relation T'(n, k) =n + k

1.147.8 OEIS A122899

We seek to prove withn > 0andn>m >0

() Cn) = e () () G

We get for the sum from basic principles that it is

n

(D) ™™ (1 +w) > (—1)F (Z) (14 2)"(1 +w)k
k=0

(=1 "™ 1+ w)(1 = (L4 2)(1 +w)"
= ["[w™ (1 +w)(z + w + wz)"
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= [ (L + w) Z (Z) (1 4+ )T

q

i (Jorere = ()51 )

By construction the second binomial coefficient is zero when n —m > m+1
or n > 2m + 1. We therefore set the non-zero range to m < (n — 1)/2. With

that range we may simplify to
n m+1
m)\n—m

which is the claim. We also get the correct zero values when m is out of
range.

This identity was found by a computer search which pointed to OEIS A122899,
a triangular array counting directed animals.

1.147.9 OEIS A110555
We seek to prove withn > 0andn>m >0

(") ezt (I ()

k
We get for the sum that it is

e () ()
G SR i (TRARU B (R [ EROR

k>0
Here we have extended to infinity because the extractor in z enforces the
upper range. Continuing,

1
(14 z + zw)m+l
1
(w+ (14 2)/z)m

(=)™ [2"](1 + 2)*" [w" (1 +w)

_ (—1)7'L[z"+m+1](1 =+ z)?n[wn—l](l =+ w)n—l

The contribution from w is

1
(w+ (1 +2)/z)m
Fortunately we see that the residue at infinity is zero here so we may evaluate
using minus the residue at w = —(1 + 2)/z. We use the Leibniz rule:

1
1 n—1
res —wn( + w)
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wnta
:;;ﬁi(?);f:q(n+2_l>0n—qﬂ(;_z>a+w@n4—mﬂ
:ii;j$<n+g_l><;iz>ﬂ+uwhkmﬂ.

Substitute the location of the pole and flip the sign to get

m
Z yrlznte fn4 g -1\ (n—1 (—1)-L-ma 1
1+z n+q q m—q gn—l-m+q’

=0

<m> LW(” —1)m=9(1 + w)nflferq

Restore the extractor in z
“/n+q—1\[/n—-1 1
—1)¢ n+m+1 1 2n m+17
o L e e e

-2 (G

Due to the third binomial coefficient we have that the only non-zero contri-
bution originates with ¢ = 0 and we get

() () =)
as claimed.

This identity was found by a computer search which pointed to OEIS A110555,
partial sums of alternating binomial coefficients.

1.147.10 OEIS A141662

We seek to prove withn>2andn>m > 1

e e () (7 ()

k=0

We get for the sum
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(~1)" (4 2" ()
k>0

(m _; * k)zm +w)*,

Here we have extended to infinity due to the coefficient extractor in z. Con-
tinuing,
1
(14 z+ zw)™
1
(w+(1+2)/2)™

(=1)™ "+ )" ™)1+ w) ™

= (SR 2) (14 w)™

The contribution from w is

1
(w+ (1+2)/2)™
Fortunately here the residue at infinity is zero, so by residues adding to zero

we may evaluate using minus the residue at w = —(1 4 z)/z. This requires the
Leibniz rule:

1 m—1
I'S)S W(l + w)

(m i 1)! (wiﬂ (1+ w)m_l) (m—1)

IR R
)

wm+1+q

m—1
B (=1)4 /m+q\/m-—1
- Z wm+1+q q q (1 + UJ)q.
Substitute the value of the pole and flip the sign to get

A (e

(14 z)m+i+a q q 24

3

Il
=]

q

Restore the extractor in z including the scalar:

5 (7 59) (7 et

S (0 e ()

q=
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Note that the upper and lower index of the third binomial coefficient are
non-negative since n > m and m > 1. That means only ¢ = 0 and ¢ = 1
actually contribute. We get

) Yoo () e

=n—1—(m+1)(m—1)=n—m?
and we have the claim.

This identity was found by a computer search which pointed to OEIS A141662,

absolute value of n — m?2.

1.147.11 OEIS A046816

We seek to prove with n > 0 and n > m > 0 and a variable p where m > p

() () = Zer ()

First note that

@ @ ~ (m—k)! n;: x(k=p)! @ (Z:zf)

and our sum becomes

(o))

() (D)
=0 () 2 ) S0t

Here we have extended to infinity due to the coefficient extractor in z. Con-
tinuing,

1
1+z4zw

1
w+ (1+2)/z

() 2 )

e ) IS S e e R

The contribution from w is

1

1
res ——(1+w)" P—n——.
( ) w+ (14+2)/z

w wn7p+1

354


https://oeis.org/A141662

Fortunately here the residue at infinity is zero (just barely) so we may eval-
uate using minus the residue at w = —(1 + 2)/z to get

m Zn—p-i—l
—(=)™ ( ) [z (1 + z)m-P(—l)"‘”lW(—l)”‘p an_,,

p

oMy, = ()0,

This is the claim.
This identity was found by a computer search which pointed to OEIS A046816),
Pascal’s tetrahedron.

1.147.12 OEIS A001700

We seek to prove with n > 0 and n > m > 0 and a variable p where p < n —m
with p > 1

o) - g () )

k=0

‘We have for the sum

()P 2P P (L w)" Py (1)

<n—1+k
k>0

k )z’“(l—kw)k.

Here we have extended to infinity due to the extractor in z. Continuing,

1
1
(w+ (1+2)/2)"

(1P (14 2 )1+ )

= (—1)13[2’2”_"1}(1 + Z)2n—m[wp](1 + w)" P

The contribution from w is

1
(w+ (1 +2)/2)"
Here the residue at infinity is zero under the stated preconditions and we

may evaluate at minus the residue at w = —(1 + z)/z as residues sum to zero.
This requires the Leibniz rule:

1
n—p
res (1+w)
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ﬁ (wPlJrl (1+ w)"—p) (=

O _1 1)! i (n . 1) Hﬂ#(n —p) (L w) TP

pur AN
“wm (P e (L Josar
5 (e (e

Substitute the location of the pole and flip the sign,

—1— qt+l-p°
= n—1—g¢q z

Restore the outer term,

’;Z‘:(pw)[zm_m](lﬂ)zn—mw”q( n—p >(_1)q+1_,, 1

q (14 2)ptHe\n—-1—g¢q 29+1-p

— nil (P+ q> ( n—p >(1)q+1p[z2nm2p](1 4 )2n-mep-i-q,

Note that by the preconditions 2n — m — 2p > 0 so all is in order. Next,
n—1
Z p+gq n—p (—1)o+1- n—-m-p—1—gq .
= q n—1—gq 2n —m —2p

Note that with 2n—m—2p not being negative we must have 2n—m—p—1—q >
2n—m —2p or p > 1+ ¢q. Also with n — 1 — ¢ not being negative we require
from the second binomial coefficient that n —p >n—1—q or ¢+ 1 > p. The
only way to fullfill these two is that ¢ = p — 1. This will produce

p+p—1\/n—p (_1)0 2Zn—m—2p\ [(2p—1
p—1 n—mp 2n—m—2p) \p—1)
This is the claim.

This identity was found by a computer search which pointed to OEIS A001700,
C(2n+1,n+1).
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1.147.13 OEIS A007318

We seek to prove with n > 0 and n > m > 0 and a variable p such that m < n—p
orp<n—m

()= e (G0

‘We have for the sum

(R e s (PR DV (i FRRBY

k>0
Here we have extended to infinity due to the coefficient extractor. Continu-
ing,
1
(1+ 2z + zw)rt!
1
(w+ (14 2)/z)p+t

(1P + )" w1+ w)

= (S (L 2P (1w

The contribution from w is

res L(1 +aw)" ! !
w o wn (w+ (1+2)/z)p+t"

Here fortunately the residue at infinity is zero (note the case n = 0) so we
may evaluate using minus the residue at w = —(1 4+ z)/z which requires the
Leibniz rule:

1 (1(1+w)n—1)(p) _ lzp: (p>(—1)q”q<n_1>p—q(1+w>n+q—1—p

wnta

p ! n+q71 (71)(1 | n—1 n4+q—1—
! —q)! 1 a—-r
<q>q< q >w”+q(p ? pP—q (L+w)
P
_Z n+q—1\(=1)7/n—-1 n+q—1—
a ( q ) wnt4 q (L w)™ "
Substitute the valie of the pole and flip the sign:

P g - 1\ (C)P 1
Z (1 + z)nta _ <_1) n+q—1—-p°
= q z) pP—q z
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Restore the extractor in z:

P _ n+q _
_1\p n+q 1 n—m+p+1 2n—m z n 1 _ q—Pé
(-1) Z( g 042" (D"

a=0 q P—4q
Sl (.

> (G e

Now with n — m not being negative we have that only ¢ = 0 contributes to
the middle binomial coefficient, yielding

(6, )r=)

This is the claim. Observe carefully that here we have used the precondition
p < n —m which prevents the upper index of the middle binomial coefficient
from going negative, producing a non-zero value for ¢ > n —m.

We can use this to construct identities for fixed values of p beyond n — m.
For example with p =n — m + 1 we get an additional term which is

n—14+n-m+1 -1 n—1 (—1)n—mH 2n —m
n—1 n—m 0 - n—1
and we have shown that
n—1 _ 2n—m
m—2 n—1
— — 1+ k o2n—m n—1+k
— 71n7m+1 71]6 n m+ )
(=1 kZ:O( )< k n—m-—k k

This identity was found by a computer search which pointed to/ OEIS A007318|,
Pascal’s triangle.

1.147.14 OEIS A144484

We seek to prove withn > 0and n>m >0
In+1l-—m o sfm—m+k 2n —k n+1
= (=1)n—m -1 .
( 2n+1 ) (1) Z( )( k )(n—m—k)( k )

k=0
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We have for the sum that it is

(=1 () ) ()

<2n +1
k>0

k >(—1)k(1+z)kwk(1+w)_k.
Here we have extended to infinity due to the coefficient extractor in w.
Continuing,

2n+1
e L e (e I

14w
— (_1)n7m[znfm](1 4 Z)nfm[wnfm] : i - [1 _ wz}2n+1
— (—1)r—m[yn—m anmn_m 2n+1 —1)429(—1)*—m—4
— (L4 2) Z( AR ISVEISY
2n+1
=[""MA+2)" 29,
> ("))

Here we have once more raised to infinity owing to the remaining coefficient
extractor. Concluding,

1—
[+ )" (L )T = (L ) = (3n y m)

2n+1
This is the claim.

This identity was found by a computer search which pointed to OEIS A144484,

binomial coefficient (3":_1]; k)

1.147.15 OEIS A130595

We seek to prove withn > 0andn>m >0

() = G ()

The sum is

(71)n+m[2nim](1+Z)nim[’wm}(1 +w)n+m Z(il)k <Z> (1 Jrz)k(ler)fk
k=0

— (_1)n+m[zn—m](1 + Z)n—m[wm](l + w)n+m |:1 - 1+ Z:|

14w
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= (=)™ A+ )" w1+ w) ™ [w — 2]"

e S (R R TRV o

q=0 q

) wq(_l)n—qzn—q

L S TS T ol () TR IS

q=0 q

Now the only ¢ that contributes here is ¢ = m and we get

(=)™ [ (1A 2 (;) (’g‘) (~1) e = (;)

This is the claim.
This identity was found by a computer search which pointed to/ OEIS A130595,
inverse Pascal’s triangle.

1.147.16 OEIS A011973

We seek to prove withn >1andn >m >1
n—m-—1 " n—1+k 2m m—1+k
= —1)k )
( m—1 > kz:%( )<n—m+k)<m+k>< k )

We start by re-writing the sum as follows:

2 ()

k=0
(m—1+k

S (RS T TERTAD o (e ISR R

k>0

Here we have extended to infinity due to the extractor in w. Continuing,

1
1+ w+wz)™
1
(w+1/(1+2))™’

(14 2 )1+ )

= [ 4 2 (1w

The contribution from w is
1
(w+1/(1+2))™

Here we see that the residue at infinity is not zero, so we compute using
minus the residues at w = —1/(1 + z) and infinity. We get for the latter,

1 2m
rgs W(l =+ ’lU)

1
(L/w+1/(1+2))™

1
+1 2
res ﬁwm (14 1/w)*™

360


https://oeis.org/A130595

1 1 w'
_ = ,ym+l 1 2m
o wr? (1+w) w?m™ (14+w/(1+2))™
1 1
= res — (1 +w)*™ =1
T e ()

Substitute this into the extractor for z to obtain

ot = (M,

m—1

This is the claim. Now we just have to show that the contribution from the
finite pole is zero. This requires the Leibniz rule:

(m i ! (uﬂiﬂ (1+ w)2m> (m=1)

R = (m - 1) (=1)(m + 1)7

q wm+1+q

e S T oo

m—1
B m+q\ (—1)¢ 2m 14
—Z( )wmm i s

q=0 B

(2m)m=L=9(] 4 qp)m T

Evaluating (1 + w)/w at w = —1/(1 4 z) gives —z so we have from the
extractor in z the result (flip sign)

—1

-3 (m;q>(—1)q< o )(—1)m+1+q[zm1](1 } ) moLgmIte

por m+1+q

-y (m+q)< 2m )[20]<1+z)”m1z2+q 0.

: q m+1+gq

The coefficient extractor has produced a zero value as required.
This identity was found by a computer search which pointed to OEIS A011973|
coeflicients of Fibonacci polynomials.

1.147.17 OEIS A253909

We seek to prove with n > 1

- k—n\?/2n+1
2 k
= —]_ .
=) ()
We have for the sum by upper negation,

361


https://oeis.org/A011973

M=

1)k <2n —nk - 1)2 (2n; 1)

k=0
which is
S kf2n—k—1\? (2 +1
sG55 ()
This is
n— 11 m— e 2n+1 2k wk
e e (M) e

k>0

Here we have extended to infinity owing to the two coefficient extractors.
Continuing,

wz

(I+w)(1+2)

"1+ 2 w1+ w)? [1 - r"“

1
L+ 22

2n+1
1 1 2 1
_ [anl] [wnfl} Z ( n + >(1+w)2n+1qzq
q=0

— [Z”_l} [ n—l] 2(1 a4 z)2n+1

(1+w)
(14 2)2 (14+w)? q

e ()

q

M

I
=)

n—1

.S <znq+ 1) (Qn _n1 - q) T

SECGE o
This is "
e () e

S\ a1+

Here we have extended to infinity due to the coefficient extractor. Continu-
ing,

(_1)n71n[2n71](1 _|_Z)2n71 |:1 _



- (_1)"—1n<” o 1) (—1)t =2,

This is the claim.

This identity was found by a computer search which pointed to OEIS A253909,
positive squares.
1.147.18 OEIS A142150

We seek to prove with n > 0

n

B [ )

k=0

We have from the first binomial coefficient that with n non-negative and
0 < k < n that we must have n — k > k or n > 2k. The third binomial
coefficient requires 2k > n — 1. Together we have n > 2k > n — 1. Now if n is
even this implies n = 2k and the middle binomial coefficient produces a zero
value. If n is odd we get 2k = n — 1 and the coefficients yield

T G = o e

= (=D Yk +1).
Now we have k = (n—1)/2 and so k+1 = (n+1)/2 and we have the claim.
This identity was found by a computer search which pointed to OEIS A142150,
integers interleaved with zeroes.

1.147.19 OEIS A001147

We seek to prove with n > 0
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= Oy g LY :O<—1>k(z> o (1og iz>_k
-

n!

:@[z%} {log ! —z]n.

Note that log i —z = %ZQ + - -- so only the first term of the power con-
tributes to [22"] with a value of 1/2" and we have

(2n)!
2nn!

as claimed.
This identity was found by a computer search which pointed to OEIS A001147,
double factorial of odd numbers.

1.147.20 OEIS A243594

We claim that wth n > 0 and n > m > 0 and p and r real numbers

(o) =g (e ()

We get for the sum

(D" A+ 2)P i (Z) (D1 +2)" (lmwj r)

k=0
n

= ) Y (1) DM

k=0
="M+ 2)P[w™) (1 +w)" (14 2) (1 +w)" =17
= "M+ 2P [+ w)" (L w)" + (1 w)" -1
= [w™ wrn*m p " w)d™ w)" — 1)1
= [w"](1 +w) q:zo (n_m_q) (q)(1+ )" (1 +w)" = 1)

Now since (14+w)™—1 = nw+ - - - we must have per the coefficient extractor
in w that n—q < m or n—m < ¢q. Hence only ¢ = n—m can possibly contribute
and we get

o (B) (1) @k w1
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n 2 n
— m 1 n“—nm+r m._m o) = M .
(1) g = ()
‘We have the claim.

This identity was found by a computer search which pointed to OEIS A013612,
expansion of coefficients of (1 + 5z)™.

1.147.21 OEIS A013609
We seek to prove with n > 0 and n > m > 0 that

()= S e )

k=0

We get for the sum
B S ()R )
k=0

= [w™][" "1+ 2)" (1 + w) (L +2) — 1)"
= [T+ )T (w2 + w) (1 2) + 2)"

= [wm][z" (14 )™ Z (Z) wd(2+w)?(1+ 2)72" 1.

Now from the coefficient extractor in w we get ¢ < m while the coefficient
extractor in z yields n — g < n —m or m < q. The only ¢ to fit these is ¢ = m

and we get

e R e () P R L

A S CE el () PR

-wz)ermr- ()

as claimed. Compare also [[.165.18
This identity was found by a computer search which pointed to/ OEIS A013609),

coefficients of (1 4 2z)™.

1.147.22 OEIS A181543
We seek to prove with n > 0 and n > m > 0 that

) =)0

k=0
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First observe that

(Z) (Z) T -kl x Z: x (k—m)l (Z) <7:L_—1Z>

so that we seek to prove

S o1 A TR T}

The sum is
i(n—m)( m ><2n—m—k>
k n—k—m n
k=0

) - n n—m Zk
— [ 2 w1+ w) Z( k ><1+w>k

= [T+ )" [w"] (L +w) T [1 * 1jw} -

= "1+ ) )1+ w) (1w 2)

0 2 )1 ) Y (” B m) (14 2) T

=3 ()G )

Next observe that

(lenc”]L)(m?j—q) - (n—m)!x(2m+qn—!n)!><(n—m—q)!

“ () la-m-d)

It therefore remains to prove that

) =2 () o)

[znfm](l -I—Z)m i (TL - m) 20— [anm](l + Z)m(l _i_Z)nfm
q=0

q

The sum is
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— (1t ) = (nf m) - (Z)

and we have the claim.
This identity was found by a computer search which pointed to OEIS A181543,
cubed binomial coefficients.

1.147.23 OEIS A008279

We seek to prove with n > 0 and n > m > 0 that
n
n n n—m-+k
= (=1)" —1)* k™
()= o () (")
We get for the sum

(=)™ + 2)™ ™l [w™ f:o( ) B(1+ 2)* exp(kw)

k
— (—1)"ml[" (L )" (L~ (L4 2) exp(w))”
— ml[" (L + 2)" ™) (= exp(w) + exp(w) — 1)”

n

=l 2] Y (1) st explau)explw) - 17

q=0

Now the coefficient extractor in z requires ¢ < n — m and we have for the
term related to the Stirling number EGF that we need n —q¢ < mor n—m < q.
Hence only ¢ = n — m can possibly contribute. We find

n

ml[e" (L4 2)" " ™) ( m) 2" exp((n — m)w) (exp(w) — 1)

n —

= ml[20)(1 4 2" ) (;) exp((n — m)w)(exp(w) — 1)™

= (1) mriep(tn —mpw) (w+ 5+ 5 )= (Yo

This is the claim.
This identity was found by a computer search which pointed to OEIS A008279,
number of permutations.

1.147.24 OEIS A100100

We seek to prove with n > 1 and n > m > 0 that
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RO RIS Y e [ A

‘We have for the sum

(D) "+ )" (L w) Y (=) (n%k> (14 2)F(1 +w)k.
k=0

Here we may extend to infinity owing to the coefficient extractor for the
remaining binomial coefficient:

(=)™ 2™ ") (1 w) T (L 0) Y ()RR (L 2) (L 4 w)
)
1
L+o(l+2)(1+w)
1
1v/(1+2)+14+w

= (S 2 (L ) (1 )

= (S0 )™ 21 w) (L o)

The contribution from w is

1
v/ (14+2)+1+w’
Here the residue at infinity is zero and we may evaluate using minus the
residue at w = —1 — 1/v/(1 + 2).
We get

1 n—1
rgs W(l + ’I,U)

1 (—1)n—! v2(1 4 2)?

(—1—1/0/A+2) o 11+ 21 (I +o(l+ )

Substitute into the remaining extractors to obtain

ni,n—1 m—21, n+1 2n U2(1+Z)2
—(=D) "+ )™ (1 + v) (T +vtoz)it
= (UM e
1

= (S0P 2R (14 )

(@ o)/v+ 2t

The contribution from z is
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1
(z+ (L +v)/v)"+t
Now with n > 1 and n > m > 0 the residue at infinity is zero and we may

evaluate with minus the residue at z = —(1 + v)/v. This requires the Leibniz
rule:

1
1 m
res — (1+2)

(n) n 7
1 1 m _ 1 n (_1)qnq n—q q+m—n
(Zn(1+z) ) =— ( )z"+q mi=4(1 + z)

1 < /n n+qg—1\(-1)? m _
= — | —q)! 1 q+m—n
n! (q)q( q ) e 9 n—q)! +2)
_ - n+q_ 1 (_1)(1 m q+m—n
e G = R P
Evaluate at z = —(1 + v)/v so that 1 + z = —1/v and flip the sign to get

S (ma T SO (e
q (L+ov)mte \n—gq) vrtm=n =

q=0

Restore the remaining coefficient extractor in v:

(~1)" [ (1 +v)2ni (”+q‘ 1)(02‘”‘( m >(_1)q+m+1

q=0 q 1+v)"ta\n—q

B

g=0

Now with n — ¢ and m not being negative for the right two binomial co-
efficients to be non-zero at the same time requires n — ¢ = m or ¢ = n — m,

yielding
(1) 2n—m-—1 (—1)mH = 2n—-—m-—1
n—m n—1 ’

This is the claim.
This identity was found by a computer search which pointed to OEIS A100100,

binomial (2"772_ 1)

1.147.25 OEIS A076756

We seek to prove with n > 0 and n > m > 0 that
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() o (e () ()
We have for the sum
e () e () ()
= (C)Y(1 4 )2 Y (2"]: 1) (—1)* <2mm_ ’“) ufz)k

k>0

The upper limit on k is gone due to the coefficient extractor. Continuing,

nt+mrn 2ny, m 2m 2n+1 (_1)k P
(114 P (4 w) kz( B B

z

(I+w)(1+2)

2n—+1
= (=1)" (1 4 2)2 ™) (1+ w) " {1 - }

1 o™ 1
w
1 z (1 w)2n—2m+1

Extracting the coefficient in z,

= (=1)"t™ "] (1 + w4+ wz)* L.

n+mfp, m 1 - n—q 2n+1 q 2n+1—q
(=)™ w ]WZ(—D ( . )w (14 w)"*

This is the claim.
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This identity was found by a computer search which pointed to OEIS A076756,
coefficients of a characteristic polynomial.

1.147.26 OEIS A130595

We seek to prove with n > 0 and n > m > 0 that

() = (e () )

We obtain for the sum

_1\ntm M an-‘rm whm w)*™ - n _ k(1+w)k

(PR e 3 ()0
n+mifp . m nm+mf,, n—m n—m 1+wn
(S 2 (4 ) [1—1“}

— (_1)n+m[zm](1 + Z)nm—l—m—n[wn—m](l 4 w)n—m(z _ w)n
:(_1)n+m[ ](1+Z)nm+m n[ n— +w n mZ( ) n dqp—4 .

We see from the coefficient extractors that we must have g <m and n—q <
n —m or m < q. Hence only ¢ = m can contribute and we obtain

(71)n+m[zm](1 + Z)nermfn[wnmel + w)nfm (;) Zm(il)nfmwnfm

=L o (1) = (7))

This is the claim.
This identity was found by a computer search which pointed to OEIS A130595,
inverse of Pascal’s triangle.

1.147.27 OEIS A206735

We seek to prove with n > 1 and n > m > 1 that

(o) = G L) )

We get for the sum
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(—1)tm kZ_LO (T;f_ k) (—1)* (m;_l 1+ k) <n+:+ k)

= (=) (1 ) S k(1) (m -1+ k) (n +m + k)

n—1 m
k>0

Here we have extended to infinity due to the coefficient extractor. Continu-
ing,

(M 2 ) SR ()
k>0

= (=1)" "] (1 + 2)" T (L 4 w) T (L A+ o)
XY (—1)FF 1+ w)F (1 + o)
k>0
= (1) (14 2) T w1 4 w) ™ T (1 4 )
1
T+20+w)(1+v)
= (=D)L 4 )" w4 w) T ] (L o)
1
><1—1—2(1—&—1))—|—wz(1—&—v)
= (=)L 4+ )" (L4 w) ™ o] (1 o)
1
><w+1/z/(1+v) +1

The contribution from w is

1
wH+1/2/(1+v)+1°

Here the residue at infinity is zero and we may use minus the residue at

1
1 m—1
res — (1+w)

w=—-1-1/2z/(1+v) as residues sum to zero. We get
1 1
_ _1 n _1 mfl—
(=1) (1+1/z/(1+v))”( ) 2= (1 4 v)m—l

ZnJrlfm(]_ _’_v)n+17m
(14 z+zv)"

Restore the remaining two extractors to get

= (-1

n+1—m(1 + v)n+1—m

B
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1
1
(z+1/(1 +ov))""

["](1 + 2)" " (1 + )"

= [z"](1+2)" T ™) (1 +v)"
The contribution from z is

1
(z+1/(1+v)™
Here the residue at infinity is not zero and it must be evaluated. We find
(flip sign)

1
. n+m
res — o7 (1+2)

1
(1/z+1/(1+v))™

n

1
res —22m+1(1 +1/z)tm
z 2z

2ntm (14 z/(1 4 v))?
= res 1(1 + z)"*m; =1
g (+ /(%)

Substitute into the remaining coefficient extractor in v to obtain

™ (1 + v)" = (:1)

This is the claim. Now we just have to verify that the contribution from the
pole at z = —1/(1 + v) is zero. This requires the Leibniz rule:

(n—1)
1 1

n+
T <zm+1 (1+2) m>

o () R s s e

zm+l+q

n—1
1 n—1 m+q\ (—1)? n+m

= ! = 7 (n—1—2¢g)! m+1+q

s ()" ) et Jas
- "Z‘l <m+q>(1)q< S ) (1 H)mﬂﬂ
N q m+1+gq z ’

Evaluate at z = —1/(1+v) and restore the coefficient extractor in front (flip
sign)

= res 2" (1 4 )"t
z

RUCEREOES oY () [t SR IR

m+1+gq
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= ()" "1+ )2 (mq+ ‘-’) (m”jl’j q)vm+1+q.

Note however that m+1+¢ > m and we get a zero contribution as required.
This concludes the argument.

This identity was found by a computer search which pointed to OEIS A206735,
a triangle like Pascal’s obtained from a DELTA operator.

1.147.28 OEIS A318107

We seek to prove with n > 0 and n > m > 0 that

]G [ B ol BV Gy [

We get for the sum

2 )P S (M)
k>0

Here we have extended to infinity due to the extractors in z and in w.

Continuing,

1
(1 - zw — zwv)m+1

270+ 22 (L )P )

1

_ (_1)m+1[ZnJrl](1+Z)2nfm[wn+1](1_~_w)2nfm[vnfm](l-l-v)” (1; . 1/Z/w)m+1 .

The contribution from v is

1
(v+1—1/z/w)mt1’
Here the residue at infinity is zero so we may evaluate using minus the residue
at v = —1 4+ 1/z/w. This requires the Leibniz rule:

(m)
1 1 )
o) (Unmﬂ(l +v) L)

1 S n_m+ ) m—q n—m-+
_mZ( ) pn—m+1+q " (1+v) !

1 < (m n—m+q\ (—1)¢ n _
— | _ -\ n—m-+q
m! (q)q' q > pn—m+l+q (m—q)! m—q (142)

q=0

1 n
I'SS W(l + ’U)
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B " /n—m+q (—1)? n n—mtq
_;( . )Un_mHJrq m—q (1+v) :

Observe that

(n_?+q)(mnq> :q!X(an)LiX(mQ)! B (nnm>(r;)

so this becomes

()8 ()t

(R - ()

Instantiate the residue and flip the sign:

(=1 <m) znfmlwnfm (—1+ 1/lz/w)n+1

1
= (=1 m+1 n m+1 m+17'
(=1) <m = (1 —wz)ntt

Substitute into the remaining coefficient extractors to get

1
(1 —wz)ntt’

(”) 2" (1 4 2)2" " [ (1 4 w) >

m

Do the extraction

n - 2n —m qg+n
nm 1 2n—m q
(e (20 )= ()
)= (2
m) = \n—m-—gq n
Next observe that
2n —m qg+n\ (2n —m)! _(2n—m)\ (n—m
n—m-—q n ) (m—-m-—q)!xnlxq n q
so we obtain
n\ /2n—m\ = [ 2n—m n—m
m n —o \n—m—gq q .
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The sum is Vandermonde but we can compute it like so:

e Bl ) et Gy

Putting everything together we get

n 2n —m\ (3n —2m
m n n—m
which is the claim.

This identity was found by a computer search which pointed to OEIS A318107,
multinomial (3n — 2k)!/(n — k)!®/k!.

1.147.29 OEIS A123110
We seek to prove with n > 1 and n > m > 1 that

e ()0 ()

k=0

We get for the sum

e () (50
This is

1 +z)2"2(—1)kzk(n_ 1 +k) (n— 1 —i—k:).

m—1 n
k>0

Here we have extended to infinity due to the coefficient extractor in z. Con-
tinuing,

(=)™ "1+ 2 [w™ (A w)" T (L4 0)" Y (1) (L 4 w) (1L )
k>0
1
1+ 2(1+w)(1+4v)
1
v+14+1/2/(1+w)’

= (S + 2)™ w™(1 w) (14 )

= (=D [" (14 2)* [w™ (1 w) "1+ 0)"
The contribution from v is

1

(I_HJ)nilv—l—l—l— 1/2/(1 +w)’

r
SS vn+1
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Here the residue at infinity is zero and we may evaluate using minus the
residue at v = =1 —1/z/(1 + w). We get

(_1)n+1 (_l)n—l 2’2(1+1,U)2

(14 1/2/(1 +w))+ zn=1(1 +w)n=t (14 2+ zw)"+1’

Substitute into the remaining extractors and flip sign to get

1
1+ 2+ zw)ntt
1
(w+ (1+2)/z)"

(D)™ T+ 2 w1+ w)”

_ (_1)m+1[z2n](1 4 z)Qn[wm—l](l +w)n

The contribution from w is

es ! (1+w)" !
res — w )
w ™ (w+ (1+2)/z)"t!

With m > 1 we see that the residue at infinity is zero and we may evaluate
using minus the residue at w = —(1 + z)/z using the Leibniz rule:

1 <w1m(1 +w)n>(n) — lzn: (n) Mnm@ +w)?

| | m+q
nl nle\g) w

O AT

SR

q=0

Substitute to evaluate the residue in w and flip sign

S () e ()

q=0

Restore the coefficient extractor in z including the scalar:

5 (e ()

q=0

SR G)er

Now with 2n —m — ¢ and 2n —m not being negative the only case where the
second binomial coefficient is not zero in the given range is ¢ = 0 and we get

(" o) ()=
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which is the claim. Observe carefully that we have made use of the fact that
n > m because if not we get a non-zero contribution from ¢ when 2n—m—q < 0
or ¢ > 2n — m which then includes a contribution from 2n —m + 1 < g < n.
This contribution is

S ()

g=2n—m+1

Note also that when m > 2n we have two types of binomial coefficients, under

the first interpretation (zg;Tn:q) is zero because 2n —m < 0 and everything

sums to zero, under the second we replace it by (Z”im_q) which is non-zero when
q = 0 and everything sums to one. We point out however that the coefficient
extractor that was responsible for this binomial coefficient implements the first
interpretation (zero when m > 2n) so that is the one we should choose.

This identity was found by a computer search which pointed to OEIS A123110,
a product of the DELTA operator.

1.147.30 OEIS A202409

We seek to prove with n > 0 and n > m > 0 that

i) () [ G (0]
2G0T
Pl G T [ [
Observe that
() e e () ()
and we find
GO Z )
Note that
G [ R G == G
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_(n—m+1 k+1 n+1/n+k+1
N k+1 Jn—-m+1k+1\ n+1

We have for our sum

n+1 n+1 Tg n—m+1\/m+1\/n+k+1
n—m+1\m+1 = n—m-—=kJ)\m-—=k n+1 '

Working with the sum only we have

n—m n—m-+1 m m-+1 Tl+k+1 k. k
(2" ™1 + z) [w™](1 + w) ;}( M Bt

Here we have extended to infinity owing to the extractor in z. Continuing,

1
n—m n—m-+17,,.m m+1
1
_ nr.2n+2—m n—m-+1 m m—+1
The contribution from w is
res 7(1 + w)erl;
w mtl (w—1/z)n+2"

Here the residue at infinity is zero so we may evaluate with minus the residue
at w = 1/z, which requires the Leibniz rule:

1 1 o (n+1)

wm+1+q

n+1
1 n+1 m+q\ (—1)¢ m+1 _
= ! ——)_(nt1—q)! 14w)mtan
CE] q_0< ¢ )CI( ‘ )wm+1+q(n+ q) nt1—q (1+w)

n+1

—1)¢ 1
=3 (M) (Y
= q wmtltea\n+1—gq

_ 1 K, n+1 (_1)q(m + 1)a n+l—gq m—+q—n
= m;} ( . >(m+1)(1+w)

Evaluate at w = 1/z and restore the extractor in z (flip sign):

n+1l7.2n+2—m n—m-+1 & m+ q q.m+1+q m+1 m-+q—n
O e (DD (~1)12 (1+1/2)
=\« n+l—gq
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e IED Bl () [ VR (R RS

pur SN n+1l-q

S (e () )
Note that
<m:q> (nff—l m> A ey Emm—i)_!q:!(q—km .Y
()

Just to re-capitulate where we are at this point, we have for the sum from
the start

et () | Gy DR CN [N

q=0

Focus on the remaining sum and write

[z"+1](1 + Z)m+1 Z(q +1)(=1)¢ (m + Q> 24,

n
q>0

Here we have extended to infinity due to the coefficient extractor. Continu-
ing,

[+ 2™ (L4 w)™ Y (g + 1)(=1)4 (1 +w)

q>0
n+1 m+1r, n m 1
= 0+ )0+ )"
1

= "I+ )" w1+ w)™

(w+ (14 2)/2)2

The contribution from w is

1
(w+(1+2)/2)*

Once more the residue at infinity is zero and we may evaluate using minus
the residue at w = —(1 + z)/z. Differentiating once we have

1 m
res W(l + w)

1 m 1 m—

—(n+1)
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Substitute and flip the sign

Zn+2 (71)m Zn+1 (71)m71

1)(=1)" —m(=1)"*!
(771+ )( ) (1 + Z)n+2 om m( ) (1 + Z)n-‘,—l sm—1
Zn—m+2 Zn—m+2
= D=1 (1)
(n+1)(=1) (1+ 2)n+2 m(=1) (14 2)n+t

Apply the remaining extractor to get

1
(1 + Z)nferl

1
(14 z)n—m

=y () e ().

We have achieved the closed form

i) (o e () =)

which is the claim.
This identity was found by a computer search which pointed to OEIS A202409,
a multiple of a third power of a binomial coefficient.

(n+ (=)™ —m(=1)" [

1.147.31 OEIS A001498

We seek to prove with n > 0 and n > m > 0 that

= et ([ (5,

k=0

We have for the sum,

g

S ()

— [T 42 g‘a(_nk (” B m) {” I k] (1+2)7*

=Ly (M )
k=0
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n—~k
x(n +m — k)" Tmk " _1 Al <1og : 1 v)

n!

= R 1 e é(—l)’“ (Rl (e

e R A ,:o(l)k <Z> (14 2)*oh (1og - U>n_k

— M[z"—m](l + 2)" " " [log ﬁ - 1:}_2}

n!

(n+m)! n—m 1 n+m 1 "
n [Z ](1+Z)m[v+ ]|:(1+Z)10g11}_v:|

(n+m)' 1—m 1 1+m 1 1 "
N T e - - T m 1 1 _
PG }(1+z)m[v [|#log g +log g —v

s Eer () bt et

n!
q=0

Observe that the coefficient extractor together with the series log liv =

szl % produces the requirement that
n+m>q+2n-q)=2n-gq

which is ¢ + m > n. There is only one value in the range of ¢ that works here
which is ¢ = n — m. We thus obtain

M[Umm] (n - :n—in;r m) (n ”m> [1Og 111)} o [log ﬁ - v] "

nl
_ (7’*’”)!(”)[@”%] {log 11v]n_m [log liv —ur.

n! m
The product of the two logarithmic terms starts at the power n —m+2m =
n+m. This is minimal and uses the first terms of the two series which are v~
and (v%/2)™. Therefore everything simplifies to

(n+m)! fn) 1
n! m)2m’
This is the claim.

This identity was found by a computer search which pointed to OEIS A001498|,

coefficients of Bessel polynomials.
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1.147.32 OEIS A086810

We seek to prove with n > 0 and n > m > 0 that with Catalan numbers

() Br ()

k=0

Note first that
(") () = e = () )
so we get for the sum
rEr (e )
- e () (G
e U CU TR W NIRATL (e

k
k>0

1
(14 2+ zw)ntt

= E pymenya 4 ot

m n n 1
= [w™][z2"(1 + 2) +1(w+(1+z)/z)”+1'

The contribution from w is

1 1
Yo wm 1 (w4 (14 2)/z)n*1

Now here the residue at infinity is clearly zero, we may use minus the residue
at w = —(1 + z)/z. This requires
w
al et (M)

o0\ o,yml
n! \ wmt we—(145)/ 2 w=—(1+2)/z

- m-+n ( l)m Zn+m+1
B n (1 4 z)ntm+l’

Applying the coefficient extractor in z we find
(71)n+m n—+m [ nfm} 1
AP P -
n+1 n (14 2z)m
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(=)™ fn4+m (—1yn-m n—m+m-—1
 on+1 n m—1
1 n+m\/n-—1
n+1\ m m—1)
This is the claim. An alternate approach without residues uses

(_1)n ml[,n 1
PR o pemy sy

()

14 2z)m

- (n_—ll—): (n ;m) (1™ (=1 (” mem 1)

m—1

1 n+m n—1
n+1 m m—1)"

Again we have the claim.

This identity was found by a computer search which pointed to OEIS A086810,
a triangle related to OEIS A033282.

1.147.33 OEIS A008459

We seek to prove with n > 0 and n > m > 0 that
n Z*i m+ k\ [2k n
m 71@:0 m—kJ\k/)\m+k)

e () ()

m—k k
k>0

Start with

Here we have extended to infinity due to the coefficient extractor. Note that

(20 () = e = (") (3)

k
This yields

R T CERULD DY (N R

k
k>0

I )

= )
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The contribution from z is

1
(z = Ljwym i1

Fortunately here the residue at infinity is zero (just barely) and we may
evaluate using minus the residue at z = 1/w, which requires the Leibniz rule:

(m)
1 1 B
m <Zn—m+1 (1 + Z) )
1 . (Tl —m+ 1) m— n—(m—
WZ( > T nm=9(] + 2) (m—q)
q=0
1 m
=

m )e n—m-+gq
| n—m-+q
() (0o > o
q:

:E 7) n—m+gq +Zn m+q.
“ 2" m+ltq q n—m+q

q=

res

es (1 +2)"

Now observe that

(n_?+q>(n:%+Q> :q!X(an)liX(mQ)! B (??%)(ZL)

We have one of the desired coefficients and are left with (flip sign)

<n> (=)™ [w?™ (1 4 w)™ i <m) (_1)qwnim+1+q%

m
q=0 q

= (M) S () sy

- (e ()

q=0

We find for the remaining sum
m

(14 3 () ) = [P0 (L)

q=0
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Joining the two pieces we have the claim.
This identity was found by a computer search which pointed to OEIS A008459,
square the entries of Pascal’s triangle.

1.147.34 OEIS 130321

We seek to prove with n > 0 and n > m > 0 that
n
n+m-—=k\ (2n— 2k
on—m — —1)k )
S ("))
We start with

n 2n n—i—m—k’ Zk
=")(1 + 2) g()(—”k(nmzk)(lm%'

Here we have extended to infinity due to the coefficient extractor. Continu-
ing,

w2k Zk:

(1+w)k (1+2)%k

[2")(1 + 2)*" " (1 4+ w)" Ty (~1)F
k>0 1
14+ w?z/(1+w)/(1+2)?
(1+w)(1 i z)? + w2z
(w+1+z)§wz+1+z)
(w+1 +z)(u11+ (1+42)/2)

= [2")(1+ 22" [ Y (14 w)

— [Zn}(l 4 Z)2n+2[wn+m](1 4 w)n+m+1

= [2")(1L+ 222 (1 4+ )

_ [Zn+1](1 4 z)2n+2[wn+m](1 + w)n+m+1

The contribution from w is
1
(w+1+z)(w+ (1+2)/2)

Here the residue at infinity is zero (just barely) so we may use minus the
residues at w = —(1 + z) and w = —(1 + z)/z. We get for the former,

1
n+m+1
Tes (14+w)

(_1)n+m+1

(]_ + Z)n+m+1

1

[z (1 2)2 2 ~(1+2)+(1+2)/2

(_1)n+m+1zn+m+1

— _ ZnJrl 1 Ttz n7m+lzn+m+1 z
[ I ) —z(1+2)+(1+2)
1
— _[.ntl 1 n—m+1_n+m-42 =0
[ (1 4+ 2y
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due to the coefficient extractor and n+m-+2 > n+1. We get for the second
residue

(_1)n+m+1zn+m+l (_1)n+m+l 1

_[n+l 1 2n+2
[Z ]( + Z) (1 + Z)n+m+1 ntm+l _(1 + Z)/Z +14z

= -+ —(I+2)+(1+2)z
= [+ = 2
— ( q ) — 2n—m.

This is the claim.
This identity was found by a computer search which pointed to OEIS A130321,
triangle with 27—,

1.148 MSE 4667102: Two different representations of a
coefficient

We will show that
i: n\(n—2k\ _ -
2k r—k )
k=0 k=
Computation for LHS
We get for LHS

WEE G
> (, ") (03)

= ["(1+ 2)" w1+ w) Y 2

k>0

Wk
(14 w)2

Here we have extended to infinity due to the coeflicient extractor in w. We
obtain

n e " !

)+ )" ) ( + 0) T e
n ™ " !

= [z"](1+ 2)"[w"](1 + w) +2(1+w)—2_wz2

1
(1 + w?)? — w222

= )1+ 2 )1+ )
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1 1
14+ wz+w?l—wz+ w?
1 1
z+ (1 +w?)/wz— (1+w?)/w

= [2"](1 + 2)"[w?*](1 + w?)" T2

= —[2"](1 + 2)"[w? 2|1 + w?)"+?

The contribution from z is
1 1
2+ (1 +w?)/wz—(1+w?)/w’

Here the residue at infinity is zero so we may use minus the residues at
2z = +(1 + w?)/w. We get first

1 n
res ﬁ(l + 2)

n+1 (_1+w_w2)n 1
2r421(1 2yn+2(_qynt+1___ W
['LU }( +w ) ( ) (1 +w2)n+1 w™ _2(1 +w2)/w
1 1 )
_ §[w2r](w2 —w+ 1)n — 5(_1)27 [er](w2 — w4+ 1)n
1
= i[wz’“](w2 +w+1)".
and second
[w2T+2](1 i ’U)2)n+2 wh 1 (w2 —+ w + 1)" 1
(1 4+ w?)ntl wn 2(1 +w?)/w

1
= i[ww](w2 +w+1)".

Collecting everything,
[w?")(w? + w4+ 1)™.

Computation for RHS
We have for RHS

GNOR NI SIONO
-3y (;) 271+ 2" ] gjrz’f(l ) (;)k

We may lower k to zero owing to the coefficient extractor in w and raise to
infinity due to the extractor in z to get

() () e
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1
1—2(1+w)?/3
1
1-2(1+w)?
1 1
1+w)2z—-1/1+w)?

_ 3n22r72n[zn](1 + Z)n[w%}

_ 227"—271[271](1 + 3z)n[w2r]

— _22r—2n[zn](1 + 3z)n[w2r]

The contribution from z is
1
z—1/(1+w)?

Here the residue at infinity is zero so we may use minus the residue at
z=1/(1+w)? to get

1 n
res W(l + 3z)

22r—2n[w2r]ﬁ(l + w)2n+2(1 + 3/(1 + ’LU)2)n

_ 22r72n[w2r](4 + 2w+ w2)n _ 272n[,w2r](4 4 dw + 4’[1}2)”
= [w?")(w? + w4+ 1)™.

We have equality and thus the claim. Here we had some help from OEIS
A005714.
This was math.stackexchange.com problem 4667102,

1.149 MSE 4675665: Rational term of constant degree
We seek to show that

Fe('1) - ().

We get two pieces
" k k n+k
21+ G
k=0

We start by evaluating the general sum

k;:q k q
We have

<n2k> @ ol xgiflz!—qﬂ B ("Zq) (Zi]g

and find for the sum
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(3G

The sum component is

”Z:"(n+q+k>
P n-+q

1 n+q+k\ 1 1
— n—q _ n—q
" ]1—“),;0( O e e T s

— (W] 1 _(n—q+n+q+1\ (2n+1
B A AR A Y
We thus have the closed form
<2n+1)(n+q)
n—gq qa )
Adding the two pieces we find
2n+1\ /n+2 2n+1\ /n+1
2 +
n—2 2 n—1 1
n—1 /2n+2 2n+2\ n+3
2 1
2n+2( >(”+ Jn+ )+<n1)2n+2

1 2n + 2
= 1)2 )
;) (n—l)

This was math.stackexchange.com problem 4675665,

(n+1)

n—1

1.150 MSE 4666141: Double square root
We seek to show that

> ;;)]Zo ( ) (TZ _Jk> (nkl) (1/2(m:,; i 1)) =(-1)? <7Z>2.

We will suppose m > p. Re-ordering we find

S () R (6

J=

We get for the inner sum
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[P+ 2)™ Ry (=1) (’;) 2.

j=0
Here we have extended to infinity because of the coeffient extractor. Con-
tinuing,
)1+ 2) R (1 = 2)*,

With the outer sum we have

I :P](1 4 2)™ é (7:) <1/2(m; b ”) (14 2)7F(1— 2)F

= 27[P)(1+ 2)" fw™](1 + w) 2D N (j’j)(l +w) (L4 2)TH (1 - o)t
k=0

\/1+7w(12)}m
1+2

= 2" 2P [w™] (1 + w) 2 Y[ 4 2 4 VI + w(l — 2)|™
= 2" [2P)[w™])(1 + w) 21+ VI F w4+ 2(1 — VI +w)|™

= om <m> [w™](1 +w)/2m V(1 - VI T w)P(1 +vI+w)™ .

p
The contribution from w is

(1 +w)2m=D (1 — T+ w)P(1 4+ V1 +w)™P.

Now we put 1 — /1 +w = v so that w = v(v — 2) and dw = 2(v — 1) dv
(map takes zero to zero) to get

= (L )4 ) 1

res
w wm+1

1 m—1 m—
I'SS W(l — U) ’Up(2 — ’U) p2('U — 1)

(1—o)"

1
— 9(_1)m—p+1
=2(-1) res o (y = 2)pHl

— 9~ P(_1\m
=27 S g e

o Qe e

q=0

e B (e

q=0

(1—o)™

Next observe that
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() = et = () )

Collecting everything we find

o (e ()5 (7 e

q

()il

This is the claim. (Also goes through for m = p.)
This was math.stackexchange.com problem 4666141.

1.151 MSE 4699857: Four auxiliary parameters

We seek with 0 <c<agand 0<d<b

n+c\/n+d _GZH) a—c+d\[(b—d+c\[/n+q
a b _q:() qg—c q—d a+b)
We get for the RHS
1 a—c+d\ [(b—d+c\ [n+q
a+b q
[z }l—zqgjz <a+d—q)<b+c—q)<a+b)

1 _ _ n+q
a+d1 a—c+d b+cl b—d+c q,,.4,.4
) 1) onzwv(ﬁb)

_ [Za-‘rb]

— [Za+b] L

— - [waer](l + w)a7c+d[vb+c](1 + U)b7d+c[ua+b}(1 + u)n
X Z 29wl (1 + u)?
q=0
1
— [,atb
[ —

() () () s

1
— _[za—ﬁ-b—&-l}

: [wa+d+1](1 +w>a—c+d[vb+c](1 +7})b_d+c
—Z

1
v—1/2/w/(1+u)

% [ua+b] (1 4 u)n—l

The contribution from v is

1

res #(1 + ”)bidﬂv —1/z/w/(1+u)

» Ub+c+1
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Here we see that the residue at infinity is zero, so we may use minus the
residue at v = 1/z/w/(1 4+ u) (residues sum to zero):

—(1+ u)b+c+1zb+c+1wb+c+1 (zw(l+u) + 1)b_d+c
Zb—d+cwb—d+c(1 + u)b—d+c

= —(1 4 w) T 24 T (1 4 u) 4 1)074F,

Substitute into the remaining extractors,

[Zaerfd] 1

T [w](1 + w)“chrd[uaer](l + u)"+d(zw(1 +u) + l)bfdJrc.

The contribution from z is

1
res (zw(1 +u) +1)b-d+e,

po Za+b7d+1 1—2

Using the the inequalities as stated in the preliminaries we find again that
the residue at infinity is zero, and we may use minus the residue at z = 1. We
also note that there is no pole at z = —1/w/(1 + u). Collecting the remaining
two extractors, we get

() (1 ) (14 )™ (14 ) 4 1)
— [wa}(l + w)afc+d[ua+b](1 + u)ner(l +w+ uw)bfdJrc

b—d+c
_ [wa](l + w)a—c+d[ua+b](1 + u)""‘d Z <b — ;l + C) (1 n w)b—d+c—qquq

q=0

— gyt 3 (PTIE) (d

a—
q=0 4

_”fC(b—dH)(Hb—q)( n+d )
B q a—q J\a+b—q)

q=0

Here we have by construction that the rightmost two binomial coefficients
are zero when the lower index goes negative. This means that we can replace
the upper range by a. If a < b—d+ ¢ we get for ¢ > a that the second binomial
coefficient is zero. If b—d+ ¢ < a we get for ¢ > b— d+ ¢ that the first binomial
coefficient is zero. We thus have

i(b—d—i—c)(a—i—b—q)( n+d )
= q a—q J\a+b—gq)

Now observe that
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() - it

(0
(Z ()

q=0

‘We thus obtain

Here we may use Vandermonde which yields

(0

This is the claim. It is interesting to try this sum with the major CAS.
This was math.stackexchange.com problem 4699857

1.152 MSE 4703564: A family of odd polynomials
We seek to show that

[677] Py (@) = 2] gjo (?ﬁi’“) (” rm kel 2) ~0

i.e. that these polynomials are odd and moreover that the coefficients are
positive. We first try to simplify the sum. We get

—2z
—[Zm](l + Z)n+m—z—1/2z ( )Zk(l + Z)_k.
>0 2k +1

Here we have extended to infinity due to the coefficient extractor. Next,

—[Zm](l _|_z)n+m—gc—l/222k(1 + Z)_k[’ka_H}(l +w)—2:c
k>0

— _[22m](1 + 22)n+m—m—1/2 ZZQk(l + Z2)—k[w2k+1](1 + w)—Qm
k>0

_ 7[Z2m+1](1+22)n+m7:1:71/2 /1 + 22Z22k+1(1+22)7k71/2[w2k+1}(1+w)72z
k>0

= P (2T ) (1 VT 2) )

1
= [>T (1 + 22)”'“”5((2 +V1+22)72 — (—z 41+ 22)72),
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We know from the initial representation that this is a polynomial in x. Ex-
tract the coefficient on [z9]

[9] exp(—2xzlog(+2z + V1 + 22) log (£z 4+ V14 22)

The logarithms are both valid formal power series because the arguments
are formal power series that start with constant coefficient equal to one. Note

however that

1
log(—z+V1+22)=—-log ———F——
8l ) gfz+\/1+z2
/1 2
:—logzl—: 2+Z —log(z+ V14 2?2)
This yields

(@) Prv.n (@) = —[2"H1](1 + z2>"*’"(_1q¥§10g"<z + V14 22)(1 = (-1)7).

This is zero when ¢ is even (inspect last term) and we have the claim. We
get for g odd the coefficient

24
—'[22m+1](1 + 22)" M log?(z + /1 + 22).
q!

The powered logarithm starts at z? so we get zero when g > 2m + 1. To see
positivity note that an alternate representation is

_1)ymti[m sz/fn —2x o p
P 5 () )t

= ()" 2T Y () (1 w)
k>0

— (_1)m+1[z2m+1}(1 + 22)1:71/2771 Z(_l)kz2k+1[w2k+1](1 + w)72
k>0

_ i(—l)m[ZQerl](l + Z2)m—1/2—n Zi2k+1z2k+1[w2k+l](1 + w)—Qm
k>0

(D)™ 4 2T (L i) T - (1 i2) )

s () ()

Extract the coefficient on [2?] to get
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1—1z q1+iz

i
(=)™ 2m+1 1 2\—1/2—n log? —1
2q!( )" A+ 27) 0g? 7o, ~log" T~
i 1—1iz
— Y (_ymp2ml(g 2)-1/2-n o4 1— (—1)9).
S (P4 )7 ot T (1 - (1))
Zero again for ¢ even, and for ¢ odd,
i 1—1z
Z(=1)™ 2m+1 1 2 —1/2—n1 q
SR 4 27 gt
1. 5. —1/9-m 14z
= S [22H(1 — 22) /2 og? T

q!
The two terms in the product both have series in positive terms only. To
see this, note that the first one is

> (_1/2 - ”) S (p e 1/2)
— p p

p=>0 p>0

The coefficients are positive because (p +n — 1/2)2 is. Note also that

14z 2z 2P 2P

1 :1 1 = —1 p_lil

®1 > og( +1z) Z( ) p(1—2z)P
p>1

This means the coefficient on [2"] is

- p—lop[, r—p 1 _T _ p—lpr_ll
2 ()L ]p(I*Z)”_pZ( D 2(1)1)17

p=1

1 ¢ p—lpr__l —_ 9\ _ __}_7"_
=13 2(7) =2 -2 === (-1r - )

This is zero when r is even and % when r is odd. We have established the
desired positivity of the coefficients, as we have the product of a series with
positive coefficients times a power of a series that also has positive coefficients.

This was math.stackexchange.com problem 4703564.

1.153 MSE 4713851: A sum equals zero

We seek to prove with n > 1 and 2n < m that

En:(—l)k 1 (m—k 1 m+2n =2k _
pars m—k k m 4+ 2n — 2k n—=k e
Observe that

(") =w () ()
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and

1 m + 2n — 2k _l m + 2n — 2k _q m+2n—1—2k
m+ 2n — 2k n—k T m n—k n—k—1 '

Therefore it is sufficient to prove that
- ok m—k m—1—k
S [(" ) ()
k=0
o m+2n — 2k 9 m+2n—1-—2k _0
n—k n—k—1 e

We get four pieces, the first is
- m—k\ [m+ 2n — 2k
1)
S (") (M)
k=0
—k P
— [2™1(1 m+2n -1 (™M )
e S ()
k>0
Here we have extended to infinity due to the coefficient extractor. Continu-
ing,

ka Zk

(1+w)k (1+2)%k

7)1+ 2)™ P2 [w™] (L4 w)™ Y (—1)F
k>0
1
1+w2z/(1+w)/(1+2)%

= [+ 2" w1+ w)™

We get for the next piece
z”:(_l)k m—1—k\ (m+2n—2k
P k—1 n—=k

1

= B4 )™ ()

The third piece is

B ()

1
14+w?z/(1+w)/(1+ 2)%

— —Q[Zn_l](l + Z)m-&-?n—l[wm}(l + w)nL

The fourth and last piece is
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=t
1 +w22/(1—iw)/(1 +2)%

_ —Z[Zn_l](l + Z)m+2n—l[wm](1 + w)m—l

Adding the four pieces we obtain
1

1+w?z/(1+w)/(1+2)?
X[(I1+2)14+w)+ (1+2) —22(1 +w) — 22]

(1-2)(24+w)
(1+w)(1+2)?+w?z

(1-2)2+w)
(w414 2)(wz+1+42)

(1-2)24+w)

(wH+1+2)(w+ (1+2)/2)

[2")(1+ )™ (14 )

— [Z”](l + Z)m—i—Qn—&-l[wm}(l + w)m

= [2"(1 4 2)" " w™ (14 w)™

_ [Zn+1](1 + Z)m+2n+1[wm](1 +w)m

The contribution from w is
24w
(w+1l+z)(w+(1+2)/2)

Here the residue at infinity is zero and we may use minus the residues at
w=—(14+%) and w= —(1+ z)/z. We get for the former

res

os gL+ w)”

(~1ym?

(1-2)?
—(14+2)+(14+2)/z

_[ZnJrl] (1 + Z)m+2n+1

n nm (1_2)2
="+ )

This is zero because m > n due to the prerequisites. In fact we even have
m > 2n. The second residue yields

= [2"](1 + 2)* 12™(1 - 2) = 0.

il mezng1 (D) (D)™ (1 -2)(2 - (1+2)/2)
_[z + ](1+z) +2n+ (1+Z)m+1 m 7(1+z)/z+1+z

(1-2)°
1—22

() - ()

This concludes the argument.
This was math.stackexchange.com problem 4713851.

=["T(1 +2)*"2 =["](1+2)*" 711 - 2)
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1.154 MSE 4722503: Euler numbers and Stirling numbers
First identity

We seek to prove that with Euler numbers

s SO -())

With the usual generating functions we have for the RHS

e 2 o (s S14) (1550)

{=1
= 920 -1p)[,] [zi; €—1F 1(exp(z) —1)* <3 <_1£/4) 3 (—52/4>)
22n_ln![zn]exp(zl) -1 ; ‘€-|1- T (exp(z) — 1)

x [w] (3(1 b))V (14 w)—3/4) .

We have extended the range both ways due to the coefficient extractor.
Continuing,

fWJMkﬂ;$G§:TM£mx@W474am@f“)
= 2 e exp(=) — exp(2)!/)
= 2xnlle") s (exp(32) — exp(2))
= 2l sy exp(z) =2 x nwzn]exp(z)ﬁ}exp(—z)
.

This is the claim.

Second identity

We seek to prove that with Euler numbers

2n ¢ 14
_ 2n (_ 1) 2n 3
Bzn = —4 §:e+1{e}(4 '

{=1
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We again have using standard generating functions for the RHS

2 L\ _
— e S e - (T

— +1
Y (et - ()

>0

Here we have extended the range both ways due to the coefficient extractor.
Continuing,

. B 1 34
N 3 e - v (79
2n 2n 1 1 (+1 —-3/4
= —47(2n)![z ]exp(z) — g ez = D w1+ w) o
= —42”+1(2n)![z2"]7exp(2) — 1(exp(z)l/4 —1)
= —4(2n)![z2"]m(exp(z) -1).

Here we are extracting even coefficients so this is

oy [0XP(2) =1 exp(=2) — 1
—2(2n)![z""] pr(zlz) — 1 exp(—4z) — 1}
_ nr | exp(z) =1 exp(4z) — exp(32)
= *2(277')![22 ] [exp(4z) -1 exp(4z) — 1 :|
I )

Now as this is for n > 1 we should get a constant difference with the Euler
number EGF, and indeed we have

2 _ exp(z) _ exp(z)(exp(2z) — 1)
exp(z) + exp(—=z) exp(2z) + 1 exp(4z) — 1
L ep(E)ex() ~ lexp(:) + 1)
exp(4z) — 1
Substract to get
2M(exp(2z) +exp(z) + 1+ exp(3z)) =2
exp(4z) — 1 '

This is the claim and we may conclude.
This was math.stackexchange.com problem 4722503.
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1.155 MSE 495371: Even-index binomial coefficient con-
volution

We seek to prove that

(00t
= 25 ) \k 2n—k k
where 0 < k < n/2. We have for the LHS

"1+ 2)" > 2 @) .

Jj2k

Here we have extended to infinity due to the coefficient extractor. Continu-
ing,

e (1)) =0 e

3>0
= [+ >’“ﬁ
SE0)
_ nlk"gk(n_k—@(”;k) (“";—Q).

Now observe that

(n;k) (n_:_q> EL i”(;f“%_q)l B (n;k> (n_q%)'

This yields

nik(”;k)nikm—k—q)(”;%).

q=0

The sum produces two pieces, the first is

(Tl _ k)2n72k
by inspection. The second is
n—2k n—2k
n — 2k n—2k—1
— q =—(n—2k ( >
o) e (U
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—(n — 2k)2n—2k-1,

Collecting everything we have

1 n—=k 1 1 n—k 1
2n72k k- —92k)) = 2n72k7 )
n—k( k ) (n 5 (n—2k) n—k( k > 2"

This is the claim.
This was math.stackexchange.com problem 495371,

1.156 MSE 4731417: Kravchuk polynomials

Starting from

we first obtain
X
Ky =[2*(142)"* Y (-1 (g - 1) ()
3>0 J

Here we have extended to infinity due to the coefficient extractor. Continu-
ing,

(g DA+ 27X (- 1)(g — 1) (f)

72>0

= (¢ = D1+ 2" (1= 2/(g - 1))*
=M1+ (g - 12" F 1 - 2)%.

First identity
We seek to verify that

We get for the sum

X
[P +2)"> () (q— 1D (1+2)" zﬂ( >
5>0 J
Here the coefficient extractor has once more enforced the range. Continuing,

(g = DM+ 2" () (g — 1)1 4 2)9 (f)

j=0
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qz *
— (- VR 1 ]
qz X

= ["](1+ (g —1)2)" 1+ (¢ — 1)z — ¢z ¥
=["(1+ (¢— D2)" (1 - 2)*.

This is the claim.

Second identity
Here we set out to simplify
N, g (n—Ek+\ (n—X
K’“_;O(_l) ! < j )(k—j)'
We get for the sum
042X Y gt (T
j=0

This is the third time with the extractor enforcing the range. Continuing,

2 Sy (T )

>0 J
S P TGRS Lo SR . QS (o SN S—
(1+ 2/q)nF+1 (1 + z)n—k+1
This is
1
k+1 n—X
ves g+ 2 (4 a2)" e

Now we put z/(1+ z) = w so that z = w/(1 —w) and dz = 1/(1 — w)? dw
to get

1 1
(1 +w/(1—w)*2 (1 —w)?

1 n—X
res W(l + qu/(1 —w))

~ res ﬁu +quw/(1—w)" X (1 — w)"

1 -X b's
= res W(l —w+ qw)" (1 —w)

= [w*](1 + (g = Dw)" ¥ (1 —w)*.

Once more we have the claim.
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This was math.stackexchange.com problem 4731417,

1.157 MSE 4762542: Binomial-Bernoulli convolution
We seek

n—1)/2
[(n—1)/2] 1 Bopso

a2kt (n — 2k)!1(2k + 2)!

k=0

We first try to evaluate

n/2
Lz/:J 1 Bopo
P a2kt (p — 2k)1(2k + 2)!

and we note that this is

n

Z 1 Biyo
2 R (= Rk + 2)!

We get with the EGF of the Bernoulli numbers

n

Z 1 1 [Zk+2] z
P aktl (n — k)! exp(z) — 1

= [w"] exp(w 1 wr[F2 .
= [w"] exp( )g)a,m ) =T

Here we have extended to infinity due to the coefficient extractor. Continu-
ing,
1 z

a[wn+2] exp(w) Z THU)HZ[ZHZ]
«

= exp(z) — 1

= afw" ] exp(w wht2[F+2 72/04
- [ ] p( )kzzo [ ]exp(z/a)—l

= [w""?] exp(w wht2[F+2 S
_[ ] p( )];) [ ]exp(z/a)—l

= [w"2] exp(w) pr(u;;)a)—l —a+ %w
@ 1 1
mr2l T2t

Now observe that

w

w" 2] exp(w) —— 8.
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—

a—1 a—

i = Y [ exp(jw)

=0

<

= e ) SR ]

wexp(wa) —w

= (n+ 1)![w"*? oxp(w) — 1

Bnyo
_ _-nr2 1) n+2
I (o 1l

w exp(wa)
exp(w) — 1

B It e k. L C)
n+2 exp(w/a) — 1

Merge the two to get

a 11 1 = B
- -n+1 n+2
(n—|—2)!+2(n+1)!+a”+1(n—|—1)!j§] T o)l

To conclude recall that OP asks for the upper limit [(n — 1)/2| rather than
|n/2]. These are equal when n is odd but when n is even the top term is missing.
This term is (substitute and simplify)

1 Bn+2
antl (n42)!
so that we have
o 1 1 1 ‘f _—
m+2)!  2(n+1D!  artl(n+4+1)! 4 J

Bn+2
———————(1 — ||n even]|).
b gy (L [l even)
However when n is odd we get zero from the Bernoulli number and when n
is even we get zero from the parenthesized term containing the Iverson bracket.
We have shown that

n—1)/2
[(n—1)/2] 1 Bogro

a2+ (1 — 2k)1(2k + 2)!]

k=0

71n+272a

a—1
1
— n+1
2 (n+2) +a”+1(n+1)'zoj ‘

405



Remark. For the initial segment of the series about zero of z/(exp(z/a) —1)
we write

z/a Bo+ Blz + 1 N
6% — = — o= — —2 e
exp(z/a) — 1 0! 2

This was math.stackexchange.com problem 4762542,

1.158 MSE 4774167: Two probabilities
We seek to prove that with 1 < ¢ <n and 0 < p <1 that

IR RIERES o W IR

q
We start on the LHS with

n—gq
k+qg—1
P> ( qﬁl )(1—p)k
k=0

e Y (T e

k>0 q

This is

P 11 1

_1 q . .
O T ™ o T2 /(0 p))e

Now residues sum to zero and the residue at infinity is zero so this is minus
the residue at z = 1 plus minus the residue at z = 1/(1 — p). The former is one
by inspection. For the latter we need the Leibniz rule:

1 1 1 (g—1)
(g—1)! (an+1 1- z)

q—1 k
q -1\ (=1 % 1 1k
)l Z n—q+itk (n—g+1)"=— Ttq—1—k 1
z (1-2)
k=0
q—1

T k=0
qg—1
n—q+k 1
Z on— q+1+k k (1 _ Z)qfk .

k=0
Evaluate at z =1/(1 — p) to get
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qz_:(—l)k(l — p)natltk (n —q+ k> (1—p)a*

_ —kpnq—k"*
P k (=1)aFpe

Collecting the two contributions we find

K n—q+k
R i) Sl
k

=0

e _ 1 n—q+k
—1—(1=p)(a=Dya-1 k_k
(1-p) [z ]1*21«%0 h Pz

1 1

o n—(qg—1 —1
=1-(1-p) (q )[Zq ]1_2(1_pz)n_Q+1

On the other hand we get for the RHS

1- ZZ:: (Z)p’“(l —p)F

so we need to show that the coefficient extractor term is equal to the sum,
which yields

1 n 1 1
—1 k n—k_k __ n
[24 ]Hz(k>p (I=—p)"FzF = res ;fz(pz—i-l—p) .
k>0
Now put z/(pz +1 —p) = w so that z = (1 — p)w/(1l — pw) and dz =
(1—p)/(1 —pw)? dw as well as pz +1 —p = (1 —p)/(1 — pw) to obtain

lLl1-—pw 1-p)"% 1-p
res —
w wl 1l—w (1—pw)"2(1—pw)?

1 1 1
= (1 - p)*—(a=1) _ .
( p) rgs wil—w (1 _pw)n—q+1

This is the claim.
This was math.stackexchange.com problem 4774167,

1.159 MSE 4791957: Motzkin numbers
We seek to prove that the recurrence

n

Ap+2 = Qp41 + § AQp—k
k=0

where ag = a1 = 1 is solved by
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S AN
a":kz_ok—H(k;)(%)'

Starting from the recurrence we have for the generating function M (z) that

[ F2IM (2) = [T M (=) + [2"] M (2)*.

Multiply by w™ and sum to infinity to get

Zw n+2 Z w” n+1 ) + M(w)2
n>0 n>0
or
_2 an+2 n+2 —w -1 an—i-l n+1 ( ) + M(’LU)2
n>0 n>0
which is

w2(M(w) —w—1) =w Y (M(w) — 1) + M(w)?.
Solve this to obtain
1—w—+v1—-2w— 3w?

2w?
which is indeed OEIS A001006, Motzkin numbers. Note that we get

Mw) =

I 2w?
M(w) 1 —w—+1-2w— 3u?
_ o2 1 —w+V1-—2w—3w? o—1+w—+v1—-2w—3w?

1—w?—(1—2w—3uw?) " 2w?
w2<M(w)$2+1>1wsz(w)-

On the other hand we have working with

[n/2]

) 1 2k\ (n
=2 2 ) o)
that
(3:) (¥) = Gz = (1) ()
2k )\ k (n —2k)! x k! x k! k) \n—2k
and obtain
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z S0
=Y w'[z"(1+2)" ZIH—I() + 2) 7k 22k

n>0

Here we have extended to infinity due to the coefficient extractor in z. Con-
tinuing,

M(w) = ; n“jfl [2")(1 + 2)" ];) (Z I 1) (14 2) k22

_ n+1,—2 n+1 —k—1_2(k+1)
Zn 1[ " +2) Z<k+1> ta)

n>0 k>0

’LUn 2,’2 n+1
= —— ") -1+ |1+ .
n+1 1+ 2
n>0
The contribution from the minus one term is zero and we find for the inner

term

2

142

n+1
[z"+2](1 + z)" {1 + } = [z"+2][1 + 2+ 22]”+1.

The contribution from z is

11 .
res — n+1[1+z+z] +

Now put z = vM (v) so that z/(1+2+42?) = v and dz = (M (v)+vM'(v)) dv
to get

1 1 , 1 1Y
res ——rs ERVIEE Un+1(M(v)+vM(v))rgsvn+1(7M(U)) .

We thus have

so that




and we finally have
as desired.
This was math.stackexchange.com problem 4791957

1.160 MSE 4821034: An inverse binomial coefficient

Supposing we start from

Zn (n) q (2n )_1_ 1
o \4 g+1\g+1 n+1
The LHS is
n —1
Z -1 1 2
= g—1/g+1\g+1

Recall from the following identity which was proved there: with 1 <
k<n

;(Z) o [2"]log - L (2 - 1)k,

In the present case we get

(Z 1)2n—q—1
per BN 1 1-—-
2n 2n—2 S n—1 1
= 1 -1
s =073 (1) e
n—1
= n[z*"]log (z—1)""2 1+ ——
1-— -1
1
n[2%"] log T Z(z — 1)l = [z log (z—1)"!

Apply the identity again (with k = 2) to get

AT 12 1
2\ 2 2 (n+1)n n+l

This is the claim.

This was math.stackexchange.com problem 4821034.
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1.161 MSE 4830342: Euler numbers, Stirling numbers
and Touchard polynomials

We seek in terms of Euler numbers

-V2 Z{ } 7 cos(3m(k+1)/4) = 2/000 exp(—t) cos(t) T, (—t) dt.

The first of these is

fa%z{ } = exp(3mi(k + 1)/4).

Using the Stirling set number EGF this becomes

n

—R [n![zn] (—1+1) > (exp(z) — 1)’@\/} exp(3m'k/4)] :

k=0

We may extend the inner sum to infinity due to the coefficient extractor and
the fact that exp(z) — 1=z + -+, getting

1
1 — exp(3mi/4)(exp(z) — 1)/v/2
We have that f(z) simplifies to

R [n![z”] (1— 1) ] = R nl[z"]£(2).

2(1 — 4) 2

1+i+exp(z)(1—i) i+exp(z)

For the real part we need the EGF of the conjugates. Using Mittag-Leffler
we start with (poles of f(z) are simple with residue 2i)

B % B i(2z + i)
9(z) = Z z— (—mi/2 + 2mik) zk: (z +mi/2)? — (2mwik)?

k

(the latter is convergent) and we can evaluate the sum through the residues
in w using the function

1 1
w+ (z+7mi/2) w— (2 + 7i/2)

h(z,w) = — 1(2z + mi) Cot(—iw/2)2%

We use the fact that the residues in w of h(z, w) sum to zero and the residue
at infinity is zero so that the residue at the two simple poles w = +(z + 7i/2)
produces for g(z) (flip sign due to residue sum)
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9(2) = g cot(—i(~(z + 7i/2))/2) + 3 cot(~i(+(z + 7i/2))/2)

= f% cot(iz/2 —/4) + %cot(fiz/Q +7/4)
= cot(—iz/2 + 7/4).
We get for g(z)
cos(—iz/2+ w/4)
sin(—iz/2+ 7w /4)

_ Z,exp(z/2) exp(mi/4) + exp(—z/2) exp(—mi/4)
exp(z/2) exp(wi/4) — exp(—z/2) exp(—mi/4)
B iexp(z) exp(mi/4) + exp(—mi/4)  exp(z)i+1  exp(z)i+ 1

~ exp(z) exp(mif4) —exp(—mi/4)  exp(z)i—1  i+exp(z)

The difference between f(z) and g(z) is exactly —i and we finally have

. 2
f(z) = —z+zk: 2 — (—mi/2 + 2mik)’

We seek the generating function of the conjugates which can now be obtained
by inspection and is seen to be (expand terms into a series about zero)

. —2i . 2i
Jelz) = Hg z— (mi)2 — 2mik) g > — (mi)2 — 2mik)’
Here we have applied conjugation to

z=p pl=zlp p e

We claim this is —f(z — 7i) and check

—flz—mi) =i~ Zk: c—mi— (—mij2+2mik) | Zk: z— (mi/2 + 2mik)

We are iterating over k in two possible directions. Returning to the original
problem we have that our answer is given by

1

Rnll"]f(2) = nll2")(f(2) + fe(2)).

Using the expression for fo(z) in terms of f(z) this becomes

1 1 1 1

i+exp(z) i+exp(z—mi) i+exp(z) i—exp(z)
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i—exp(z) —i—exp(z)  2exp(z) 1

(—1) — exp(22) ~ exp(2z2) +1  cosh(z)’
We have obtained the EGF of the Euler numbers and may conclude.
Remark. The computation of the residue at infinity being zero may be seen

at the following MSE link.
For the second one OP proposes in terms of Touchard polynomials

B, =2 / " exp(—t) cos(t) T, (—1) dt.
0

This is

ka:% {Z} R /OOO exp(—t(1 — i) (—1)¥¢* dt.

Now put (1 — i)t = u so that 2(1+4)u =t and we get

i {Z};g(—l)’“ R (140 / e exp(—u)u” du.

k=0 0

Evaluating the integral with the Gamma function we get

f: {Z};k(—l)k R (1+0)F 1L,

k=0
This has EGF

A" R | (1) S (exp(z) — 1)F o (— 1) (1 + )

ok
k>0
where we have extended to infinity due to exp(z) —1=z+---. This is
14
nl[z"] R Rl =nl[z"] R f(2).

1+ (exp(z) — 1)(1+14)/2
We have that f(z) simplifies to

2(1 + i) 3 2 B 2

1—i+ (1+i)exp(z) —i+exp(z)  i—exp(z)

Note that we learned in the companion answer that the EGF of the conju-

gates of f(z) is m. We thus obtain one more time that
1 1
i(f(z) + fC(Z)) - COSh(Z)

and may conclude.
Remark. For the Gamma function evaluation we use a pizza slice contour
with an angle of —m/4 which contains no poles. So to apply the Gamma function
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we just need to show that the contribution from the arc @ vanishes in the limit.
We get with z = Rexp(if) and dz = iR exp(if) db

0
/ exp(—2)2F dz = / exp(—Rexp(if)) R exp(kif)iR exp(if) db.
Q —m/4

We have as an upper bound on the norm of this integral

0 0
/ exp(—Rcos(0))R*1 d < RF! exp(—R/\/i)/ 1d6
—7/4 —7/4
= %Rkﬂ exp(—R/V2) = 0

as R — oo.

This was math.stackexchange.com problem 4830342
1.162 MSE 4832009: A triple binomial
We seek to prove that

SO -2C005)

k=j
Observe that

(6) () = G=amrmen = () ()
2k ) \ k (n—2k)! x k! x k! k) \n—2k
so we get for the LHS
£ @00
" k)4ak\j)\n—-2k)"
The coeflicient extractor for rightmost binomial coefficient enforces the upper
range:

o5 (k)

k>j
" ne n 22k 1
= [2"](1 4+ 2)"[w ]g <k>(1+z)k4’“(1 + w)*.

Now when k < j we get zero from the coefficient extractor in w so it enforces
the lower range:
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2k 1

21+ 2)"[w’] 3 (Z) (1172)@(1 +w)"

22(1 +w)]"

= [2"](1 + 2)"[w’] {1—}- 1+ 2)

= L4+ 42+ 221+ w)]?

22
= sl ][+ 27 + 2l
= 2%[2"] <T;) 22 (2 +2)H = 2%[3“*2” <T;) (2 4 2)20=2%

_L n\ (2n —2j 2n_i n\ (2n —2j
22\ )\ n—2j Com\j )\ n—-25)
Use

n\ (2n—2j\ _ (2n — 25)! _(2n—=2j\(n—7j
iJ\n=2i) " m—ixixm-2)1 \n—j )\ j
to conclude.
This was math.stackexchange.com problem 4832009.

1.163 MSE 4843051: Double sum with an absolute value

We seek a closed form of
=< n+p—q\(n-p+qg-1
> In-p—qd :
== P q

First part

We get for the argument to the absolute value being positive the contribution

n_m—zl:—p(n_p_q)<n+£—q> (n—p:q—l)

p=0 =0

Q
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n—1ln—1—
2p+q+1\(2n—2p—q—2
=0 o= p n—p—q-—1

A

ool ) )

p=0 ¢g=0
_ anl P 2n71n_1zp P —2p - »)4 2p7q
=BT S S ) (p_q)
S 2P Y () 2 (14 )
p=0

P
XZ g+ 1)1+ 2)Twi(1+w)™ 1
q=0

We may extend the inner sum to infinity due to the coefficient extractor in
w, getting

n—1 211—1”_1 P —2p[,,p 2p 1
S A DR e e e T (=)
n—1 nfln_l p —2p[,,,P P 1
= [2"71(1+2)? ;Z(”Z) 2[w](1+w)2+2(1+w—(1+z)w)2
= YL+ 2)2 Y P (1 2) 2w (1 + w)z”“m~

p=>0

Here we have extended to infinity due to the extractor in z. The contribution
from w is

1
(1—wz)?’

Now put w/(1 +w) = v so that w = v/(1 — v) and dw = 1/(1 — v)? dv to
get

res (1 4 w)?P+?

w P+l

1 1 1 1
B or T (1 — 0)pH (1 —vz/(1—0))2 (1 —0)2
3 1 1 1
= e (1 —o)Ptl (1 —v—wz)?’
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Next put v = (1 — /1 — 4u)/2 so that v(1 —v) = v and dv = 1/y/1 — 4u du
to obtain
1 1 1
res :
w uPt (1 — (14 2)(1 -1 —4u)/2)2 V1 —4u

Evaluate at u = z/(1 + 2)? to cancel the remaining sum (substitution rule),

here we get

5 1 5 _1—2

VI—du=/1—-4z/(1+ z) -1 (1+z) —dz =1
and obtain

-1 L)2n—1 1 142

O ey sy G ey gy ) s

— [l L)2n—1 1 1+2
= [0+ 2) 1-14+2—-(1-2))/2)21—=2

= 0 2

Second part

We get for the argument to the absolute value being negative the contribution

B 5l

p=0 g=n—p

n-l p (n+P—(n—q)><n—p+n—q—1>

:*;on(n*p*(nw)) ) e
S ()
()
S ey

We have the first part with g replaced by g+ 1 and adjust the infinite series
accordingly, getting:

n—1 2n—1 = p —2pr,,,p 2p (1 + Z)w/(l + w)
[2" (1 + 2) pz:(:)z (14 2)"*P[wP](1 + w) =0+ 9uw/dtw)?
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1

_ [z"il](l + Z)2n Zzp(l + Z)f2p[wp71](1 + w)2p+lm.

p=>0

We extended p to infinity due to the extractor in z. Unfortunately this isn’t
quite a repeat so we need to do the residues one more time. We have

1 2pt1 1

Now again put w/(1 +w) = v so that w = v/(1 —v) and dw = 1/(1 —v)? dv
to get

. 1 1 1 1

res L

o 0P (1 — )P+ (1 —vz/(1—v))2 (1 —v)2
1 1 1 1

B rgsvip(l—v)f’(l—v—vz)zl—v'

Next put v = (1 — /1 — 4u)/2 so that v(1 —v) = u and dv = 1/v/1 — 4u du

to obtain

1 1 1 1—+v1—4u
res — .
w uP (1—(142)(1—+1—4u)/2)?2 V1 —4u 2u
Evaluate at u = z/(1 + 2)? to cancel the remaining sum (substitution rule,
same as before),

1 1+21—(1—2)/(1+2)
1-(1+4+2)1-01-2)/1+2))/2)21-2 2

1 z
1-(14+z—(1-2))/2)21-=

"1+ 2)%

= (1)

_ [Zn—l](l + Z)2n _ [Zn—Z](l —I—Z)2n

(1—2)° (1—2)%
Conclusion
It remains to add up the two pieces. We have
1
n—1 1 2n n—1 1 2n
P g I
1
_ n—1 2n+1
= 1 —_—
R e
This is
_ 1 2n+1 1
_rgszn(l—i—z) EE
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Residues sum to zero so we may evaluate using minus the residues at z = 1
and at infinity. We require for the former (flip sign one more time)

1 1 1
I 1 2n+1
: [Zn< T2 }

z=1
1 n 1 '
=3 [— (L) 2+ (1 + 2)2”]
z=1
1 ,
=5 [n(n+1)2°""" — n(2n 4+ 1)2*" — n(2n 4+ 1)2°" + (2n 4+ 1)(2n)2°" ']
1
= —n4".
2
We get from the residue at infinity with the sign flipped
1 n 2n+1 1
ISS Z?Z (1“1‘1/2) m
Lo ont1 L 2 1 ony1 L
= Tes 52 (1+2) Z%Hm:—rgsz—n(lJrz) m:ﬂg

We have shown that S = %n4" — S or alternatively

S =n4" L.

This was math.stackexchange.com problem 4843051,

1.164 MSE 4850609: Inverse central binomial coefficient
in sum

Supposing we start from
zn: n\ (n+r\ /2n\ "
k k 2k '
k=0

(”;:r> :1%: ("Ir)m

e
(G - () S
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()G

‘We thus have for our sum

COE) ERE)

Recall from the following identity which was proved there: with 1 <

k<n
1(n - n 1 n—k
k(k:) —[v}logl_v(v—l) .

We can re-write this as

)T og o — 1y
k—1 - ny gl—vv

‘We have for the sum without the scalar in front

i 2k 2n — 2k . n+1—k+4r 1 _ n—k
5 () (2t

k=0
The contribution from v is

1 1 n—k
res - T 108 1_v(v—l) .

Now put v/(1 —v) = 2z so that v = z/(1 + 2) and dv = 1/(1 + 2)? dz to
obtain

1
res (=) (1 + 2)" 2 log(1 + 2)

po Zn+2—k:+r

(14 2)2°
We thus find for the sum

1"z log(1 + 2)(1 + 2)"

(—
xkz::( )(2n_2k>(n+1—k:+r)(—1)kzk

1
:_1r n+1+r1 1— r
(~1)7 [+ log —— (1 - 2)
"L 2k [2n — 2k .
xZ(k)<n_k)(n+lk+r)z
k=0
27 log —— (2 — 1)"
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" (2k\ (2n — 2k k
xZ(k>< - )(n—i—l—k—l—r)z .
k=0
We now get two pieces.
First piece

This is

. 1
(n 14+ T)[Zn+1+7] log .

"L (2K (2n — 2K\ 4
2 (D00

(z—1)"

1 1
—_ 414+ n—+1+r 1 — 1) [w™ .
(n r)[z Jlog 7— (2 )[w}\/l—llwz\/l—élw
The square root yields
n 1 1
[w"]
V1—dw—4dw(z—1) V1 —4w
1 1
= [wn

]\/1—4w(z—1)/(1—4w)1—4w

Applying the logarithm

S0

p=0
Next observe that

which produces

Second piece

This is
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_[Zn-‘rl-‘rr}

1 X
log 1 (z—1)

S

k=0
2wz 1
= —[z""* " 1og (z —1)"[w"] .
1—=z VI— 4wz V14w
The square root yields
"] 2wz 1
\/1—4w—4w(z—1)3 v1—dw
"] 2w 1
= z[w
V1= 4wz — 1)/(1 - dw) (1 —4w)?
oz " 2w(z — 1)/(1 — 4w) 1
z—1

VI —dw(z - D/(1—dw) 1 —4w

- () i - S (D)

p=0

Applying the logarithm and the sign

n -1
RSO0
n—+r p P n—mp

p=0

Next observe that
1 /n\/n+r—-1 _l_n!x(r+p—1)!
n+r\p n—op  oplx (n+r)!
1 (n+r -1 r+p
_r+p n r
which produces

_(n+r)—1z”: P <2p>4n_p<7‘+p>
n =rtp\p r )

Join the two pieces

We join the two pieces and activate the scalars to get

() S0 ()

p=0
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For this to hold we need r» > 1. We further obtain

G S (e

Working with the sum

i 1 2p\ _ [(r+p-—1
4 [Z]lzzzp<p)4 P( r—1 )

p=>0
= 4 () Y (ij’) (14 w)
=P ) z1(1 )
1 1

= 4" [ (1w

(1=2p2 1—wz/(1-2)

S )

p=0

The last binomial coefficient is zero for a negative lower index by construc-
tion. We have for » > 1 the closed form

() B C)

p=0

This gives e.g. for r =1

(2 “tn+1/2
n n '
We get for r = 2

€[]

One more example is r» = 3 which yields

4 <2:) -t Kn +n1 /2> N <nn+_1{2) N Z<nn+_1 ézﬂ .

Last example is r = 4
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y«i?1{CH;m)+2(ﬁf?>+§cjff)+iiiiz%}

The case of r =0

We have from the introduction

CE)ERE)

Evaluate at r = 0 to get
2n\ 7! z”: 2k\ (2n — 2k
n = k n—k

- () = () e ()

This was math.stackexchange.com problem 4850609.

1.165 Computer search II
1.165.1 OEIS A122366

We have with n > 1 and m > p and n > m — p that

(ny) = (e () (02)

‘We have for the RHS that it is

g (e () )

Here we have extended the range of k to infinity due to the coefficient ex-
tractor in z. Continuing,

A (RIS s CERULD o (e IO e

— L+ 2)F (L+w)
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z

2n+1
(1+2)(1+ w)]

S e (R ey TER L P

= () e e e (e 2P
2n+1
1 1 2n+1
— (_1\ntmtp[ n m—p k k
(D)™ S e H( . )w (1+2)

2n+1
1 2n+1 k—1
— (_1\n+m+p[, m—p k
S e T k_o< k )w ( n )

We get from k = 0 the term

1
(1 + w)2n+17m

()

This is the claim. It remains to show that the non-zero terms from the sum
vanish. We get zero from the second binomial coefficient when 1 < k < n. This

leaves
2n+1
(_1)n+m+p[wm_p] 1 2n +1 ’u}k k—1
(1 4+ w)2ntl-m k n

k=n-+1

1 "/ 2n+1 k+n
= (=1 n+m-4+pf, m—p k+n+1 )

()]

_ (—1)mp (1) (m —p+2n— m)

m-—=p

Here we see that owing to m > m — p we have a zero contribution from
the coefficient extractor in w (the term under the sum starts at n + 1) which
concludes the argument.

This identity was found by a computer search which pointed to OEIS A122366),

triangle of (2";1).

1.165.2 OEIS A100100
We claim that with p > 0 and 1 <m < n + 1 — p the following holds:

O R R O L b

The first binomial coefficient that we turn into an extractor also enforces the
range and we obtain:
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(—D)™ ) (14 2 S (-1 < _Hk) 2 <”_;+k>.

k>0

Continuing,
(1) 2 (0 w)™
—1+4+k\ 4 W (" 1+k
e (") (M)
S U s R IR
«3 (-1 ( Hk) (14 w)F (1 + v)F
k>0
= ()P 2 () (1 )
1
A1 20+ w1 +o)m
= (=) "L+ 2) P ™ (L4 w) T P (1 +v)
1
“wr1t1/z/0+w)m

The fractional term is

1 1
1+1/z/(1+w)™ (1+v/1+1/z/(1+w)))™
2™(1 4+ w)™ 1

T 0+ z0+w)m (I +vz(l+w)/(1+z(1+w))m
This leaves for the extractors
[2"(1+ 2)" " [w™ (1 + w)™

The contribution from v is

mrarr a6 () e

_ Z (n - 1) (m —ql + q> 1y (m - I:q + r) (1) 277 (1 4 )T+

q=0 r=0

Doing the extraction
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S (T (" e

q=0 q
n—q
m—1+q+r { n+m m—14+qg+r
—1) .
() ()

We got from the fourth binomial coefficient by construction that the upper
range must be set to n — ¢. Continuing,

() (7 )

q
n—q
XZ(m—l—i—n—r)(_l)n_q_r(n—&—m)(m—l—i—n—r).
= n—q-—r r m—1

Inner sum

Working with the inner sum we obtain

(_1)7z—q[2n—q}(1 +Z)m—1+n[wnz—1](1 +w)m—1+n

x D (1) (n t m> (1 -Z:z)r (1 +1w)"'

r>0

Here we have extended to infinity due to the coefficient extractor in z. Con-
tinuing,

(=D + )T T (1 w)™ T = 2/ (14 2) /(1 w)]

— (_l)n—q[zn—q](l +Z>—1[wm—1](1 +w)—1[1 4w +wz]n+m

- e
= (D" §O<—1>m‘”( M)
S ()

r n—gq
r=1
Note however that r —1 is not negative and r —1 < n—gq. This is because the
most r — 1 can be is m — 2 and the least that n — ¢ can be is n — p and we have
m—2 < n—p as per the initial conditions stated in the introduction. Hence the

remaining terms vanish and our inner sum is (—1)™*!. The case m = 1 goes
through with the sum as expected.
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Outer sum

Returning to the outer sum we are left with

S ()" e

=10 S (" = e

— [wP](1 + w)" 1t = (n - 7;1 - 1>.

We have our claim and may conclude.
This identity was found by a computer search which pointed to OEIS A100100,
a binomial coefficient triangle.

1.165.3 OEIS A010854

We claim that with p > 1, n > m and m > p the following holds:

(-G )

We use the first binomial coefficient to enforce the upper range and may

write
e S W) (k:f’_ - 1) (% o p>
1

= (FD I+ 2P 0 P e

x Y R (DFA+w)F (L 4+ 0)?

k>0
mr.n n+pf,,,m—1 p—11,p 17
G R e P R R E s
1
T 20+ w)(d+o)2

It is convenient to re-order the extractors,

1

W[wm—l]a + w)P—l[Zn](l + Z)n+p

(~1)" o)

1
T2+ w)(1 +v)2
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= (=D)™0*](1 4+ 0)" TP (1 4+ w)P T 2 (14 2/ (1 4 0)" P
1
“Tr 20+ w)(l+o)

1

= (V"W T

™ A+ w)P T (1 v+ )

1
T+ 20+ w) (1 +v)

1

= (V" o

[ (0 )P (L v 2)

1
w1+ 1/z/0 1)

Here the contribution from w is

1
w+1+1/z/(1+v)
Now we see that the residue at infinity is zero by the boundary conditions

(just barely) and we can evaluate using minus the residue at w = —1—1/z/(1+
v), which is a simple pole, getting

14 w)P™?

res — (
w wm

L L
S e

Substitute into the remaining extractors to get

1
2P~ 1(1 4 )Pt

1
(1 + ,U)3p717m

1

n—m-+p 1 n—+p .
[z (14+v+2) Arzto0m

(~1)7["]
Here the contribution from z is

1
(1+2z+vz)m’

Now put z/(1+v+2) = uso that z = (1+v)u/(1—u) and dz = (14+v)/(1—
u)? du to get

1 n+p
I'SS W(l + v+ Z)

o 1 (1+v)mt 1 1+w
w un=m AP (T — )= (1 4+ (1 + v)2u/(1 — w))™ (1 — u)?’

Here is what we have:

1 1 1 1
_1)P[P .
(=)"["] (1+wv)3p—1-2m AT I (I4+uw(2+v))™

The residue at infinity in u is zero and we may evaluate using minus the
residues at u =1 and v = —1/v/(2 + v). We get from the former,
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o 1 L 1 _ (-2
(_1) [ ](1+v)3p,1,2m (1+’U)2m ( 1) [ ](14”[})31)71 ( D )

Good, we have the claim. Now we need to show that the contribution from
the other residue vanishes. We write

1 1 1 1 1
(11 0)3p—1=2m ym(2 4 o)™ ‘w wr—m+P 1T — o (u+ 10/ (2 + 0))™

(=1)P[v"]

We require the Leibniz rule,

1 1 1 (m—1)
(m—1)! (U"m“’“ (1- U)l)

_ 1 "il m—1 (n—m—f—p—i—l)a(_l)q 1m—1-q
(m—1)! ‘ q un—m+p+ltq (1—w)l+m—1-g
[I:

7777,271 1 ( 1)q<n—m+p+q> 1
= 2 gremaptieg A —am—a
= un—m+p q q (1 u)m q

Evaluate at w = —1/v/(2 + v) and flip sign to get

m—1

_ m—q 2 +U)7rL—q
n m-+p 2 n m+p+1-+q n m+ p + q\v (
2y ", i+ oo
_ n m—+p n+p+1 n_m+p+q 1
- Z (2+v) ( q (1+v)2m—2q°

Now we are extracting a coefficient on [vP] but collecting everything the
exponent on v is n + p + 1 — m. This makes for a zero contribution because of
the boundary condition that n > m.

This identity was found by a computer search which pointed to OEIS A010854,
the constant sequence with value fifteen i.e. six-choose-two.

1.165.4 OEIS A001498
We claim that the following holds with 0 < m < n
(n+m)l ni n+m\ mn—m+k\[m+k+1
2m(np —m)lm! = m+k k k+1 |

The RHS is

430


https://oeis.org/A010854

(L)

We can use the middle binomial coefficient to enforce the upper range of the
sum and obtain

[2")(1+2)* 7™y (—1)F (”Zm) (1 i)k {n ZT;ET 1}

=
S S (")
x(n+m—k+ 1)![w"+m_k+1]m(exp(w) _qynkL
Observe that
(n—;m>(n+m—k+1)!(n;+1)!
=am—k+ )5 x(?ntwl;)—!k 0!
_ (n—&—m—k—i—l)M(nZl).

We get for our sum

T 22 exp() - 1)
S (N k(1 w?
iso\ K (1+2)% (exp(w) — 1)k
We now obtain two pieces, the first is
R R 2 () — 1)

n+1
wz

' {1 T W D) (expw) — 1)

- W[z”m + 2" W (14 2) (exp(w) — 1) — we]™
- W[z"m 2 (14 2) (exp(w) — 1 - w) + ]

The power expands to

431



”i:l (n ! 1) (14 2)?(exp(w) = 1 — w)Tw™ 71,

q=0 4

Applying the extractor in z we get

"z*:l (n + 1) (n —m—1+ q) (exp(w) — 1 — w)Tw™ 11,

n
q=0 q

This means we only get a contribution whenn—m—14+q¢ >norq>m-+1.
But from the extractor in w we get that 2¢g+n+1—g<n+m+1or ¢ <m.
The intersection of the two ranges is empty and hence the first piece contributes
zZero.

Continuing with the second piece we have

(n+m)!
(n+1)!

n+1 P wk
x 2 ( i )k(‘”k (1 + 2)F (exp(w) — DF

k>1

[2")(1 + 2)*" " [w" " (exp(w) — 1)

= LI 2 fesp() 1)

. n v 2" w”
8 ; <k: - 1> U T2 (oxplw) — T

= It 2 e epla) — )"

| n L w”
> (k) D T2 (o) — DF

k>0

— _(n _;'m)' [anl](l + Z)nfmfl

X [w"T™[(1 + 2)(exp(w) — 1 — w) + w]™.
Once more expanding the power we have
n n -
Z < >(1 + 2)4(exp(w) — 1 — w)Tw" 9.

q=0 9

Apply the extractor in z to get

> (") (" ool q) (exp(w) — 1 — w) T =1,

q=0 q

This yields the constraints on the range, we have from z that n—m —1+¢q >
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n — 1 or ¢ > m. From w we obtain 2¢ +n — q¢ < n+ m or ¢ < m. This means
the only term that contributes is ¢ = m and we find collecting everything

e I [ L C R

G

L espt) — 1w

Note however that exp(w) — 1 —w = 2w? + - - so we finally have

()

Subtract the second piece from the first to get

(n+m)! n! 1 (ntm)!
n! (n—m)m! " 2m  2m(n —m)lm!

and we have the claim. This also proves the companion identity

e A G [

k=0

This identity was found by a computer search which pointed to OEIS A001498,
coeflicients of Bessel polynomials.

1.165.5 OEIS A178300

We claim that the following holds with 0 <p <m <n

(O BT of (i T R [

We leave the case n = 0 or m = 0 as well as p = m = 0 to the reader. We
start by re-writing the third binomial coefficient:

s (B 2 (R

= p—k k—n+m n—k—1
We can use it to enforce the upper range, it will truncate at n — 1 but we are

not losing anything at k = n where it would have been zero anyway. Extending
k to infinity we get
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ey S (e, ) —

k

— (—1)?tptmtl[,n-1 L\ntm—1r, nt+m w2m m—k o kwk ?
= A S (0 0t

= (1P L (1) P14 )"

1 z*

_ (_1)n+p+m+1[zn—1](1 + Z)7L+7n—1[wn+m](1 4 w)2m[vm—p](1 =+ U)'rn
1
“Trwz/(11 2/ +0)
= (1)L ) (L )P (4 )™
1
ottt o))z

The contribution from w is

1
w+ (1+2)(1+v)/2

Per the initial conditions we have zero for the residue at infinity and may
evaluate using minus the contribution from the pole at —(142)(1+4v)/z, getting

1 2m
I'S)S W(l + w)

Zntmtl (z— (1 +2)(1+ v))zm.

(_1)n+m+l
(1 + Z)n+m+1(1 + U)n+7n+1 zZm

Substitute into the extractors to get (remember to flip signs)

p+lr,m—1 1 m—p y— > v m
(PP g b g e (L 20 )
p+1li.,m—1 1 m—p v vz 2m
= O T g (v e2)
_ (_1\p+1 ,Umfp 1 fils _1\ym—1—gq 2m Uq v 2m—q
= O S e (e
- e () ()

=0
_ (L (27:;) (m_pn) +(—1pt! qio(_l)mlq (Q;n) (277:_;1_(1‘1)
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Observe very carefully that the binomial coefficient that we obtained from
the variable v is zero when ¢ grows beyond m — p. With m — p < m we may
thus write

(Y=o S s (Y (B )

pard m-—p-—q
_ (ijj) Ip = O + (—1)PF 7)1 4 227" :§<—1>M‘1‘q (2;” ) T

Extending the sum without the Iverson bracket term in front we have

(D WEI G e

g>0 g /) (1 +2)

= (—1)PTM[mP](1 + 2)2m {1_ : rm

1+2
= (O
S (U = (),

We have the end result in closed form which is

(o B e |

This identity was found by a computer search which pointed to OEIS A178300.a
certain type of binomial coefficient.

1.165.6 OEIS A052553

We claim that the following holds with n, m,p non-negative values and m <

2n+1:
(e (L ()

Start by re-writing the RHS as

B ()

k=0

Now we may use the third binomial coefficient to enforce the upper range
and extend to infinity, getting
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(—1)"[z”](1+z)p—1+nz(_1)k( p+m )<2n—m_k> Lk

>0 p+n—k m 1+ 2)k

= (_1)”[2"](1 + Z)p—H—n [wm](l + w)2n—m

p+m 1 2k
- 1§<_1)k(p ) T T

= (—1)" ") )P (1 w) 2 (14 )

1 P
8 kzzo(_l)k“k 1+ w)F (11 2)F
= (1[I 2P (L )P (L )

1
“Troz/(I+w)/(1+2)
= (C1PP 2 (14w (1 e
1
x(l—l—w)(l—i—z)—l—vz
= (CLPP 2 (1 4w (1 e
1
“wl+2) + 1t 2(1+0)
= (C1P P 2 (1 ) (o
1
Xw—i—l—i—zv/(l—l—z)'

The contribution from w is

1
w+1+z2v/(1+2)

Now put w/(1 4+ w) = u so that w = u/(1 — u) and dw = 1/(1 — u)? du to
get

2n+1—
res wm+1(1+w) nimm

1 1 1 1
res (1—u)2r=2m /(1 —u)+ 1+ 20/(1+2) (1 —u)?
= res ! ! 1
w oyt (1T —w)?n=2m+l g+ 1 —u+ 2(1 —u)v/(1+ 2)
1 1 1
= res ’

w ymtl (1 —y)2n=2m+1 ] 4 2(1 —u)v/(1 + 2)

The contribution from z is
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1
14+ 2(1 —w)v/(1+2)
Now put z/(1 + z) = z so that z = /(1 — z) and dz = 1/(1 — x)? dz to get

(1 + z)p-‘rn—l

res
e ZnJrl

1 1 1 1
res
g 2"t (1—2)p2 1+ 2(1 —u)v (1 —2x)?
1 1 1
= res

e gt (1—z)P1+z(l—u)v’
Re-capitulating what we have,

1 1
uerl (]_ _ u)2n72m+2

(=1)" [P (1 + 0)PT™ res
u

1 1
X A 1—z)Pz+1/v/(1—u)

We will evaluate this using the fact that residues in x sum to zero, there is

no residue at infinity. We start with the contribution from z = —1/v/(1 — u)
and obtain
—(=1)" P T (1 + 0)PT™ res ! !
w um+1 (1 _ u)2nf2m+2
1
x(—1 n+1,Un+1 1—u n+1
N
1 1
— +n+1 +m
ol G J(L+v)P res mti (1 u)2n—2m+2
Xvn+1(1 . u)n+1 vp(]_ — u)p
AT o—wy
1 1
_ 0 “+m
= [0"](L +v)” 108 m (1 — w)2n—2m+2
1

X(l _ u)n+;D+1 (1 " U(l — u))p

We see that only the constant term of the series contributes. This yields

1 1
+p+1
I'ES umt1 (1 _ u)2n—2m+2 (1 o u)” !

(2n—-2m+1-n—p—1+m\ [(n—m-—p
o m - m ’

This is the claim. It remains to show that the residue at x = 1 makes a zero
contribution. This requires the Leibniz rule:
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) . ) 1 (p—1)
=1 (p—1)! (xn+1 (z+1/v/(1 - uDl)

I T = N (R ) P 17=1-4 i
-ty S () Y e

q=

__p71 1 n+q 1
) E“( )T

Evaluate at x = 1 and restore the extractors to get

1 1
+n+1 +m
—[vP J(1+v)? e | (1 — u)2n—2m+2

p—1

g Z (” ;L q) (1+ 1/v/(11 — )P’

q=0

Expanding the series in the sum we obtain a sequence of decreasing powers
of v starting with v°. Therefore if p +m < p +n + 1 we get zero from the
extractor. This is m — 1 < n or m < n. We now work with the remaining case
which is n < m. This yields without the sign as we are looking for zero:

1 1
rgs unl+1 (1 _ u)2n—2m+2

" —o 4 r—(p+n+1) (1 — w)r—(ptnt1)

r=p+n+1 q

1 1
- fgs umtL (1 — qy)2n—2m+2

S CAE )

q=0
_m—i:—n p+m (‘UTPX_E n+q\(p—1—qg+r\[(2n—m+ 147
B — \r+p+tn+l =\ q r m '

Note however that in the rightmost binomial coefficient the maximum upper
index is 2n —m+1+m — 1 —n =n < m so it vanishes, and with it the entire
sum, which concludes the argument. This is supposing the upper index is non-
negative. For a negative upper index and a non-zero contribution we require
2n—m+14+7r < 0or 2n+1—m < —r. But per the initial conditions 2n+1—m
is non-negative, so this cannot happen.

This identity was found by a computer search which pointed to OEIS A052553,
binomial coefficients read by antidiagonals.
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1.165.7 OEIS A114607

We claim that withm <n—-1—-porp<n—1—m

- 2n 2n —k
2n + 1)P = (—1)"*™ —1)"kP.
enery =S () (75 e
Start by re-writing the RHS to get
zn: 2n —n—m-—1 P,
P 2n+1—k n—m-—k

We use the second binomial coefficient which enforces an upper range of
n —m to get

1 2n
" < )Zkkp
(1+2) = m+1-k

1
(1 + Z)n+m+1
1

TL—T)’L]

= [z [w? (14 w)* > wh R

k>0

nfm]

= pl[vP][z [w?" (1 4+ w)?" Z w” 2F exp(kv)

(1 + z)ntm+l
(14 z)ntm =

1
(1 + Z)n+m+1

The contribution from w is

1
1 —wzexp(v)

= plo?]["" w1+ )

1

1
] n__ -
o (14 w) 1 — wzexp(v)

w w2n+2
Now put w/(1 4+ w) = u so that w = u/(1 — u) and dw = 1/(1 — u)? du to
get
1 1
1 —wuzexp(v)/(1 —u) (1 —u)?
1 1—-u

AR u(l+ zexp(v))’

res ——— (1 — u)?

We get two pieces, namely

"

P[]z (1+ zexp(v))>" ™

(1 + Z)n+m+1

and

1
(1 + Z)7L+TYL+1

nfm]

Pl (1+ zexp(v)2".

Hence we set ourselves the task to evaluate where a € {0, 1}
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P e (U 2 exp(v))"te.
This is
2n+a
B 1 M, + ~
P ey 3 ()@ P (o) - 1)1
q

=0

o S () (T ) -1

=\ q n—m-—gq

The second binomial coefficient is zero when n — m — ¢ goes negative by
construction. It will retain this property in future manipulations. We evaluate
this coefficient by the falling factorial and get

o 3 (75 e -1

q=0

The term with the exponential has exp(v) — 1 = v + --- so it starts at v9.
Note that from the second binomial coefficient everything vanishes when a = 0
except perhaps ¢ = n —m which would require p > n —m which cannot happen
by the initial conditions. The entire piece two contributes zero.

We get for the binomial cofficient when ¢ = —1 that it is

-1
< — — < _ 1 n—m-—q
o< n-mllx (, 1 ) =la<n-mll-D
n—m 1—(—1 n—m+1_n—m+1
= () Y () = (e P
= 1+2
We see that a = —1 has two sub-cases corresponding to the two terms in the

numerator. We get from the first one

R 20+ 1 . v 1
ZUPY (3" ) vrtemto) - 7
— p2n+1 2n+1 q
—p![v];o( w1

= pl[vP]exp(v)?" ! = (2n + 1)P.

This is our claim. The remaining subcase is
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n—m+1

1+z2

2n+1
Dy (2” ! 1) (1) exp(v) — 1)9[:9)

q=0 q

o B G T P

g=0 4

Note that when ¢ > n — m + 1 we also have ¢ > p because n —m + 1 >
n —m — 1 > p by the initial conditions. But when ¢ > p the Stirling number
vanishes so the total contribution is zero. The term {8} does not contribute
here. This concludes the argument.

This identity was found by a computer search which pointed to OEIS A114607,
a fractal binary pattern.

1.165.8 OEIS A000984
We claim that with n > p

<2p> _ i(l)k<2p) (m—k—i—p) (n—i—p—k)
p P k p p
We start by using the third binomial coefficient to enforce the upper range,

S () () (Y

k

g (2 ) )

k>0

— [+ ) P10 Z(—l)’“wk(

m—k—i—p) 2k
k>0

D (14 2)k

1 2k
(I+v)k (1+2)k

= 700+ ) )P4 ()t
k>0
1
14+wz/(1+2)/(1+v)

= [0+ 2 P+ w) )1+ o)

The contribution from w is

1
1+wz/(1+2)/(1+v)

Now put w/(1 +w) = u so that w = u/(1 —u) and dw = 1/(1 — u)? du to
get

rel

2
o8 T L)

1 1
1+uz/(1—uw)/(1+2)/1+0v) (1—u)?

1
TeS oo (1—w)
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1 1
T T —utuz/(1+ 2)/(1+v)

e L 1 _[1_3}%
T T a0/ | Grato)

Re-capitulating what we have,

[2"](1 4 2)""P[P](1 + v)™ [l + v + vz]*?

2p
— [ 2P (21“) V(14 2

S ) ()

This is because we have by construction of the binomial coefficients that we
have for the second binomial coefficient that it is zero when p < ¢. Furthermore
the initial conditions say that n > p so n+ ¢ —p is a non-negative number which
means the third binomial coefficient is zero when n+ ¢ —p < n or ¢ < p. The
only non-zero coefficient that is left is ¢ = p which gives the result.

This identity was found by a computer search which pointed to/ OEIS A000984),
central binomial coefficients.

1.165.9 OEIS A101688
We claim that with [n/2] +p<m <nandp>1

m—p
_ (_qyntmaptl gk (m—1+k\(m-1+k 2m —p
1= kZ:O( 1) ( n—1 p—1 m—p—k)

We use the third binomial coefficient to enforce the upper range:

(RS Wil i [ G B

n—1 p—1
k>0
= (=1 R (1 2P (1 )™ o (1 )
3O (DR w)k (14 v)kek
k>0
_ (_1)n+m+p+1[zm—p](1 4 Z)Qm—p[wn—l](l + w)m—l[vp—l](l + U)m—l

1
T+ 20+ w) (1 +v)

_ (_1)n+m+p+1[zm—p+1](1 4 Z)2m—p[wn—1](1 4 w)m—l[vp—l](l + v)m—2
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1
w1t 1/z/0 1)

The contribution from w is

1
w+1+1/z/(1+0v)

The residue at infinity is zero because we stipulated that m < n. Hence we
may evaluate using minus the residue at w = —1 — 1/2/(1 + v), getting

1 m—1
res — (14+w)

n+1 Zn(1_|_ru)n m—1 1
N T AT (R

Merging into the remaining extractors,

1

(—1)PH [2mP=n)(1 4 2)2m P[P 1](1 —HDn—lm.

The contribution from z is

1
(1+2z(1+0v)™
Now put z/(1 + 2) = u so that z = u/(1 —u) and dz = 1/(1 — u)? du to get

1
. 2m—p
g e (1+2)

1 1 1 1
e w2t (1T — w)n—1 (1 + u(l +0)/(1 — )" (1 — u)?
1 1 1
= res .
u u?m—pnAl 1 — g (1 4 wo)?

We now get from the extractor in v

p—1
P [ G (S
—\Ww—1l-gq q

With the residue in u this becomes

<—1>p+1§ P | G (L R R RV ED !

But we have 2m —p — n > p — 1 as per the initial conditions which yield
2m —2p > 2|n/2] > n — 1 so we may drop the Iverson bracket. This leaves

(71)p+1[wp71}(1 + w)nfl Z (’Il -1+ Q> (71)qwq

4>0 4
1

= (_1)P+1[wp—1](1 + w)n_l (1 ¥ w)n
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1

= () Y

— (71)p+1(71)p71 = 1.

This concludes the argument.

This identity was found by a computer search which pointed to OEIS A101688,
a recursively constructed binary sequence.

1.165.10 OEIS A008459

We claim that withn+1—p<m <nandn >p>1that

n—1\° m" p—1+k n—1+k 2n k+n—p
R I Sl () [ G [0
p P m n+k k

We use the binomial coeflicient with upper index 2n to enforce the upper

range of the sum writing ( *") = (—1)"F (7" L7F):

R G e

-
(14 z)ntt

Xi(p—1+k>(1+w)k(zk(k+n—p)

—=\ p-1 14 2)k k

= (=)™ [w™] (1 4 w)"

= (=)™ "] m[wm](l +w)" TP (14 0)P
n k

><Z(l+w)k(1iz)k(1+v)k<k+n_p>

k
k=0

1

= ()

[™](1+ w) o1 (1 4 )P

1
T2+ w)(+ 0/ + 2
1
T+

= (1))

™)1+ ) P (14 0!

1
X .
(zv(1 +w) + zw — 1)n—P+l
The contribution from v is

1
(zv(1 +w) + zw — 1)n—pP+L’

1
p—1
res — (1+v)
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Now put v/(1 +v) = u so that v =u/(1 —u) and dv = 1/(u — 1)? du to get

res — (1 —u) ! — !
u up (zu(14+w)/(1 —u) + zw — 1)?=P+L (1 — )2
B 1 (I—u)nP
T W zu(l+ w) + (2w — 1)(1 — w))npt
1 (1 —uynr
- w (u(l+ 2) + wz — 1)n—p+l
1 1 (1 —u)n?

(wz = 17731 58w (T u(l+2)/(wz — D)7

- MZ (717 Jevre (T e EEET

q

Now observe that

(pilfq) ((qup) - (p—l—q)!g(tlili)!q—?p)! x q!

\/’Ve Obtain

et 500N

e U () e

(wz — 1)n—rH+l e (wz —1)

gy (Lk0)"? [ A0
=l }(wz - 1)”*1’*1(_1) [1 * wz —1 ]

— [pP~1 w —1)P1[y w4 v vp—l

= ) e (1 1 w0+

Let us re-capitulate what we now have

(1™ ) (14 w) o)1+ )P

(1 +12)P (1 _1wz)n [z(1+w) +v(1+2)",

x[2"]

With the extractor in z we write
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1 1 =

1= (14 2)P (1 —wz)”

-1

(p >zq(1+w)qvp1q(1+z)p1q.
q

q=0

The extractor in v now yields

n 1 S p—1) 4 q 1 q n—p
[”uwz)";()( ) b

p—1

i S (g ) () e

0

P p-1\ (n— — (n—1+7 n—r
()
pr AN q s r n—q-—r
Switching sums,

(e )0 ) (e

r=0 q

Working with the inner sum

n—r

(14 2P (L) Y (

q=0

n—r

, )(—1)‘1(1 + w) 72901

= [P (1 + 2)P o)1+ o) P — vz (1 + w)]"

Activating the outer sum,

[1—0vz(l+w)™
(I+w/(1—vz(l4w)))"

(~1)™ (14 2P P+ )

1 —vz(1+w)*™
(1 —vz(1 +w) +w))

= (=D)™[P7(1 4+ 2)P " P)(1 4+ v) P

The extractor in w is still pending in front,

1 — vz —wvz]®®

(1 —wvz)n

T 2 )

e
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_ (_1\nt+m - _1\ym—q 2n Zp—l Zp—l P V)P (—u2)(1—p2)" 1
= (q)[ J(L42)P " P) (1) (—02) (1 —v2)

=(-1)" Em 2n res ! (14 2)P~! res é(l +0)"P(1—wz)" 1
c\q/) = 271 v pnh—P—gq+1 '
q:

We make an important observation. As per the initial conditions m > n —
p + 1 which means that the residue in v vanishes in the upper range. Hence we
may lower m to n — p and the independence of the closed form of the value of
m is justified. Continuing,

(—1)n[wn_p]L Z (2n> w? res (L+2)P res (Lt (1 —wv2z)"¢

1—w q z ZP—4 v yn—P—atl
q>0
| (1+ 2)P~1 (14v)"P wzv 12"
— (1) [P ; S RO
= (—1)"[w ]1 — Tes " res (1—wv2)" |1+ T us
nfyn—p) L A+zp7t (4w 1 2n
= (—=1)"[w"P] T T o Tes S Ao [1— vz + wzv)

Summing the residues from w we get from the residue at w = 1 the contri-
bution

(14 2)P~! (1+v)"? 1
res res
z 2 o ynTPtl (1 —pz)”
1

1 (14 v)"P 1
= res — res
z 2P (14 z)ntl—r v pnptl (1 —(1+0)z/(14 2))"

”Zl(n_uq)r 1 1 (1+0)"" 29(1 + )1

S Ut gt (14 2)

q=0 4
p—1
:Z<n—1+q> (p—l—q+n—p+q>(_1)p_l_q<n—p+q>

= q p—1—gq n—p
p—1

- p—1 n—1+¢q n—1 ofn—r+q

=(=1 (=1 :
= q n—p+q n—p

Observe that

( n—1 )(n—p—i—q)_ (n—1)! _(n—l)(p—l)
n—p+q/\ n-p (p—1-g)!x(n-plxqg \p-1 q )

We have established one of the factors to make the square. For the remaining
factor we have
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)

= (=1)P 2" (1 + 2) ”IZ< > )41 + 2)1

= (=D )" T - (ql>0+ 2P = [P (L 4 2)
()= Go0)

We have the second factor and may conclude the argument. For the sake of
rigour we will now check the residue at infinity. We get

1 1 1
— I‘gs ﬁw’nﬁklipmﬁ[w(l — 'UZ) —+ ZU]zn
1 1
= res —— ——[w(l —vz) + z0]*"

w wttP 1l —w

n+p—1 9
= Z ( n) (1 —wz)12 121,

q=0

We then obtain from the two remaining residues,

n+p—1 1 —
> MY g LEAT (A" angong L
g q z zP v U”_p+1 (1 — UZ)n_q
q_

Note however that 2n —g—(n—p+1)>2n—(n+p—1)—(n—p+1)=0
so the residue in v cancels those contributions.

This identity was found by a computer search which pointed to OEIS A008459,
square the entries of Pascal’s triangle.

1.165.11 OEIS A053126

We claim that with 0 < m <n —p and n > p that

3 R~ G G )

We use the third binomial coefficient to enforce the upper range of k at the
start,
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(=) P (1 4 2)2" zn: (” - ; + ’f) (1)t (n _7711+ k> N <2k +p>

k=0 p

= (=)™ A+ )" w™] (1 + w)"

Xz(n;+k)(1)k(1+w)kzk<2k;p>

= (D)™ P14 2)* ] (1 4+ w) T )1+ )
> (” - ; * ’“) (=114 w)*2* (1 4 v)**
k>0
= (=D P14+ 2)* ] (1 4+ w) T P} (1 + )
1
14+ 2(1 +w)(1+v)2)n’

It is convenient to re-order the extractors,

T

(=)™ PP)(1 + v)P[w™](1 + w)" " [2"](1 + 2)*"
1
1+ 2(14+w)(1+v)2)"
= (=)™ PRP)(1 +0)" Pl (1 4+ w)" T 2" (1 4 2/ (1 +0))*"
1

T

At 20+ w1 +o)"
= (=)™ *P[P] (4o [w™](1+w)" ' [2")(1 4 2 + v)*"
1
A+ 20+ w)d+o)"
mTp[,pP 1 m 2n 2n
= (| s g T 2+ )
1
“wr111/2/0+w)"
= (1)) ] 221 4 2 4 )" !
(14+v)n—>p 1+w (1+1/z/(14+w))”

1
“Aro/A+1/z/0+w))n

The contribution from v is
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- p—q(P—atn—p—1\ (1+2z+0)"
> (=) < >[” ](1+v/(1+1/z/(1+w)))”

puard pP—q
-3,
" Z (oo () e

Restoring the fractional term in z and 1 4+ w

zer()

D3 (oo () e

r=0

Now note that 2n — ¢ +r > 0 as per the initial conditions and the series
from the rightmost term only produces negative powers of z. That means with
the coefficient extractor being [22"] only ¢ = r contributes and we get

s S (e ()
050077
SR Y (1)

T L —

(I —u/(T+u)"

= [WP](14+w) " (1 4+ w)™ = [WP)(1 +u)*" ' = (an— 1).

This is the claim. An alternate computation uses expansions about zero:

S ()

S o (7
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e ()

q

(Y (1

Due to the coefficient extractor in w this becomes

()

q=0

X Z‘J: <q2—nr> (14 2)"9(—1)" (7’ + 7: - 1) 2 (1 4 )™

r=0
s

Xi(s—l—n—l—r—l)(_l)s(lzjrwz)s.

S
s=0

With the extractor in z:

()

q=0
BRI o
Xi (s-l—n—si—r— 1)(—1>“’(Z_3_§)w8'

s=0
Note that n — g — s is still a non-negative number, we have as a lower bound
n —p—m > 0 as per the initial conditions. Now with the power on z we have
2n — (n+7+s) > n—q— s since ¢ > r. Equality can only occur when r = ¢

and we obtain

i é(—l)p—Q(”;q; Do (T s

Xi (ern;rq 1)(1)%5.

s=0

We may extend s to infinity due to the coefficient extractor in w:

e (ot [T

q=0
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i (n—q—l) (q—l—n—l)

pr SN q
This is the same as before and we may once more conclude the argument.
This identity was found by a computer search which pointed to OEIS A053126,

a subsection of binomial coefficients.

1.165.12 OEIS A356546

(2n>(n)_zn:(n+l)<n+k)<m+k>
n ) \m Pt 2k+1)\m+k m
We use the first binomial coefficient to enforce the upper range of the sum:
i(n—kl)(n—f—k)(m—f—k)
— n—2k)\m+k m
+k\/m+k
1 yrtl 2k (T
= [+ Y 2

k>0

We claim that

= [2)(1+ 2)" w1+ )" Y 2+ w) <m M k)

E>0 m
1
=2+ wy
1
(w— (1 — 22)/22)m+1"

— [Zn](l 4 z)n—i—l[wn—m](l + w)n

— (71)m+1[zn+2m+2](1 + Z)n+1[wnfm](1 +w>n

The contribution from w is

1
(w= (A= 2)/2) T

Here the residue at infinity is zero and residues sum to zero so we may
evaluate using minus the residue at w = (1 — 22) /22, which requires the Leibniz

rule:
(m)
1 1 .
poo (wn_m+1(1 +w) )

1 o /m -

— — (1) n—m+ 1)1 + w)r " (mmDpm=a
| Z < ) n— m+1+q(

ml =g/ w

B O R R U
= ZOW . (1+w) - .
q:

1
res —— (1 +w)"

w W m—+1

—4q
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Evaluate at w = (1 — 22)/22 to get

1 i2z2 g;)(_l)q (n : 7: i q> W (mri Q)'

Now observe that

(n?Jrq)(mTiq) q!X(n—mﬁX(m—Q)! N (nfm>(rz>

‘We thus obtain

()= (1) =

q=0

- (o)

Restoring the coefficient extractor in z and flipping the sign yields

(o097 e = ()= = () ()

This is the claim.
This identity was found by a computer search which pointed to OEIS A356546,
a central binomial coeflicient times a binomial coefficient from Pascal’s triangle.

1.165.13 OEIS A370232

We claim that with 0 <m <n

() - S

To start observe that

<22:~L> (22 . 3nm> T em) < (k —(2:1))!! < (k—m)! <k; Q—km> (k ;mm>

We re-index the sum

31 G TR [ e 510

We use the middle binomial coefficient to enforce the upper range of the
sum:
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ERUEREDY

k=0

)

2n — k 2k 1
2n —2k) (1 + 2)%F (1 4+ w)

TR D M "
k=0

Here we see that the remaining binomial coefficient also enforces the range.
Continuing,
[Zn—m}(l +Z)2n[w2nl](1 +w)n+m[v2n](1 +U)2n
2k k

- v z 1
x ; Trorar o arer Y

— [Zn—m}(l + Z)Qn[’me](l + w)n+m[v2n}(1 + U)Qn
1
T/ o)/ 221+ w)
_ [Zn—m][me](l T w)n-&-m[v2n](1 T+ vZ)Qn
1
T/ o+ 2) /(4 w)
_ [Zn—m][me](l 4 w)n+m+1[v2n](1 Lo+ UZ)QH
14+v+wz
1+ w)(1+v+vz) +v2z
_ [Zn—m][me](l + w)n+m+1[U2n](1 Lo+ ,UZ)Zn
o 14+v+wvz
w(l+v+vz)+ (1+0)(1+0v2)
_ [Zn—m][me](l =+ w)n+m+1[v2n](1 L+ ’UZ)QTL
1
Xw—&-(l—kv)(l—&—vz)/(l—i—v—l—vz)'

The contribution from w is

T

1
w+ (1+v)(1+v2)/(1+v+v2)

Now put w/(1 +w) = u so that w = u/(1 — u) and dw = 1/(1 — u)? du to
get

1
n+m-+1
IeS il (14 w)

1 — y)2mtl 1 1 1
res ( U)

w2l (T —u)vtmtl /(1 —u) + (1 +v)(1+v2)/(1+v+vz) (1 —u)?
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1 1 1
T W (1w g 4 (- w)(1+o)(L+v2) /(1 + o+ oz)
Here the residue at infinity is zero so we may evaluate using minus the residue
at u=1and at u= (1+v)(1+vz)/v?/z2.
We require the Leibniz rule for the former:

g1 1 1 (n=m)
(=1) (n —m)! (u2m+1 (qu(lu)(l+v)(1+vz)/(1+v+vz))1>

= (—1)n+m% i (n B m) ﬁ(—l)q@m +1)7

q

1 n—m-—q vz nom
X _ :
(u+ (1 —w) (1 +v)(1+vz)/(1+v+vz))ltn—m—a l+v+wz

Put v =1 to get

“””*mﬁ > (”;m) (~1)!(2m + )71 (1+2+)_

q=0
< /2m+q v2z nomed
— 71 n+m 71 q I .
(=1) ; ( q >( ) <1+v+vz>

With the extractors in z and v

<—1>”*’”[v2”1<1+v+vz>2”2? (2m+q)<—1w] ()m

q 14+v+wvz

= (_1)"+m Z (2mq+ Q> (_1)Q[ZQ] [U2m+2q](1 + v+ vz)n—i—m—i—q
=0

= (- Y

q

n—m
0

e ST (2mq+ ‘1) (—1)q(" A q) (ngq)'

q=0
Now note that

(o 22 ) = e = () ()
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Good, we have the first factor of the square. This leaves

<_1)n+m’;v;“(n+m+q)<_1>q(n—m)

= q q
7( 1)n+m[ n+m 1+wn+m 1+w ( >

P (1w

— n+m 1 n+m n—m __ n+m
[w 114+ w) w ( om )"

We have the second factor as well and may conclude. It still remains however

to show that the contribution from u = (14 v)(1 + vz)/v?/z is zero. With this
in mind we write

1 1 1
0 2 (T — w4 (1—u)(1+ o)(1+v2)/(1+ 0 +v2)
1 1 1
— D gmE (I—w)r—m+t (1 +0)(1+v2)/(1+v+4vz) —uwvz/(1+ v+ vz2)
~ res 1 1 14+v+ovz
wo y?mtl (1 — )=+ (14 0)(1 + vz) — w2z
1 1 1 14+v+wvz

022 o 2 (1 —w)r=m+l gy — (1 4+0)(1 +vz)/v2/2"

Do the substitution and flip the sign to get

1 (v tvz)(v?2)>mH! (—1)r-m (v2z)n—mHl
22 (14 v)(1 + vz))2m+t (1+v+oz)nmil’
Restore the extractor in v:

1 +U+'Uz)(_1)n—m+1 (’U Z)n+m+1

(1 +v)(14v2)?m L (1+0v+wvz)nmtl
(71)n7m+1

(14 v)(1 4 vz))2mtt (

We have however that 2n + 2m + 2 > 2n so this extractor returns zero and
there is no contribution from the second residue.

This identity was found by a computer search which pointed to OEIS A370232,
a squared binomial term.

[02"](1 4+ v + vz)*" (

= (1 + v+ vz)"T™ v2z

)n+m+1.

1.165.14 OEIS A046899

We claim that with 0 < m <n and p a real number
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(") =g (TG

We use the middle coefficient to enforce the upper range of the sum, writing
("*™) to obtain

n—k
()" [+ 2 Y (1) (n : k) (p;k)

k>0

= (ZD)" " 4 2) T )1 w) Y (1) w)’“(n : k)

k>0
1
(14 2(1 +w))n+1”

= (=D "1 + 2)" " [w™)(1 + w)?
The contribution from z is

1
(1+2(1+w))n

Now put z/(1 + 2) = u so that 2 = u/(1 — u) and dz = 1/(1 — u)? du to
obtain

1
+
res W(l +z)nm

w0 1 1
res
ST U — W (Ll + )/ =) (1= 0)?
1 . 1
= res (1= 0" e
1 1 1
= res (I—w)m ™

wntl Tu gt (u+1/w)n+1’

Here the residues sum to zero, there is no pole at u = 1 due to the initial
conditions and the residue at infinity is zero by inspection. Hence we may
evaluate using minus the residue at u = —1/w, which requires the Leibniz rule:

(n)
1 1 n—m
m (un""l (]. — U) >

= i Z <n> un—&ﬁ_q (=1)%(n + 1)6(1 _ u)nfmf(nfq)(_l)nfq(n — m)n=e

= (=1)" g;) ﬁ (n ;L q) (1 — u)a™m (TTLL_—TZ) :

Substitute u = —1/w and flip the sign to get (double (—1)™ cancels)
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q wa—m n—gq

e §<_1)n+l+qwn+1+q (o) ()

=l o e (T o= (o

n+1
= q (1+v)
1 n-+m
= ()" "] ————— = :
= ()
We have the claim.
This identity was found by a computer search which pointed to OEIS A046899,

binomial ("jnm) .

1.165.15 OEIS A094527

We claim that with 0 <m <n

(n inm) - é(l)k(n ) 7: " k> <n Q—nn;f k) <n +3:— k;)

We can use the middle binomial coefficient to enforce the upper range of the

)

_ _ 1 n—m+k\ , 2n
— _1 n—m n—m

1

n+m 2n n—m+k k. k
(1 + Z)n+m+1 [’LU ](1 + w) ];) ( k )Z w

1 1
n+m 1 2n
(14 2)ntm+ [w" ™™ ](1 4+ w) (1 — zw)n—m+1

= (~1)rm

= (1))

1 1
— 2n—2m-+1 n+m 1 2n
[Z } (1 + Z)n-‘rm-‘rl [w K + w) (U} _ 1/Z>n—7n+1 :

The contribution from w is
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.
(w—1/z)n—m+1’

Here the residue at infinity is zero (just barely) and we may evaluate using
minus the residue at w = 1/z. This requires the Leibniz rule:

1 2
res w1 (LT W)

(n—m)
1 1 on
(n—m)! <wn+m+1(1+w) >

1 < (n—m 1 -
= - (-1) a
B (TL - m)' qgo ( q ) wntm+l+g ( 1) (n +m+ 1)

% (1 + w)2n7(nfqu) (Q,n)nfqu

iy 1 n+m-+q 2n
_ _1\49 n+m+q
= ;:O: wn+m+1+q( 1) ( 7 )(1 + w) (n o q>'

Substitute w = 1/z to get

1
(1 + Z)n+m+1

n—m n+m-+q
n+m+l+q/ _1\q n+m-+q (1 +Z) 2n
x ZZ ( 1) ( q n+m-+tq n—m-—q
g=0

_ [zznzmé(1>‘J(”+3Hq)““>“<n—ﬁ—q>

(TG )

q

[ZQn—2m+1]

Now supposing that ¢ > 1 we require ¢ — 1 > 2n — 2m but ¢ — 1 is at most
n—m — 1< 2n — 2m. This leaves ¢ = 0 only and we get

()= (2

which is the claim.
This identity was found by a computer search which pointed to OEIS A094527,
triangle of ( n ).

n+m

1.165.16 OEIS A008459

We claim that with 0 <m <n
2 n

n k 2n — k\ (2n — 2k

— (=)™ —1)k -

() =2 () () )
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The third binomial coefficient serves to enforce the upper range of the sum

where we write (—1)"—k(*7:;1k+k)

e e 2 () (o )20

(k>(1ﬁkzﬂl+zﬁ

m) (1 +w)k

<k>1ﬁkzﬁl+zf

m) (1+w)k

I 1 n 2n
~ (-1 + E ]W[w 11+ w) ’%%

1)n+1 [an](l + w)Qn Z

=V =

1
(1 + Z)nferl

<3 (’f ;m>%zk<1+z)k

k>0

= (=)t w21+ )

1
1
1—2z(1+2)w?/(1+w))m+L
1
1
1 —wz)m (1 +w + wz)mtt’

We find for the coefficient on w

— (_1)n+m[zn7m} [w2n72m}(1 + w)2n7m

T

— (_1)n+m[zn—m] [w2n—2m](1 4 w)2n+1

T

1

1
1 2n+1 .
res —— ( + w) (1 _ wz)m‘*‘l(l Fw+ U)Z)"H_l

w w2n—2m+1

Now put w/(1 + w) = v so that w = v/(1 — v) and dw = 1/(1 — v)? dv to
get

1 1 1 1
F p2n2m AT (1= 0)2m (1= vz/(1 — 0)" (1 + v(1 + 2)/(1 — )™ (1 — v)2
1 1
= res

v p2n=2mtl (1 — (1 + 2))mH1(1 4 vz)m+l’

Restoring the extractor in z,

1 1 1

(—1)m [t T reS o amTl (v—1/(1+ 2))" (v 4 1/z)m+1
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Here residues sum to zero and the residue at infinity is zero, so we may
evaluate using minus the residues at v = 1/(1 + 2z) and v = —1/z. We get from
the former with the Leibniz rule,

1 1 1 (m)
m U2n—2m+1 (U + 1/Z)m+1

m.Z( ) s ()70 — 2m 17

1 m— m=q
. (v 4 1/z)mt1+(m=a) (=17 (m + 1™

e 1 2n —2m+q
=(=1) Z p2n—2m+1itq ( q )
q=0

o 1 2m —q
(v+1/z)2mtl=a\ m—q )
Evaluate at v = 1/(1 4 z) to get
("Y1 im0 7 2m )

q=0 a

. Z2m+17q(1 + Z)2m+17q o2m — q
(14 22)2mt1—q m—gq/

Collect everything and flip sign,

" (2n—2m+q\ [2m —q z2mtl—q
-1 n+m n+1 1 n
()" [z + 2) ; m—q ) (1 + 2z)2m+1—a

m
— (71)n+m[zn+1](1+z)nz <2nmq> (m+Q) LmAg+1 5
= m—q q (14 2z)mtat
Note that we need m + ¢+ 1 < n + 1 here or ¢ < n — m. Now when
n —m < m we may lower the upper range to n —m because with ¢ > n —m we
get an exponent > n+ 1 on the power of z. On the other hand when n—m > m
we may raise to n—m due to the first binomial coefficient vanishing in the added
range.
Expanding the term in z and resetting the upper limit on ¢ we get

Zn+1 Zn—m—q—lzm-ﬁ-q-ﬁ-lnimiq m+Q+p _1\p Gl
(1 + 2) > ( )( Dt

= P 1+ z)P
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= n—m-—q—p

Now n — m — g — p is non-negative hence the second binomial coefficient
vanishes except when p = n — m — ¢ and we obtain

B b e

Next observe that

(m;q)<n—:%—Q) m!quxgl!—m—q)! N (;)cqm)

Good, we have the first binomial coefficient of our closed form. The remain-

der is
n—m <2n —m — q) (n — m) (_1)q
— \ m-—gq q

q

=g S (M) e

2 1+ w)e
— e w o 1= 2] g = (1),

This is the second binomial coefficient and we may conclude. For the sake
of being rigorous we must also check that the contribution from v = —1/z is
zero. We get from the Leibniz rule,

m

m 1 2n—2m+gq
(=1) Z p2n—2m+itq < )

q=0 q

-1/ +1 2))EmHi=a (2:; - qq>'

Evaluate at v = —1/z to get

i _ 2n—2m+q
(_1>m Z(_l)q+1z2n 2m+1+q< >
q=0 q
x(—1)rt! FMTI(1 + 2)?M T (2m — g
(14 2z)2m+l-q m—gq)

Note however that the exponent on z is 2n + 2 > n + 1 so there is no
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contribution as everything vanishes due to the extractor in z.
This identity was found by a computer search which pointed to OEIS A008459,
square the entries of Pascal’s triangle.

1.165.17 OEIS A123970

We claim that with 0 < m <n and p a real number,

n+m " (n+m c(P—EkE\/2m+k
=(-n)™ -1 .
<2m) (=1) kX_;)(m—i-k)( ) (n—m k
We can use the first binomial coefficient to enforce the upper range to get

()71 4 2)m T Y SR (-1)" (5_:;) (277;”: k)

k>0

(1P 2 +w)2m2zk<—1>k(p ¢ )(1 T )t

>0 n—m
_ (_1)m[zn](1 + Z)n-‘,—m[me](l + w)Qm[,Un—m](l 4 ’U)p
Y R DFA+w) A+ )
k>0
= (=)™ )1+ )" w1+ )P (L o)
1
T+ 20+ w)/(1+0)
= (=)™ )1+ 2)" P )1+ w)P (L )
1
“1 +o+z(14+w)
= (=) [+ )" (L w)P (L )
1
Xw—f—(l—i—v—i—z)/z'

Now here the contribution from w is

1
w+(l+v+2z2)/z

Here the residue at infinity is zero (just barely) and we can evaluate using
minus the residue at w = —(1 + v + z)/z which is a simple pole:

1
I'S)S W(l =+ 'lU)2m

z2m+1 (1 + U)Qm
(1 +U+Z)2m+1 ZQm

We find
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1
_1\m[,n n+mfp, n—m +2m+1
(DN

Now here the contribution from z is

1

1
n+m
res —— (14 2) Axoram

2 Zn+1

Here we again have a residue of zero at infinity and may evaluate using minus
the residue at z = —(1 + v), which requires the Leibniz rule:

(2m)
1 1 n+m
m)! (+ (1+2) )

Z ( ) z"+1+q( D(n 4+ 1)1+ 2) = Cm=d (n 4 p)2m=a

2m
1 n-+q _ n+m
= E —(-1)? 1 n=mtq .
q:ozn+1+q( )< q )( +4) <2m—q>

Evaluate at z = —(1 + v) and flip sign to get

n+m n—+gq _\n—m-+q n-+m
Z TL+1+Q< q >( ’U) 2m —q ’

Note however that we have a coefficient extractor on [v™~"™] so only ¢ = 0
can possibly contribute and we find

+m 1 n-—+m
-1 n+mfy, 0 -1 n—m n —
(=1) =1 ( 2m )(1—1—1})”1’27” ( 2m )
which is the claim.

This identity was found by a computer search which pointed to OEIS A123970,
a multiple of (”+m).

1.165.18 OEIS A013609

We claim that with 0 < m <n and p a real number

()= () ()

We find for the sum
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n

= (0P 2 Y () DM )

k=0

w 2 n
— -y 2 1= SR

= (1" [w"][" (1 2P S (”) 2P 1)09(2 4 w)d.

B q

= (=)™ w™[z""™(1 + 2)P " [z — 2w — w?]"

q=0

Due to the coefficient extractor in w we need ¢ < m and due to the coefficient
extractor in z we need n — g < n —m or m < g hence only ¢ = m can possibly

contribute. We find

(2P () ) 2 )

= <”>2m[z0](1+z)w - (Z)Qm,

m

We have the claim. Compare also
This identity was found by a computer search which pointed to OEIS A013609,

coefficients of (1 4 2z)™.

1.165.19 OEIS A001813

We claim that with n, m, p non-negative integers and m > p and r a real number,

Gl _ (*1)p+mp+zm(” — Rt (p +727f— k) (7“ » k)

|
p: k=0

We can use the first binomial coefficient to enforce the upper range,

_1)ptmptm )2 Fln— kP (— kr*k
(P14 )P 3 A k)(l)(p)

k>0
= (—1)Prm[pptm 2)?Ppl[wP 2P exp((n — k)w)(—1)* r—k
(ORI 2] e B 1>(p)
= (~1)PF [P (1 4 2)2Ppl[w?] exp(nw)[o?](1 + v)"
1
T+ 2/ exp(w)/(1+ )
= (~LPF P (L4 2)2Pplfw?] expl((n + w)[oP](1 + v)
1
Xz+exp(w)(1+v)'

Here the contribution from z is
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1
2z +exp(w)(1 +wv)’
As per the boundary conditions the residue at infinity is zero here and we

may evaluate using minus the residue at z = — exp(w)(1 + v), which is a simple
pole:

2p
res 77”’ 1 (]. + Z)

pwPlexp((n + Dw)[?](1 +v)"

(- ep)( )
exp(w(p +m +1))(1 +v)ptmtt
= pllw”]exp((n + L)w)[0P](1 + v)" P~
(exp(w)(1+v) ~ 1
exp(w(p +m+1))
= pllwP]exp((n + 1)w)[wP](1 +v)" ~P7™

2p

X L Z (2])) (exp(w) — 1)%exp(w(2p — q))v*P 2.

exp(w(p +m+1)) =\ ¢

Now from the extractor in v we get p > 2p — q or ¢ > p. From the extractor
in w we get using exp(w) —1 = w+- - - that ¢ < p. Hence only ¢ = p contributes
and we get

plw?]exp((n + 1w)[v”](1 +v)"P~™
L 2p P exp(pw)vP

The coefficient extractor in v reduces to the constant term which leaves

plurlexp(n + D) (if) (exp(w) — 1)7.

exp(w(m + 1

Lastly the extractor in w also reduces to the constant term since (exp(w) —
1)? = wP + - -+ and we get
)
p!
p
which is the claim.
This identity was found by a computer search which pointed to OEIS A001813,

quadruple factorial numbers (2n)!/nl.

1.165.20 OEIS A043302

We claim that with n > 0 and n > m > 0 and p an integer for Stirling set
numbers
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P e ()

‘We have for the LHS
(exp(z) — D!

—1)* (i_i]j) (m + k + 1)![zmHE+H] T

L
3
R
5 s
gt
~ 3
N

(exp(z) — 1)*

- <—1>m§ ()0 (072 o+ e enpe) 2C)
= S () (T esteents) - 1t

Without the scalar in front,

e () )

k=0
= [ exp(2)[w" "] (1 + w)”
" /n (exp(z) — 1)* 1
% kzz;) <k> (=1 2k (1+w)?k

= [z exp(2)[w"")(1 + w)” [1 - jrﬁ)w—)j ]

— [ exp(2) 0™ (1 4+ w)P 2 [+ w)? — exp(z) + 1]

= [zn-i-m] exp(z)[wn—m](l I ’w)p_2”
S5 () st <

Now from the coefficient extractor in w we require ¢ < n — m. From the
extractor in z we get 2n —2¢+q¢<n+morn—m < q. Hence only g =n—m

can possibly contribute. We obtain

e (2 ()2 ) 1) ) 1)

= esp@)u 1+ w0 (1) @ ) ) () < 1 2)”
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— e ()2 (1) (1) () <1 2"

- (;) (—1)™ 27;:%

Collecting everything including the pending scalar in front yields

(n) M2n—2m

m n!

which is the claim. Note that this will also prove the companion identity for
Stirling cycle numbers

on—2m (n+m)! _ mi n+m qyh p—2k\[m+k+1
(n—m 'm' = \m+k n—m E+1 |
Consult also [1.165.35)
This identity was found by a computer search which pointed to/ OEIS A043302,
table of 27 (n + k)!/(n — k)!/k! /4F.
1.165.21 OEIS A059304

We claim that wth n > 0 and 0 < p < m < n non-negative integers

o ()= S (ET (), 2, )

We can use the first binomial coefficient to enforce the range of the sum,

writing (" k:p).

oS o () ()

E>0
_ mpn n+pr,,p 2+ 2p
= ()4 2) %W(—l)kmw)%(m_kﬂ)
Zk 9
— P I 0 Y (DL )

k>0
= (“D)I(L+ 2L )
1
T+ 2001+ w)2/(1 + 2)
= (=D)™[z"](1 4 2)"P[wP)(1 + w) " PP (1 + v/ (1 4 w))*P
1
T+ 201+ w)/( +2)
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= (=1)"["](1 + 2)" PP (1 + )" PP+ w + 0)*P
1
Tzl 1w)/(1+2)
= (~1)" (14 2 (14 )P (L w4 o)
1
T A+ 2)/z/Atw)

Now the contribution from v is

1
+(1+2)/z/1+w)
Due to the boundary conditions the residue at infinity is zero here and we

may evaluate using minus the residue at v = —(1 + 2)/2/(1 + w) which is a
simple pole:

1
I'GS m(l + w + ’U)Qp

(z(1 + w))m+ett
(1+2)miptl

2(1 + w))m—ptl
(14 2yt

(=nm*r (Lt w—(1+2)/2/(1+w)*

= (—ayme! (21 +w)® — (14 )

Activating the extractors in z and in w:

(=DP[" ™YL+ 2)" " [wP] (14 w)*™ 2P (2(1 + w)? — (1 4 2))*
Now the contribution from z is

1

n—m 2 2p
reS — 14+2)"""zQ+w)*—(1+2)

Put z/(1 + z) = u so that z = u/(1 — u) and dz = 1/(1 — u)? du to get

res e (L= P 1+ 0)2/(1 = ) — (14 /(1 - “Wpﬁ

1 1 9 2
- un—mAptl (1 — )P+l (u(l +w)” —1)

Here the residue at infinity is once more zero (just barely) and we may
evaluate using minus the residue at v = 1. which requires the Leibniz rule:

1 1 5 2p (p)
o1 Lt (W1 +0)" = 1)

1< .
pZ( )W( D(n—m+p+1)7
q=0
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X (w1 + w)? = 1)~ E (14 w)? 2 (p)2=t
p
yn—m+p+ltq q
q=0

X (u(1 + w)? — 1)PTI(1 4 w)?P—24 (pQ_pq> .

Now put u = 1, restore the extractor in w, and adjust signs (recall that we
had a term 1/(1 — u)?*! in the residue in u):

)1 +w>2m2pf<1>q(” - m“’“)

q=0 9
+ 2p—2 2p
X (w(2 4+ w))PTI(1 + w)P~4 .
p—q
Note that we have an extractor of power p and an exponent of p + ¢ on w.
Hence only ¢ = 0 can possibly contribute and we get

P w)2M 2P (g w))P w)?P 2p
P)(L 4 w)?™ 2P (w(2 + w))P (14 w) (p)

= [w°](1+w)*™ (2 + w)P (1 + w)* (?) =¥ (2;)

This is the claim.

This identity was found by a computer search which pointed to OEIS A059304,
sequence 2" (27?)
1.165.22 OEIS A079901
We claim that withn >0and n>m >0

nm = (—1)™ zn: (” - ]1 + k) (—1)kkm (fﬁk)

k=0
We can use the second binomial coefficient to enforce the upper range of the
sum, writing (nQ_"k) :

e (M7 ) ot

k>0
= (=1)"m![w™][z"](1 + 2)*" Z (n a ]i + k) (—1)% 2" exp(kw)
k>0
1

= (=1)™m![w™][z"](1 + z)%m.

The contribution from z is
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1
(1+ zexp(w))™
Now put z/(1 + z) = u so that z = u/(1 —u) and dz = 1/(1 — u)? du to get

1 2n
res ﬁ(l +2)

1 1 1 1
T (1= w1 (1 +uexp(w) /(1 — )" (1—u)?
I B 1
w unr Tl —u (1 —u+ uexp(w))

Here the residue at infinity is zero so we may evaluate using minus the
residues at v = 1 and u = 1/(1 — exp(w)) to get for the former (orient as
1/(u — 1) for the sign)

(=1)™m!w™] exp(—nw) = n"™.

This is the claim. Now we just need to show that the contribution from the
latter at u = 1/(1 — exp(w)) is zero. We write

11 !
S il (1 —u(1l — exp(w)))"
= ) T apt)) w T = (a = /(1 = exp(@)))"

We require the Leibniz rule:

(n - 1! (unlﬂ (1 = u)l)(n_l)

1 o1y 1 1 —
- - - - 1\e q_ -  4qn—-1—q
 (n—1)! Z < q ) un+1+q< D +1) (1 —w)l+n—1-q 1

q=0
n—1
B S ETLET A S
ot untlta q (1 —wu)n—a’

Evaluate at uw = 1/(1 — exp(w)) to get

1
exp(w)n—4’

Y- exp<w>>n+1+Q<—1>q(n+ q)(—l)"-m — exp(w))™?

q=0 4

Collecting everything,

(1 — exp(w))™+! ni <n - q) W.

q=0 q

To conclude observe that the coefficient extractor in w is [w™], we have
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(1 — exp(w))" ™! = (=1)"" 1w + ... and n + 1 > m, making for a zero

contribution.

This identity was found by a computer search which pointed to OEIS A079901,

triangle of powers n*.

1.165.23 OEIS A090181

We claim that with n > 0 and n > m > 0 featuring Catalan and Narayana
numbers

()G )i = e () () 676

Start by re-indexing the sum

S (e () )

We may use the first binomial coefficient to enforce the upper range,

(—Umwﬂl+@%§:n_i+1uj;%c4ﬁ<i>6n;k>

k>0

1 2k

o . 2n — k
~ P S e gt ()

= (=1)™[2")(1 + 2)*" [w™][*"] (1 + v)*"
1 Zk X X ,U2k:
XE:n—k+1ﬂ+wPN7D(1+w)ﬂ+vﬁ

k>0

= (~1)" 7)1+ 27w o?) (L + v)2" [+ log T

k ,U2k

X I;) m(—l)k(l +w)* T U)k“k

= (D)7 A+ 2)* [ ) (1+ 0)* [u log T

1
1+ (1 +wuzv?/(1+2)2/(1+v)

X

1

= ()" L+ 0+ o) [ log T
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1
Tt 14+ w)uzv?/(1+v+vz)

= (1" ["I[w™][*"](1 + v + v2)* "] log

1—
1
X
l+v+vz+ 1+ w)uzv?

= (=1)" "™ (1 + v+ 02) T u" 2] log

1—
y 1
w+ 14+ (1 +v+wvz)/u/z/v?

Here the contribution from w is

1 1
o w14 (I1+v+wv2)/u/z/v?

where the residue at infinity is zero and we can directly substitute the value
of the other pole:

1 1
n+111, 2n+2 1 2n+17, n+2 1
[Z ]['U ]( +'U+'UZ) [ ] Og17’LL(1+(1+U+UZ)/U/Z/U2)m+1
1
n—m 2n—2m 2n+17, n—m-+1
[ v 11+ v+ vz) [u ] Ogl—u(1+v+vz+uzv2)m+1
1 1

_ [Zn—m][U2n—2m](1+U+vz)2n—m[un—m+1] log

1—u(l4+wuzv?/(1+v+vz))mt!

—_ [zn—m] [UQn—Qm](l NEPTE ,Uz)Qn—m

% Z 1(m+‘])(_1)qlzvq
mn-mEl-qg\ ¢ (1+v+wv2)
n—m
_ _ 1 m+q
— [,n—m][,,2n—2m —1)94
) Y e (M s

q=0

xv?(1 4+ v + vz)?—ma

— [yn—m i (m+q>(—1)qzq
m—l—l—q q

2n—m—gq Iy 2rm—2
1 n—2m—2q
X(Qn—2m—2q)( 2

n—m

== G
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o 2n—m —q 2n — 2m — 2q
2n — 2m — 2q n—-m-—-q )

These last two coefficients are equal to

(m+q)! x (7”52—717; Tq—)!qi!(n—m—q)! N (2:—_?::—_;) (miq)

We also have

(m:q) <mZQ) _qlxmlxgi—m—q)! N (::L><n_qm>

This gives for our sum

n—m

() Z = o) )
() 2 () ()

[ R LT R

) =G0

This is the claim.

This identity was found by a computer search which pointed to OEIS A090181,
Narayana triangle.

1.165.24 OEIS A128908

We claim that with n > 0 and n > m > 0 with  and y variable parameters:
Yy—x nxe (T —k\ (z+1 wf(y+1—kF
= (-1 ~1 .
()= (o) O ),

We prove it first for z and y positive integers. We may then conclude that
the identity holds for = and y as variables because both sides are polynomials in
x and y and agree at an infinite number of points. We can use the first binomial
coefficient to enforce the range:
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IS ("3 e <1+> ()

(LM T (1t )
x+1 2k 1
XZ( k )(‘”kuw)k 0T o)

= (1B 2T+ ) 1

Py x+1
1+2)(1 +w)}
1

——[w"(1 +w)? [l 4w+ wz]" !

= (V"

n

= [w"](1 +w)Y~ ””Z ( )wq(1+w)f““1

q=

S

q=0

e D

q>0

— [0"](1 + vV [1 - r = [+ = (y N )

1+vw n

This identity was found by a computer search which pointed to OEIS A128908,
Riordan array (1,z/(1 — x)?).

1.165.25 OEIS A088617

We claim that with n > 0 and n > m > 0 featuring Catalan numbers

n+m\(n o i 1 (2N (E+1\[(n+k
n m+1 = k+1 k m+1)\n—%k)
First factor the Catalan number,
1 - 2k\ (k\ (n+k
——(-1)™) (-1)* :
m—|—1( ) ];)( ) (k)(m)(n—k)
This is establishes the third term of the closed form, which may thus be omit-

ted from the remaining calculation. Re-index the sum where the first binomial
coefficient enforces the upper range:
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v () ()

= "1+ 2)*" Z(—l)’“(li)% (n;L k) <2nk_ k)

k>0

ok n—
= [0+ 9P )L ) Y1) e (22n _ ;k>

= 14+ 2)% (1 +w)

= [")(1 + 2)*"[w m](l +w)" ") (1+v)*"

1 ,U2k
X;O 1+z2k(1+w) (I +ov)F
= ["](1+ 2)*" [w™](1 + w)" [v*"](1 + v)*"

1
T4 202 /(1 + 22/ +w)/(1 +v)
= [2"][w™](1 4+ w)"[v*"](1 + v + vz)*"
1
Tr 202/ +w)/(I+vto2)

Expanding the initial segment of the fractional term up to the limit imposed
by the extractor in z,

[2"][w™](1 + w)" [v*"](1 + v + v2)*"

x ;f—l)q (0 w)i(l + v+ vz)s

= ["[w™](1 + w)" [v*"]
. n (_1)q 29924 (1+U+vz)2nfq

2 Ty

= ["[w™)(1 + w)"
= 21 2n — q 2n—2q
Z:(:) Tty (2n—2q)(1+2)

q

~ <n—q)<2n—q>(2n—2q)
Zq—o m 2n — 2q n—q
Now note that

X
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<22: - QqQ> (22 - 2q> R (n(m;)_! z)én —q! (Z) (%n— q) '

Note also that

(nn_zq) (Z) " mlx (nZ! m)xql (Z) (n;m>

We get for our sum

() ()

q=0

We have the second factor from the closed form. We may lower the upper
range in the sum to n — m because n — m is non-negative due to the initial
conditions and hence the corresponding coefficient is zero when ¢ > n —m. We

are leﬂ Wlth
Z q n

q

= [2")(1 4 2)> nim(—l)" (n - m) ﬁ

q=0 q

1+z m

This is the third factor and we may conclude the argument.
This identity was found by a computer search which pointed to OEIS A088617,

triangle (n':;m) (:1) #H

e e e B e G ]

1.165.26 OEIS A090802

We claim that with n > 0 and n > m > 0 and p, r real numbers and ¢ a positive

integer that
(- E Q) L)

k=0

We first prove it for p an integer. It then follows because the sum is a
polynomial in p and we will have established equality at an infinite number of
points. We have for the sum

Ln—m 2)P - n — kil r— m
02 () 0 g9
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= m![w™] exp(rw)[z"~™](1 + 2z)P Z (Z) %M exp(—kw)

O

= m!w™] exp(rw)[z"~™](1 + z)P

—_

|1 o]
= ml[w™]exp((r — n)w)[z"""](1 + 2)P""[(1 + 2)? exp(w) — 1]"
= m!w™] exp((r — n)w)[z""™"](1 + 2)P""[exp(w) — 1 + ((1 + 2)? — 1) exp(w)]"
— ™) exp((r — )w) " (1 -+ 2P

> ( ) exp(w) — DF(1+2) — )" exp((n — k)w).

Now since exp(w)—1 = w+- - - the coefficient extractor in w enforces k < m.
Similarly, since (1 + 2)9 — 1 = gz + -- - the coefficient extractor in z enforces
n—k <n—m or m < k. Hence only k£ = m can possibly contribute and we get

mlw™]exp((r — n)w)[z"~"](1 + z)P7I"
X <:1) (exp(w) = )™ ((1 + 2)? — )" ™ exp((n — m)w)
= m![w™][z"""](1 + 2)P7I"

X (;) (exp(w) — 1)™ exp((r — m)w)((1 + z)? — 1)"~™
- <:1) ml[Z" (1 + 2)P" 9 (qz 4 - 4 20T = <:1> -

This is the claim.
This identity was found by a computer search which pointed to OEIS A090802,
walks in a Boolean algebra.

1.165.27 OEIS A013620

We claim that with n > 0 and n > m > 0 and x and y variables as well as two
positive integer parameters p and ¢ that

p" g™ (;) =(-1)™ kzn:—o (Z) (—1)k (Z:]j:) (y Jrrnqk> .

We prove it for z and y integers and it then holds for all x,y because the
sum produces a polynomial in those variables. Making the usual substitutions
we find
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(=)™ "™ (1 + 2)° i:@(‘”k(lfz)m(qu)

m

= (=1)™[z""™](1 + 2)%[w™](1 4 w) yZ( ) - %Z)wﬂ*w)qk

:(_1)m[z ]( —|—2:) [ m}(1+ ) |:1_((11—:,l;))§:|

= (D" A+ 2P w1+ w)Y[(1 4 2)P = (1 +w) ]
Expanding the sum,

(=1)™[""(1 + 2)" P w™](1 + w)?
D (Z> T e O N R
k=0
We have from the coefficient extractor in z that we need n — k < n —m or
k > m. We get from the coefficient extractor in w that k£ < m. This leaves just
k = m and we obtain
(=1)™["" (1 + )P ™1+ w)?

n
X (m> 2T 2T () 0™ (g 4wt T

= [zo](l + z)l’*pn[wo](l +w)Y <;:L) (p+---+ prl)nfm(q NI wqil)m

This is the claim.

This identity was found by a computer search which pointed to OEIS A013620,
coefficients of (2 + 3z)™.

1.165.28 OEIS A000332

We claim that with n > 1 and n > m > 1 that

(o) = S (e (T ()

If we would allow m = 0 we get zero on the LHS and —(*") on the RHS.
We can use the first binomial coefficient to enforce the upper range, writing

(nsz> :
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(=)™ )+ 2) zi:(—nkz’“ (m _kl . k) (n ) 11 i k)

k=0

S e RO DG CER T G

k=0

1
— (-1 m—+1l7.n 1 2n m—1 1 m—1 )
i e R e
The contribution from w is

1 1
res — (1 +w)™ '
w ™ (1424 zw)™

Now put w/(1 +w) = v so that w = v/(1 —v) and dw = 1/(1 — v)? dv to
get

res i(1—1)) ! !
v ym I+z+2zv/(1—v))" (1 —v)?
1
= iy IR P S
i vm( v) (14 z—v)n

We evaluate this residue with the Leibniz rule, getting

(m—1)! <(1 - "’)"1(1+Z1_v>n> (m—1)

— e S (e

(14 z—ov)ntm—1-a

:’”‘1(1_v)n_l_q(_l)q<n—1) 1 (n—l—m—Q—q).

(14+z—v)ymtm-l=a\ m—-1-—gq

Next put v = 0 and apply the remaining extractor in z to get
m—1
Com (U (T (),
g q n m—1—gq

From the boundary conditions we have that the upper index of the middle
binomial coefficient does not go negative. Hence for it to be non-zero we must
haven—m-+14+q¢>nor ¢g>m—1. Only ¢ = m — 1 fits here and we find

ot () - (07

and we have the claim.
This identity was found by a computer search which pointed to OEIS A000332,
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binomial coefficient (Z) )

1.165.29 OEIS A370232
We claim that with n > 0 and n > m > 0 that

(o) = B (3Gt ()

We re-factor the first two binomial coefficients:

(n—k)! x ((kn:nlg: x (k—m)! B (:j:z) (:Lz_—?:>

We use the second coeflicient to enforce the upper range and get

Oty (Zf N 2) S0 (k;mm)

k>0

— (D A -

k>0
= (S )" (L ) P (1 o)
x> (L4 w) 2 (=11 +0)F
k>0
= (=1)"[z"](1 + 2)" " [w" (1 + w)" o)1+ 0)™
1
“T+20+w)(1+v)
= (CD T+ 2 T w) T (4 )"
1
xv—l—l—i—l/z/(l—i—w)'

The contribution from v is

1
v+1+1/2/(1+w)
Here the residue at infinity is zero by inspection and we can evaluate by
substituting the simple pole:

res (1+ov)™

v U2m+1

( 1)2m+1 22m+1(1 +w)2m+1 (71)m
(14 2 + zw)2m+t zm(1 4 w)m’

Restore the extractors in z and in w to get
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1

()Y )

1

_ (_1)n+m[zn+m+1](1 + Z)n—m[wn—m](l + ’w)n+m (w - (1 " Z)/z)2m+1 .

The contribution from w is

1
(w+ L+ /2P

Once more the residue at infinity is zero by inspection and we may evaluate
with minus the pole at w = —(1 + z)/z, which requires the Leibniz rule:

(2m)
1 1
n+m
2m)! (wnmﬂ (1+w) )

2m 9 —m 7
(27171)' Z <2;Tl> (_1) ( + 1) (1 + w)n+m,—(2m—q) (n + m)m

1
+
res mmmt (LT W)

wn7m+1+q
=0
2m
(-7 (n—m+q g MM
— 1 n—m-+q i
q—ZO wnmmE q (+w) 2m—q

Note that

n—m+q\[(n+m\ (n4+m)! _(n+m)\ (2m
q 2m—q) ¢ x(n—-—m)!x(2m—q) \n—-m q )
‘We have obtained the first instance of the squared binomial coefficient from
the closed form. This leaves

IS () o s wpyme

q=0 4

Evaluating at the pole we have for (1 + w)/w the value 1/(1 + z) so this
yields

1 n-m__ % = 2m q 1
(1 ) > (") v

1+zq:O q
e 1 A 2m , 1
= (D ]HZQZ(J(q)(‘” 1+ 2y
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2m
1 1
— _1 n+mjf. n+m 1_
(=1) K ]1—|—z{ 1—|—z}

1
1+ 2)2m+1”°

_ (_1)n+m[zn*m}W = (—1)rtm(—1)nm (n - g@nj 2m> _ <”2+mm).

2m

= (—1yrm et

This is the second instance and concludes the argument.
This identity was found by a computer search which pointed to OEIS A370232,
binomial coefficient squared (”fﬂm)Q.

1.165.30 OEIS A002299

We claim that with n and m and p non-negative integers where p < n — 1 and
m > 1 that

2m =1\ _ +1Z n—+m 1)k m—1+k\(k—m-+p .
D m+k m D
We can use the first binomial coefficient to enforce the upper range, writing
)
n—k/?

(ORI 2 3 ) (m o ’“) (k —m +p>

m p

:(fl)p+1[zn](1+z)n+m[ 1+w m— IZ 1+w) <km+p)

k>0 p
= (=D)PF 4 2) T ™ (L + w) T P+ )P
Y DR+ w)R (A A+ )k
k>0
= (LI 2 ) w) ™ ) )
1
T4zl +w)1+o)
= (1P 2 ) (14 w) ™ o) (14 o)
1
w1+ 1/z/(1+v)

The contribution from w is

1 1

1
res (1+w)™ W I 70T

ww“’l
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Here the residue at infinity is zero and we may evaluate with minus the
residue at the simple pole (no pole at w = —1 since m > 1) , getting

1
mel(]_ + ,U)mfl '

—(=1)m+t 2L+ o)™

s v E ) q1ym—1
(14 2z + zv)m+l )

Substituting into the remaining extractors,

1
(1+ 2+ zv)m+t

1
(z+1/(1+v))mt+t

(S1P (4 ) )1+ o)

= (17" (1 4 2) T P (1 + 0P

The contribution from z is

1
(z4+1/(1+v))m+t”

We evaluate this using the Leibniz rule:

1
1 n+m
res — (1+2)

1 n+m 1 (1)
=1 ((Hz) " (z+1/(1+v))m+1)

— 1 = n—1 2 n+m-—q n m)4 (_1)n—1—q(m+1)m
a (n—l)!qi_:(,( q >(1+ ) (n+ )7(Z+1/(1+v))m+1+”—1—q
> z)ntm—a n+m (=t nt+m—1-—gq

;)1+ ( q >(Z+1/(1+v))”+m‘q< n—1-—gq )

Let z = 0 and re-activate the extractor in v to get

g (e (L)

Preparing for another round,

e L e D (A [ E (R T

S\ a p (14 2)7

= (D7 + )" P (14 w) T

()

q>0

z

n+m
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= (71)””*1[2”*1] [wP](1 + w)p*Qm[l +w + wz]" ™,

1+2
Doing the extraction starting with z,

O T IR e S L] (e PR e

q=0

Note that by construction the sum term goes zero when ¢ > p. But p < n—1.
Therefore we may raise the upper range to n + m as we are only adding in zero
values. Continuing,

(1P| -+ e izi}—uq(” w1+
-
= i o -
= i wp = (T = (7).

This is the claim. Note that for m = 0 we get on the LHS the value (—1)?

and on the RHS
g Q)

(7)-vra o

= (~1P )1+ ) (—0)" = 0

o

= (1P (L0 Y

k=0

since n > p.
This identity was found by a computer search which pointed to OEIS A002299,
binomial coefficients (2”; 5).

1.165.31 OEIS A135278

We claim that with n > m > p non-negative integers and x a variable that

() = e (L) (o) ()

We prove it for x an integer and then have it for all x since the sum is a
polynomial in x. We can use the first binomial coefficient to enforce the upper
range:
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i () ()

— (—1)mtp[,n—P 2\ ™™ w)® . kzk# m+k
= (U 2 ) Y (")
1

_ (71)m+p[zn7p](1 + Z)n[wnfm](l + w)x (1 T z/(l n w))m-i—l

1
= (=1 m+p[.,n—p 1 n n—m 1 r+m—+1 .
() 2 )
The contribution from z is

1
(z 4+ 14 w)m+1”

Careful application of the boundary conditions now reveals that the residue

at infinity is zero and we can evaluate using minus the residue at z = —(1 + w).
This requires the Leibniz rule:

1 1 ()
o (W(l +2) )

1
res ——(1 4+ z)"

s anerl

1 w=/m 1 B P
:mlz<q>znp+1+q(—1)q(n—p+1)q(1+z)'< 9)m—a
Pt
m
1 n—p+tq i .
= — (—1)¢ 1 n—m-+q .
qz:(:)znfpﬂw( ) ( q )( +2) (m_q>

Instantiate to z = —(1 + w) and flip sign to get
- 1 _(n—p+q _ _ n
—1)r—p n—m+q(_q\n—mtq .
qzz:O Trwyrria Y ( q )w =y (m - Q>

Note however that the remaining coefficient extractor is [w™~™] and we have

a term w" ™% in the sum, hence only ¢ = 0 can possibly contribute. We obtain
at last

W(*l)”ww"*m(,l)mm <n>

= [WO](1 +w)Hmrn (Z) - (:;i)

and we have the claim.

(=)™ P~ ™](1 4 w)* T
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This identity was found by a computer search which pointed to OEIS A135278,

Pascal’s triangle (;:Lill)

1.165.32 OEIS A076112

We claim that with n > m non-negative integers

A Y iy | Gy R

2n7k:) .

We can use the first term to enforce the upper range, writing (n_ k)

Zk n
(e 0 (M e

= (14 2)F
= (=)™t ml" 2)2" [w™] exp(nw — ki 2n+1 exp(—kw
= MY+ ) (1) oo () e
= (— D)™ (1 + 2)2 ™) exp(nw)
P 2n+1
‘ [1 ) exp(wJ

= (—1)”+mm![z"}ﬁ[wm} exp(—(n + 1)w)[exp(w) + z exp(w) — 2]** 1.

Here the contribution in z is

1 1 2n+1
res ﬁm[exp(w) + zexp(w) — 2] .
We evaluate using minus the residues at z = —1 and at infinity. We get from
the former,

(1)l exp(—(n + w)(—1) 120
= (=1)"m!w™] exp(—(n + DHw) = (n+1)™.

This is the claim. We have from the residue at infinity

1 1
res Z—QZ"H 151/ [exp(w) + exp(w)/z — 1/z]*"
_ 1 1 o 2n+1
= re [z exp(w) + exp(w) — 1]

o 14z zntl
~ on+1
- Z(—l)"-q( " ) expluwg) (exp(w) — 1)1,
q=0

Note however that with exp(w) —1 = w+ - - - the lowest power the last term
can get in its series about w = 0 is w™*!. Now the extractor is on [w™] with
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m < n, making for a zero contribution.
This identity was found by a computer search which pointed to OEIS A076112,
triangle of geometric progressions.

1.165.33 OEIS A367270

We claim that with n > m > 0 non-negative integers

() () = (e () (T 0 )

We may use the first binomial coefficient to enforce the upper range,

ot B ()

k>0

1
1+w

e )

= (=1)"["](1 + 2)*" [w" "]

(1 o)

x Y (- 1+1w> (1+ )k (n;iilﬁ

k>0

— (_1)m[zn](1 + Z)Qn[wn—m—l]

1 1

= (DR + 2 e (L o)

1

M+ 21+ 0)/0 +w)"

= ()™ [ + 22 [ (1 4 w)" (14 o)
1
8 (w+142z(14v))"
= (—1)™[="](1 + 2)2 [ (1 4 w)" ] (14 o)

1

e+ +w)/I+o)

The contribution from z is

1
(z4+ (1 +w)/A+v)"
Now put z/(1+ 2) = u so that z = u/(1 —u) and dz = 1/(1 — u)? du to get

1+ 2)%"

I’S n+1 (
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1

o L 1 1
wowt (1 =)t (u/(1 = w) + (1 +w)/(1+ ) (1 —u)?
1 1 1

T T —w (e (- w) (I w)/ (o)

We will evaluate this using the residues at v = 1 and at u = (1+w)/(w —v).
We get from u = 1 a contribution of one, which then yields

(=) [w" ") (14w) o] (140)" " = (=1)™ (n f;ll_ 1) (m _7711 ) n)

_(n—1\(n
S \m m)’
This is the claim. Now we just have to verify that the contribution from the

other pole is zero. We write
res 1 1 1
wout = u ((1+w)/(1+v) —u(+w)/(1+0) =1))"
© res 1 1 1
e wmt T L —u (T w) /(L4 o) = u(w — ) /(1 + )"

w11 1
S (w=v)" w urt T —u (1 +w)/(w—v) —u)

PR L) LS S 1
=D (w—v) v w1l —u(u—(1+w)/(w—wo))"

We require the Leibniz rule:
1 1 1\
mn!QwHuuw)
n—1
1 noi=q

1 n—1) 1 _
:qz_:< q )W(_l)q(n—i_l)q(l_u)l—&m—l—(]

n—1
1 1
- Z untltq (=1)* (n . q> (1 —wu)n—a’
q=0 4
Instantiate at v = (1 +w)/(w — v) to get

n—l n n—
Z (w—v +1+q( g(nt+a)w—w)n
o (14 w)nti+e q (1+wv)m—a

n 2n 1” S 1 n+q 1
=“”<w—“*§%u+wwﬂw< )i
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Next observe that

1 i, 1
(w — U)n (w _ U)2n+1 _ Z (n;‘ )(_1)pvan+1—p.
p=0

We have from the coefficient extractor in v that we require p < m and
from the one in w that n +1 —p < n —m — 1 which is m + 2 < p. Hence
the intersection of these two ranges is empty and we get a zero contribution,
concluding the argument.

This identity was found by a computer search which pointed to OEIS A367270,
triangle of (}) (”;1).

1.165.34 OEIS A001725

We claim that with n > 0 and n > m > 0 and with r a real number
(n4+m)! " m(n+k (M +m
T—(l) kZ:O(T‘f‘k) n (-1 mak)

We may use the third binomial coefficient to enforce the range:

(—1)"[z")(1 + Z)n+m Z(T + k)™ (n + k) (_1)kzk

n
k>0

= (=1)"m![z"](1 + 2)" """ [w™] exp(rw) Z exp(kw) (n : k) (—1)F2*

k>0
— (~ 1)1+ 2)™ ™) exp(ra)
1
“ A+ zexp(w))
= (=1)"m![z"](1 + 2)" """ [w™] exp((r — n — 1)w)
1
(2 + exp(—w))nt1’

X

The contribution from z is
1
(z + exp(—w))" 1

Here the residue at infinity is zero due to the boundary conditions. Residues
sum to zero and we may thus evaluate using minus the residue at z = — exp(—w).
We require the Leibniz rule:

1/ 1
n+m
i (Fmarar)

1
+
res oy (1+2)"

(n)
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1 - n 1 q n+m—(n— n—
q=0

- 1 n—i—q) (n—i—m)
=N (1) 14 z)™te .
> g0 (") o (L

Evaluate at z = —exp(—w) and flip sign to get

n—q

<n“§;am«n+1+qﬁw("zq)uemﬂw»m”(”+"ﬁ.

Observe that 1—exp(—w) = w=- - so that (1 —exp(—w))™ T = w™+94... .
We have a coefficient extractor on [w™] however, hence only ¢ = 0 contributes:

m![w™] exp((n + 1)w) exp((r —n — 1)w) (8) (W™ +--) (n \ m)

= mtfu]expra) (") =

This is the claim.
This identity was found by a computer search which pointed to/ OEIS A001725,
n!/5l.

1.165.35 OEIS A094305

We claim that with n > m > p featuring the Stirling set numbers that
n+p)! (n-p _(_1)m§: n—k (—1)k p+k+1) (m+k\(p+n
22(n —p)lp!\m—p/) = \m—k kE+1 p+k)\p+k)

We shall see that a single proof actually produces four identities. We re-index
the sum,

R Gty [ Nt

k=0

Using the standard EGF

m+1—k

. n—m+k ptml— (exp(z) — 1)
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Gt i)
= Z (n - r}: + k) (=1)*(p +m — k)| [2PTmH] eXp(z)W
()00
(mri!p)' i (n — 7]7: + k) (—1)*[zP™] exp(2) 2" (exp(z) — 1)™*

" k=0
o 2m — k p+n
m—k)\p+m—£k/)

We see that we can use the middle binomial coefficient to enforce the upper
range of the sum:

m)!
(m —p)!

(T et -0 e ()

k>0

7] exp(2) (exp(2) — )™ [w™](1 + w)*™

= W[ﬁ%ﬂﬂ exp(z)(exp(z) — 1)m[wm](1 + w)2m[,up+m](1 + v)p+"

X n-mik —1)* 2k (exp(z) — 1)7F v P
S (") e e -0

= (mm!p)![szrm] exp(2)(exp(z) — 1)™[w™](1 + w)?™[wPT™](1 + v)P T
1
1+ zwv/(exp(z) — 1) /(1 + w))n—m+1’

The contribution from v is

T

1
(14 zwv/(exp(z) —1)/(1 4+ w))n—m+1"

Now put v/(1 +v) = u so that v = u/(1 —u) and dv = 1/(1 — u)? du to get

1 n
res i (L+ o)

1 1 1 1
res

v yPtmtl (1 —y)n=m=1 (1 4 zwu/(1 —u)/(exp(z) — 1) /(1 +w))?~m+1 (1 — u)?

1 1
T I (1 —u+ zwu/(exp(z) — 1)/(1 + w))r—m+1
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p+m

- (5 . Z) [l NCTEE(EE

Taking extra care not to leave the domain of formal power series we can
re-capitulate what we have,

(mnz!p)! (T]L)i—:;z) [ exp(z) (exp(j— I [w™](1 +w)™ "
x[(exp(z) — 1)(1 + w) — zw]P™™.
The powered term is

p+m

Z <p—;m) (exp(2) — z — 1)%w?(exp(z) — 1)PF" 4.

q=0

From the extractor in w applying the boundary condition m > p we get
the requirement m — ¢ < m — p or p < ¢q. From the extractor in z we get
2p+m > 2q+p+m —qor p > q. Hence only ¢ = p can possibly contribute.
This leaves

_mt_(pn 22PHM] ex szm w)™ P
g o esple) o g e

(77N exe) = 2 - DPrlenp(a) - 1)

. oml! p+n Ep— 2P
=) (n—m>[ Jexp(3) o =1

X (p J;m) (exp(z) — z — 1)P(exp(2) — 1)™

_ (mm_’p)! <5j;> (22047 exp(2)(1 4 - - )P

() (B )
w7 )

Expanding the binomial coefficients then yields at last

1 (p+m)! 11
(m —p)! (n—m)! p!2pr

“a () ()

which is the claim. This also proves the same closed form for
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m
m n—=k p+kl/m+k\[(p+n
C VD DN G [CS b :
—\m k k p+k)\p+k
1
1-z
place of exp(z) = (exp(z) — 1)’ which appeared during differentiation):

S ) GG

k=0

2 (o) P GG

k=0

!
as well as the Stirling cycle number pair (with = (log i) taking the

and

Alternate proof

Starting over we can observe that

n—k\(p+n\ (p+n)! _(p+n\[(p+m
m—k)\p+k) (m-m)!xm-k!x@p+k)! \n-m/\p+k
so that the sum becomes

()G G

k=0

Re-indexing the sum

(R D ST S T [ (RSN

k=0

- <p ! ”> Zm:(—l)’“(p 1 - kyepmi— D) = Dby

n—m) & (m+1-—k)!
o 2m — k p+m
p+m—~k k

Y — exp(z) — 1)m~k
(250 0kt m— R Hexpla) R

n—m) = (m —k)!
o 2m — k p+m
p+m—Fk k
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<p+n> s Z R[2PTm] 28 exp(2) (exp(z) — 1)™F

o 2m —k\ (p+m
m—k k)
Here the middle binomial coeflicient enforces the range of the sum:

(p 5 ) (m' (7™ exp(2) (exp(z) — )™ [w™](L + w)>™

n—m) (m—p)!

Etseme i ()

k>0

_ (p s > I [ exp(z) (exp(2) — 1) ™)1+ )"

n—m) (m—p)!

h P, ptm
(exp(z) — 1)(1 4+ w) '
At this point the continuation of the proof to conclusion merges with the

first version.
This identity was found by a computer search which pointed to OEIS A094305,

("3°) (3)-

1.165.36 OEIS A143219

We claim that with n,m,p > 0 and n,m > p that

n—1\/m " n+1\/n+k\/k—m+p
=(—=1)P Y (-1)* :
(p—1)<p> 1) kZ:O( ) (k+1)<p+k>( p )
Here we can use the first binomial coefficient to enforce the upper range,
using ("H) to get

(P + 2)" Y (1Rt (Z t ﬁ) (k -m —|—p>

k>0 p

= (-1)?[z"](1 + Z)’n+1[,wn7p](1 +w)" Z(*l)kzk(l i w)k (k — T;L +p>
E>0

= (=DPE"(1+ Z)"H[w"_p](l +w)" [P (1+0)P
X Z B+ w)* (1 +0)F

k>0

= (DB + 2 ) ) o
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1
T2+ w)(d+0)

1

= (P 2 N 0) )

1
xw+1+1/z/(1+v)'

The contribution from w is

1
w+1+1/2/(1+v)

Now put w/(1 +w) = u so that w = u/(1 — u) and dw = 1/(1 — u)? du to
get

1 n

1 1 1 1
B w1 — T w/(1—w) + 1+ 1/2/(1 +0) (1 — u)?
B 1 1 1
T T I wrut 1w+ 1/2/(1 +v))
B 1 1 1
T W (1= T4 (1 u)(1/2/(1 1))
e 1 1 z(1+v)

vyt P (1 — )P 2(1+0) 4+ (1 —u)

Let us re-capitulate what we now have

1 1 1
(1 +v)m=p 0 yn—p (u—1)P14+2(1+v)—u

[2"](1 + 2)" " [vP)]

Here the residue at infinity is zero and we can evaluate using minus the
residues at © = 1 and u = 1 + z(1 4 v). We evaluate the first residue using the
Leibniz rule:

1 1 1 =)
(p—1)! (unp“ (I+2(1+0) - U)l)

B 1 p—1 p— 1 (n —p + 1)6(_1)q lpflfq
o “\ 4 un—p+l+aq (1+ 2(1 +v) —u)l+r—1-a

(p—1)!

_ pijl 1 (—1)9 n—p+gq 1
N = un—ptlta q (1+z2(1+v)—u)p—a’

Put v = 1 and restore the remaining extractors flipping the sign:
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_[ym Zn+1vp¥p_lf q n—p+q ;
[Z"](1+2)" ](1-1—1))7”_1’;)( 1)( q )(2(1+v))p‘q

p—1
:Z(_l)q+1(n—p+q)< n+1 )(q—m)
= q n+p-q/\ p
Now with n 4+ 1 being positive the middle binomial coefficient requires n +
p—qg<n+1orp—1<yq. Hence only ¢ = p — 1 will contribute and we get

(o)) =60 0)
p—1)\n+1 P p—1/\p

This is the claim. Now it remains to verify that the contribution from the
residue at u =1+ z(1 + v) is zero. We get

1 1 1
n)(1 n+1lr,.p
[Z K + Z) [’U ](1 —|—1})m_p (1 —|—Z(1 +U))n—p+1 (Z(l _|_U))p

1 1

(I+v)™ (14 2(1+v))n—prtl

n+p n+11, p 1 1
= ["P](1+2)" o ](1+v)nfp+1+m (z+ 1/(1+o))nr+i

= [" )1+ 2)" o]

Here the contribution from z is
1
(z+1/(1 +wv))n—pt+l’

We once more evaluate with the Leibniz rule as the residue at infinity is

n+1
res — ot (1+2)

Z€ero:

(n—p)
! ( ! (1+z)”+1>

(n—p)! \ gntptl

1L (n-p\ ()i n+p+1)7 n+1—(n—p—q) n—p—gq
"~ (n-p)! Z ( q ) 2ntpt+ltg (1+2) (n+1)===

:nz:p(—l)q<n+p+q>(1+z)p+qﬂ( n+1 )

Z”+p+1+q q n—p—gq

q=0

q:
Evaluate at z = —1/(1 +v) with 1 + 2z = v/(1 + v)

n—p 1
+p+q) Pt n+1
_1)ntp 1 4 p)ntptite (” ) )
= (;0( ) q (I+o)pptati \n —p—gq
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But note that the extractor on v is [vP] and the sum argument starts at
vPTa1 hence there is a zero contribution (just barely) and we may conclude.
This identity was found by a computer search which pointed to OEIS A143219,

k+1
n("3)-
1.165.37 OEIS A033918
We claim that with n,m > 1 and n > m that
" /n+m & m—1+k
m = (=1)" —1)*E™ .
i (=1) ]cz_%(m—i—k)( ) <m—n+k>

We can use the first binomial coefficient to enforce the upper range of the

sum, writing ("))

(DL S L e (Z_if;)

k>0
= (=1)"m![z"](1 + 2)" " [w Z z * exp(kw) (m;_l —li_ k)
k>0
= (=1)"m![z"](1 + z)"+m[wm] "1 4 v)™
sz ¥ exp(kw) (1 + v)*

k>0

-1

= (1)) 2 o (1 )

1
T zexp(w)(1 + v)
_ (_1)nm![2n+1}(1 + Z)n—&-m[wm} eXp(_w)[vn—l](l 4 U)?n—l
1
o iq 1/z/exp(w)’

Here the contribution from v is

s ;
res — v .
v " v+141/z/exp(w)

We see that the residue at infinity is zero (just barely) owing to the boundary
conditions and we may evaluate with minus the residue from the simple pole at

v=—1-1/z/exp(w), getting
_ =" (—1)m—t
(1 + 1/2'/ eXp(w))" (Z exp(w))m—l
2 H=mexp((n+ 1 — m)w)
(1+ zexp(w))™ -

= (-1
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Restoring the two extractors,

exp((n — m)w)

(=)™ m![z™](1 + 2)" T [w™) (14 zexp(w))™’

Here the contribution from z is

1
1+ 2 exp(@)”
Now put z/(1 + z) = u so that z = u/(1 —u) and dz = 1/(1 — u)? du to get

res

5 pmtl (14 =)™

1 1 = :
o8 m (1 —u)"=t (14 uexp(w)/(1 —u))™ (1 —u)?
T T = w (- a1 - exp(w)))”

(1" S :

T (U —exp(w))” @ wn T —u (u—1/(1 — exp(w)))"

Here the residue at infinity is zero and we may evaluate using minus the
residues at u =1 and u = 1/(1 — exp(w)). We get for the former

m

(=1)™m!w™] exp((n — m)w) exp(—nw) = m™.

This is the claim. Now we just need to prove that the contribution from the
other pole is zero which requires the Leibniz rule:

1 1 1 (n—1)
(n—1)! <um+1 (1- U)1>
-1\ (=D (m+1)7 11
I qzz(:) umt+1l+q (1 — u)1+n717q

U m+q) (=1) 1
umtlte (1 — q)n—a’
a=0

Substitute v = 1/(1 — exp(w)) so that 1 — u = —exp(w)/(1 — exp(w))
restoring both terms in front

M

(=1)™ml[w™] exp((n — m)w)
inil MAGN 1y9(1 — exp(w))™ 1+
X(lexp(w»";o( ") - emw)

X(=1)" " exp(=(n = qJw)(1 — exp(w))"~*

= (=1)"m![w™](1 — exp(w))™ " Z ( > exp((q — m)w).
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Note however that (1 —exp(w))™ ! = (=1)mFlyw™*! 4 ... 50 the coefficient
extractor [w™] returns zero (just barely) and we may conclude.

This identity was found by a computer search which pointed to OEIS A033918,

array of 11,22, ... n".

1.165.38 OEIS A000984

We claim that with n > m > p > 0 that

(B)-erE O )

k=0

We start by re-indexing the sum,

e ()T, )

Observe carefully that n — m + p < n due to the boundary conditions and
hence the third binomial coefficient enforces the upper range of the sum:

__1\m+p+n Zn7m+p P 2p k+p m-—n-+ k _ kzk
(1) ) Z(p)( : )( )
= (LR (L 2P [P](1 4 )

> (’“ +p> (—1)F 25 (1 + w)F

k>0 p
m-+p+n[ n—m-+p 2p[,,P 71
= ()Y P )
o 1
T+t w)re
1

_ m4+p+ni_n—m-+ 2.
= (ST (L ) e

1
1A+ w)prt

Here the contribution from z is

1
(z+1/(L+w))rtt”

We see that the residue at infinity is zero and we may evaluate using minus
the residue at z = —1/(1 + w). We get using the Leibniz rule

1 2
rSS W(l +Z) P
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(»)
1 1
P (W(l + >)

<p) (=1)4(n—m+p+ 1)5(1 + 2)2= (=) (9pyp=a

2n—m+p+l+q
p
(—1) [mn—-m+p+q 2%
=Y i (1+z)P"e :
s q p—q

Now put z = —1/(1 4+ w) to obtain

p
= D (DU () (n o q) “”( ! )
q=0 q (1 +w)rta \p —gq

Applying the extractor in w and accounting for the signs,
1 £ - 2
[wP] = Z(l)q<n m+p+q>w”+q( b )
(1+w)p & q P—q

Due to the extractor only ¢ = 0 makes a non-zero contribution and we have

at last
(0 ) () = (3)

This is the claim.

This identity was found by a computer search which pointed to OEIS A000984,
central binomial coefficients (277)

1.165.39 OEIS A097805

We claim that with n > 1 and n > m > 0 we have

(:@—_D :(_1)n+m§":(n+:+k>(_l)k<n—rg+k><n2fk) (n—;ﬂc)

k=0

Here we see that we can use the third binomial coefficient to enforce the
upper range of the sum by writing (nz_"k) to get

O 2 Y <n + Z + k) (—1)* (n - 7: + k) k <n - ]16 + k)

k>0

= (=1)" "1+ 2) w1+ w)
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xZ(l+w)k(_1)k<n—r:+k)zk<n—;+k>

k>0

= (=)L 2P (1 w) (L )

W (1) o)E5E n—1+k

x§(1+ *(=1)*(1 +v) ( L )

= (1L 2P (L ) ()
1

(1+ (1 4+w)(1+v)z)"

Here the contribution from v is

1
(1+ (1 +w)(l+v)2)"
Now put v/(1+v) = u so that v = u/(1 —u) and dv = 1/(1 — u)? du to get

res 1+o0)"™™

e g (

1 1 1
Tt w1+ (L +w) (L + /(1 —w)z)"
1 1
_ - (1= n—1
A A G T R I T

_ 1 1 n—1
S Ararwa Y

1
(I—u/(1+ 1 +w)z))"

q=0

With the extractors,

(—1)™ (14 22 (14 )

» T;:(—D”""“’(n R [y 2_30 (") rp
- guv(nfml_q) (e
S )

Working with the fnner sum,
4 0 S (T o

p=>0
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1
(14 (14 w)z)nte
1
(1+wz/(1+ z))nte

= "1+ )" 2:) (Zf_ﬂ;) <n ra-1 1") g fz)r

_i (n—i—m) (n+q—1+r>( 1)r<n—q—r>
- m—r r n—r )
r=0
Now we have by construction that n — ¢ — r > 0 so the third binomial
coefficient requires so as not to vanish that n—q—r > n—r or 0 > q. Therefore

only ¢ = 0 contributes with

S () () e

= [")(1+ 2)*" [w™] (1 + w)"

= ["](1+2)" w1 + w)" "

r=0
n—14+7r
= [w™](1 + w)™ ™ (D) w"
(")
m n+m 1 _ m m
= [w™](1 4+ w)"" m—[w 14 w)™ = 1.

Returning to the outer sum we have found with an Iverson bracket

%L<—1>q(nf;1_q) (qﬂ}l)nqﬂﬂ = (:__fn) (Z:D - <:%_—11)'

This was our claim.
This identity was found by a computer search which pointed to OEIS A097805),

binomial coefficients (Zj) )

1.165.40 OEIS A194595

We claim that withn >m >0
(o) 1)+ 55 ()
_1_7
m m m+1\m+1
iy + k n—m\/m+k+1
= (=1)7tm " —1)k .
o s () e () ()

Introducing the usual extractors,
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n—

[w" "] (1 + w)" m(l +w)(—1) (n - m) (m +k+ 1>

= k m+1
= I B0 Y (1 ()
k=0

— [ (1 4 w) o (1 o)L = (14 0) (1 + w)]
= (=)™ "1+ w) "+ o) o+ w o+ ow] T
The contribution from v is
1 _
res W(l +w)"(w+o(l+w))" ™.

Now put w/(w + v(1 + w)) = w so that w = wv/(1 — u(l + v)) and dw =
v/(1 —u(l +v))? du to get

. 1 1-u(l4+v) (A—-uw)" v
W yn—m+l v (1 —u(l+v)" (1 —u(l+v))?
~ e 1 (I —u)™

uw yn~mtl (1 — (1 4 v))ntt

A

q=0
With the extractor in v,

n

2 () () ()
~1)

q

77§n( n—m—gq n qg+n\m+1+4+q/m-+q
7q:0 m+q n m+1 m )
Note that

(mzq) <m;‘q) N (n—m—C?)!!xmlxq! N (::L><njzm>

This yields for everything

g

q=0

We now have two pieces, first is without the scalar in front
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The second piece is

1 = o (n—m\[q+n
_1)n—m—q
m+1z( ) < q >( n >q
q=1
n—m'e= o fn—m—1\[qg+n
= _1’IL m=q *
m+1 Z( ) ( q—1 )( n )

g=1

Continuing without the scalar in front,

n—zm:—l(_l)n_m_l_q (n — 7(7]1 — 1) (q + 24— n)

q=0

n—m-—1

= [2"](1+2)" qz:(:) (—1)nmmtma <” - Z‘ - 1) (14 2)°

— [Zn](]. 4 Z)nJrlanmfl _ [Zerl](l + Z)n+1 — (::l—:_]'l)

Restoring the scalar and collecting everything we have the closed form that
we set out to prove. This concludes the argument.

This identity was found by a computer search which pointed to OEIS A194595|
enumerating meanders.
1.165.41 OEIS A068555
We claim that withn >m >0

(2m)!(2n — 2m)! "L (2m g (2n—2m
=(-™ -1 .
m!(n —m)in! (=1) Z k (=1) n—k

k=0

We get for the sum using a simple convolution

(_1)n+m[zn](1 + Z)2m(1 _ Z)2n—2m.

Continuing without the scalar in front

505


https://oeis.org/A194595

["J(1+2)*™ (1 + 2)* — 42)"~

= ["](1 4 2)%™ C (n;m)(l)%qzq(l 4 2)2n2m=2

=S e (),

Activating the central binomial coefficient,

(1 _ 4Z)n—m _ [Zn](l _ 4z)n—m—1/2.

=[=")

1
V1—4z

Extracting the coefficient from the binomial and restoring the scalar

n—1

(_1)n+m(_1)n4n (77/ - mn— 1/2> _ (_1)m4n% H (’I’L Cm— 1/2 o Q)
b
= (—l)mQ”% ljo(Qn —2m—1-2q)
= (—1)’”2”% _H_ (2n —2m — 1 — 2q) ]:[ (2n —2m — 1 — 2q)
T =0 g=n—m

man 1 (2n—2m—1
= (-1 2n'2nm1n_ 'H —1—2q)

1 (2n-2m-1)! (2m —1)!
n! 2n=m=1(p —m — 1)1 2m=1(m — 1)1’
This was for n —m —1 > 0 and m — 1 > 0. It is equal to

n

1 (2n —2m)! (2m)!
nl (n—m)  m!

which is our claim. We get for m = 0 from the rational binomial coefficient
through upper negation

() -ne(2)-(2)

We see that this case is covered by the closed form we found. We also have
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for n = m from that same rational binomial coefficient

ore()-(2)

which is covered as well, and we conclude.
This identity was found by a computer search which pointed to OEIS A068555),
super Patalan numbers.

1.165.42 OEIS A038207

We claim that with m > p and n > m with x,y free parameters

() = () CI )
m—p — m—p/\n—m)\k—p
The third binomial coefficient enforces the upper range and we find

R T D (el | G B

k>0
= (~1)"["( 4 )" PP+ w)”
xZ(—l)’“(Hw)’“(Z_if)Z’“
k>0
= (~1)" [+ )" P I w) ()
XZ R4 w)k (1 +v)72k*
k>0
= (=170 4 )" P I ) ()
1

X1+41+wva+vﬁ’

Re-arrangeing we find

(=)™ [w™ I+ w)"[o" (1 + )P T[]+ 2(1 4 0)H)" TP
1
T+ 21+ w)
= (=)™ w1+ )" [p" (1 + o) T2 (L 2(1 4 0))" TP
1
"ot (1+42)/z

The contribution from w is
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We will assume that z is an integer from the range [0, m — p]. As the sum is
a polynomial in x of degree m — p if it agrees with the closed form on m —p+1
points then is is equal for all z and y. Here we may evaluate using minus the
residues at w = —(1+2)/z and at infinity. But the latter is zero in the stipulated
range. We get for the former

(=DM "M+ )T (L 2 (14 0)?)" P
Zmptl (1)

(14 z)m—ptl =

X(_l)mprrl

— (_1)x+p[vn—m]<1 4 U)y—2n[zn+p—m+x] (1 4 z(l + U)2)n—p.

1
(14 z)ym—p+l
Expanding the sum,

applying the extractor in z

L T [ —

q=0 q

and the extractor in v and the sign

(=pr—m :z:i (n ;p> (=1)¢ (x;n; q> (y tlzi; ;2n>

With the usual extractors,

(=)™ @™ P )™ (L )
33 (” ‘p) (=121 w) (1 + 0)
q=0 a

= (=1 ™Y1 ) (1 )

= (=1)" "™ P14 )P+ )T w — v(2+ o))"

Expanding the sum one last time,

(=) @™ P (1 ) (14 0
S =P\ n-p-q/_ 94,9 v)e
x;(q)w (—1)%7(2 + v)7.
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Now we get from the extractor in w that we must have n —p—q¢ <m —p
or n —m < g and from the extractor in v that ¢ < n — m which means only
g = n — m contributes, giving

(1) ™ P (14 w) TP (1 + )R

y (’I’L -Dp ) wm—p(_l)n—mvn—m<2 + U)n—m
n—m

= )1+ )+ 0 (T Y= (T8 Y,

This is the claim and we may conclude.
This identity was found by a computer search which pointed to OEIS A038207,
entries from (Z) on—k,

1.165.43 OEIS A165817

We claim that with n > m > p and p > 1 and z a free variable that (these are
polynomials in = of degree p and hence it suffices to prove it supposing that =
is a positive integer to have it for all x)

p—1\ _ m " (xk+p ik p—14+k\/n+p
( p )_% K g;( P >(1)<7n—1>(k+p)
The last binomial coefficient enforces the upper range and we may start:
—1)™ (5" L\ tp zk+p _1\k p—1+k Zk:
s S () e (7, )
= (=)™ ["](A + 2)" P [w™ T (1 +w)P !
zk+p k kK
X (=D +w)"z
(%)
= (=)™ ["](1 + 2)" P [w™ (1 + w)P T [pP)(1 + )P
xZ(—l)k(l—Fw)k(l—Fv)rkzk
k>0
= ()" 2 (L w0 ) o)
1
Xl-l-z(l—l—w)(l—&-v)l"

Re-arrangeing,

(=)™ [w™ (1 4+ w)P P (14 0)PH (1 + 2/ (1 4+ 0)7) P
1
T4 21+ w)
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= (=)™ w1+ w)P T P+ )P T+ 2/ (1 0)T)
1
g (1+2)/z

The contribution from w is

1 (1 + )P 1
res — -
w ™ w+ (14+2)/z
Owing to the boundary conditions the residue at infinity is zero and with
residues adding to zero we may evaluate using minus the residue at w = —(1 4+
z)/z to get
zm 1
_ _1 m__ = _1 p—lil
(=1) 1+ z)m( ) zp~1

Substitute into the remaining extractors to obtain

1
(1+2)m

Expanding the sum under the extractor in z,

e 3 (o) e

(~1PP)(1 + wpPrenfsn ) (1+ 2/(1+ o))",

q=0
n—m-+
q=0 q m—1 (1+wv)=e’

With the extractor in v and the sign,

n—m-+p
e 3 (R )
= q n—m-+p-—q p
n—m-+p 1 1
_ (_qynem Z (n—i—p) 1>q(n+p— —q)(mq—xn— )
n—m-+p-—gq p

The middle binomial coefficient enforces the upper range and we get

(=1)n AP mAR] (] 4 gyt Z (n i p) (—1)‘1% (xq - 1)

S\ d 1+ 2) p
— (_1)n—m+p[zn—m+p](1 _|_Z)n+p 1[ ](1 +w)—zn—1

()

q>0
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= (—1)P R (1 g ) ]

1 {zﬂ+wﬁ}mp

(1 + w)en 1tz
= (L) e (1 = (1) — D).

Doing the extraction in z,

(71)n7m+10[zﬂ*m+p] 1 _T_ > [wP] (1 + Ulj)xn.u
- n +p qu w T _ q
x§:< q)@J) (14 w)* —1)2.

q=0

Here we have used the extractor in w to set the upper limit of the sum taking
advantage of the fact that (1+w)*—1 = zw+---. Continuing with z and noting
that n — m + p — ¢ > 0 we obtain

p 1 P n+p W) — 1)
[w]mw)mﬂ;( )@+ -1

q

We can raise ¢ to infinity due to the extractor in w,

w?) (14w = (14wt = (P71,

(1 +w)xn+1 D

This is the claim.

This identity was found by a computer search which pointed to OEIS A165817,
number of compositions of n into 2n parts.
1.165.44 OEIS A095831
We claim that with n,m > 0 and p > 0 and n > p that

= = 3w (M (MR,

k=0

The first binomial coefficient enforces the upper range and we may start with

[+ 2™ Y+ P2 (1) (m o k)
k>0
= pl[2"](1 + 2)" ™ [wP] exp(nw) Z exp(kw)z¥(—1)F (m —]j + k)

k>0
1

= Pl )" ] explnw) G

The contribution from z is
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1
(1+ zexp(w))™
Now put z/(1 + z) = u so that z = u/(1 — u) and dz = 1/(1 — u)? du to get

+
res (14 z)r™m

1 1 1 1
T (1I—u)™ 1 (14uexp(w)/(1—u))™ (1 —u)?
~ s 1 1 1
vyt 1 — (14 u(exp(w) —1))™
1 1 1 1
= res

~ (exp(w) — )™ v untl 1 —u (u+1/(exp(w) — 1))

Now here the residue at infinity is zero by inspection so we can evaluate

using minus the residues at v =1 and u = —1/(exp(w) — 1). The former gives
pw?] exp(nw)m = (n—m)P.
Good, we have the claim. We need the Leibniz rule for the second residue,
writing
1 1 1o\"Y
(m—1)! (Wl - u)l)
1 mz‘:l m—1\ (=1)n+1)7 1m-1-4
 (m—1)! = q urtlte (1 —w)m—4
5 (n+q> GO
2\ g Jwrm
Evaluate at w = —1/(exp(z) — 1) and restore all leading factors:
] explnn) — - $° (" T e eplu) 1y
(exp(w) — D" 25\ g
(exp(w) —1)™ 1
exp(w(m — q))
m—1
n n n+q
(1) esp(n = myu)exp(u) = 1+ 3 (") explun)
q=0

Note however that (exp(w) — 1)"T = w"*! 4 ... and we have an extractor
on [wP] but p < n, making for a zero contribution and we may conclude.

This identity was found by a computer search which pointed to OEIS A095831),
triangle (n — k)2.
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1.165.45 OEIS A171631

We claim that withn>m >p >0
n (—1)nm m+1\2n—m+1 [ m
m p+1 m+ 1 p+1

(e (e

Here we see immediately that we can factor out the (Jip) term, however we

will not do this and instead wait for the factor to possibly appear in the residue
computation. The first binomial coefficient enforces the upper range which is
in fact n — m and we have

EIELy (p Tk 1) (—2)k2k <m + k)

>0 p+1 m-—p

= N ) I )
p+k+1 _oyk ok w)k
(741 )erare

1
(14 22(1 + w))rt2’

= [+ 2) w1 4 w)™

Here the contribution from w is

1
(1+22(1 4 w))P+2’

Now put w/(1 +w) = u so that w = u/(1 — u) and dw = 1/(1 — u)? du to
get

1 1 m
res W( +w)

1 1 1 1
0 = (1 — )=t (14 22(1 + u/(1 — )P 2 (1 — )2
~ s 1 1—u
u ym—PtL (1 — o + 2z)Pt2
1 1 1—u

(11 22)p2 "0 wm=p+ (1 — /(1 + 22))p+2
This yields

(1+ 21z>p+2 {(1 + 2lz)m—p @:11) N (1+221)"L—P—1(p111>}
= o (par) ~ e (o)
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We get from the term in m,

m](1 + Z)HW -y (Z) ()i (nn—1 q>.

q=0
Note that

() -t ()

We get for our sum

CYE (7)o = (e

q=0

The term in m + 1 will produce

Lo (142 1
res —_—.
° ECESYPIEe

2m+2 s Zn7m+1
Here the residue at infinity is zero and we may evaluate using minus the
residue at z = —1/2 using the Leibniz rule

m+1 _
1 m+1\ (=1)%(n —m + 1)1 n—(m+1—gq), m+l—q
(m+1)! Z% ( q > ity (L) "

a=

m—+1
S (oo o )
Zn—m q q m+1—gq

q=0

Evaluate at z = —1/2 and flip sign,

2171(1)7”nmz+:1 (n_?+q) <m +Z —q)'

q=0
Observe that

(n ) ZL : q) (m +T§ - q) R (:Ln—_mn;i%l%:ml —q)!

- n—m+q(n\/m+1
 om+1 \m q )

This gives two pieces for the sum, the first is

i ()

and the second
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=

L e L (m  m1
2m m-+1\m q

=1

1 n\ "</ m n
= (=1 m = (=1)n—m ]
0 () () =0 ()
Collecting everything,

()2 = ()]

This identity was found by a computer search which pointed to OEIS A171631,
coefficients of n(x +n)(x + 1) 2.

s}

1.165.46 OEIS A001700

We claim that withn>m>p>1

(7 ) = oy G (a5 77)

To start note that the first binomial coefficient enforces the range and we
may write keeping the signs for later

)14 2 3 k(1) (’“ = 1) (k m ‘p>

>0 n—1 P

) L e (PR DR G (RO

k+m—p>
k>0

p
= [2"](1 +2)" " [w" (1 4 w) " T )1 4 )P
Y DR+ w)R (A4 )k
k>0
= [z"](1 + 2)" " [w" (1 4 w)™ T )1 4 0)™ P
1
“Trzltw)l+to)

Re-arrangeing

(LR e R e R
|
T4 21+ w)
= [ ) (L 0P 4 2+ )
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y 1
w+ (1+42)/z

Here the contribution from w is

1 1
(1 m-1__ -
g w”( +w) w+ (14+2)/z
The residue at infinity is zero as per the boundary conditions and we may
evaluate with minus the residue at w = —(1 + 2)/z to get
Z" 1
—(—1 n -1 m—1 .
(=1) (1—|—z)”( ) zm—1
Working out the signs we get
1
—1)P[P](1 4+ )" T P21 + 2/(1 4 v)) T ———.
(=1)P[*](1 +v) [2"](1+2/(1+v)) it

Doing the extraction in z yields

> (e (L)

q=0

With the extractor in v we find

(_l)pi<n+m><n+m—p—q)(_1)m_q<n—1+m—q>.

=\ a P m—q

Re-expanding the third binomial coefficient enforces the upper range,

e S () (P ey

(~1P[](1 4+ 2)" (14 o)

()

q>0

n+m
z

= (CUE 4 2 TR ) L s

1
1+2z" "(14+o)p

We can do the extraction in z to get

= (=1)"*P["] [vP] [14 v+ vz]"*™.
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1y Sy (M s oy

(1+wv) = q
S ()

— (_1)m+p Z(_l)q <TL + m) < n+q—p >
g m—q)\n+m-—2p
Re-expanding with the first binomial coefficient enforcing the range where
n+m — 2p > 0 per the boundary conditions,

LR DI (AR

= n+m—2p
= (=)™ P+ ) (L )P Y (1) 2 (1 v)
q=>0
1
= (=1 m+p Zm-i—l 1+Z n+m Un+m—2p 1 + o n—pi.
(L)L ) )
Here the contribution from v is
1 1
s —————(1 P
e Srmaprt (V)T (142)/z
The residue at infinity is zero as per the boundary conditions and we may
evaluate with minus the residue at v = —(1 + 2)/z to get
Zn+m72p+1 1
_(_1)m+p[zm+1](1 +z)n+m(_1)n+m72p+1 (_1)nfp

(1 + Z)n+m—2p+1 Zn—p'

Collecting like terms,
_(_1)m+p[zm+1](1 _|_Z)2p71(_1)n+m+1(_1)nfpszp+1

= [7](1+ 2)% 1 = <2p N 1).

p

This is the claim.

Detour via complex variables

We present an alternate proof. Starting with

1 (14 z)ntm k+m—1\/k+m—p
_1)ntmtp / k _1k d
(=1) 21 Jjpjme 2 TE kZ>OZ( ) n—1 k+m—2p :

517



1/ (14 z)m+m 1 (1 + w)m-1
271 |z|=¢

— (71 n+p
Zn-i—l 271 Jw]=~ w™

—p—1
szk(1+w)k (k—kfn—Qp) dw dz

k>0
(=1 / (14 2)"tm 1 (1+w)m™ ! 1 1 1
- 2mi lzj=e  2"TE 0 2m0 f iy =y wn 270 J|p|=p v (1 4 v)PHL

1
X sz(l +w)kv—k dv dw dz

k>0
N (1)n+P/ (1+2)~™ 1 (1+w)m ' 1 1 1
2w Jee 2N 2w Jiyny, wt 2w [y, v (14 0Pt
1
X ———————— dv dw dz.
v—2z2(14+w)

Now for the convergence of the geometric series we require that |z(14+w)/v| <
1 or |z(1 +w)| < |v|. This means the simple pole in v is inside the contour in v
and we find

(_1>n+p / (1 + z>7n+7rz 1 (1 + w)m—l
211 |z|=¢ Zn+1 21 |w|=v wn
1 1 1
X dwd
2Mm=2 (14 w)™ 2P (1 + z(1 + w))Pt! waz
-1 n+p 1 n+m 1 1 2p—1 1
O A R L N S s
2mi 2|=e 2P0 [y =y wn (1+ 2+ zw)pPt
—1)ntp 1 ntm | 1 2p—1 1
S gty gt dw dz.
2mi z|=e 2"TTTP2 270 )=y wn (w+ (1+2)/z)pH!

With the residue at infinity in w being zero we can choose the contours such
that the pole at w = —(1 + z)/z is outside the contour in w. We may then
evaluate using minus the residue at the latter, which requires the Leibniz rule:

(p)

1 1

e
w

p!
1 ¢ (p) (=1)n? 2p—1
= 14 w)?P~ —(p—q)(gp —1)p=¢
| Z n+ (
p! g q) wntTd
P
_ Z (—=1)2 (n +q- 1> (1 + w)rta! (217 1)
= wn q pP—q
Evaluate at w = —(1 + z)/z and substitute into the integral in z to get
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_(_l)p[zn+m—17+1] (1 + Z)n+m

p n
XZ Pl n+qg-—1 (_1)p+q_1 1 2p—1
(14 2)nta q Zp+q—1

= p—q

_zp: (n—l—q—l)(_l)q(Qp—l) (m—q)
= q p—q m
Now since m — ¢ > 0 the third binomial coefficient is non- zero only when
m — q > m or 0 > ¢g. This means only ¢ = 0 contributes and we find

(e, )G = ()

Once more we have the claim. There is some bookkeeping to be done yet.
First the pole at v = 0 is inside the contour, we must show that it makes a zero
contribution. We obtain

(—1)”+P+1/ (14 2)mtm 1 (14+w)™2 1 1 1
271 |z]=¢ Zn+2 211 Jw|=v w™ 211 lv|=p Um—?p (1 +U)p+l
x—l dv dw d
vdw dz.
1—v/z/(1+w)
We get zero when 2p > m. Otherwise,
m—2p—1
> (M) L
= P 24(1 4 w)?

Now the powers of (1 + w) taking ¢ into account range from (1 + w)™2
to (14 w)m=2=m=2r=1) — (1 4 )?P~1. Here we have m —2 >2p—1 > 1. A
polynomial in w rather than an infinite series! But we are extracting a coefficient
on w" ! and n — 1 > m — 2 making for a zero contribution.

The second bookkeeping task concerns the contours. With @ large we take
p=1/Q and v = ¢ = 1/Q? We have 1/Q*(1 + 1/Q?) < 1/Q for Q > 2
which was the requirement for convergence. For the pole in w we get minimum
modulus Q?(1—1/Q?) which indeed has Q*(1—1/Q?) > 1/Q?, also when Q > 2.
Furthermore these choices ensure that we do not hit potential poles at one of
binomial terms from the three variables.

This identity was found by a computer search which pointed to OEIS A001700,
binomial (2::’11).

1.165.47 OEIS A158405

We claim that withn > p >0 and n,m > 1
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R B G e

We see that the first binomial coeflicient enforces the range and we may start

with
(PP 4 2 S (k—m+p><k+:—1)

k>0 p
= (~)PP(1 4 )" )1 )P YD (-1 +w)k<k T 1)
k>0
= ()PP 2 (1w (1 )
x YA (=DF 1+ w)F (1L + )k
k>0
= (71)P+1[2n](1 + Z)ner[wp](]_ + w)pfm[vm](l + ”U)m71
1
T+ w)(I+0)
= (71)P+1[zn](1 + Z)ner[wp](l + w)pfm[vm](l + ’U)mfl
1
X1+Z(1+w)+z(1+w)v
= (71)P+1[zn+1](1 + ) wP](1 + U/)pimil[l}m](l T v)m,1
1
“TF1/z/0 1w +o

Here the contribution from v is

1 1
1+1/z/1+w)+v

With the residue at infinity being zero by inspection we may evaluate using
minus the residue at v = —-1-1/z/(1+w) = —(14+2(14+w))/z/(1+w), getting

1 .
res W(l +v)

m—+1 Zm+1(1+w)m+1
_(_1) + (1+Z(1+w))m+l

Restore the outer extractors to get

1
mel(l + w)mfl '

(~1ym?

1
T+ 21+ w)m T

(1P (0 ) )1+ )

Here the contribution from z is
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1
(1+ 2(1 4 w))m

Setting 2/(1 + 2) = u so that z = u/(1 — u) and dz = 1/(1 — u)? du we find

1 n+m
res Z—n(l +2)

1 1 1 1
B (=)™ (4 a(l+ w) /(L — )™ (1 —u)?
1 1 1
- rgs17"1—u(1—u—I—u(l—l—w))mJrl
1 1 1
= res —

vyl —u (14 vw)mtl’

Doing the extraction we obtain

m

P S ()

q=0

With the extractor in w and using that n — 1 > p where ¢ > p makes for a

zero contribution
P
qg+m p—m-+1
_1)P _1)e )
S0 3 (M IS )

= pP—q

Here the second binomial coefficient enforces the range and we get

(P 2 S (q ;m> 1)z

q=0
PP p—m 1;
= DI+ 2) " (14 z)m+l
— (_1)P[zP L\P=2m ()P p—2m\ _ (2m—1
= ()PP + 2) <1)(p)(p),

This is the claim.
This identity was found by a computer search which pointed to OEIS A158405,
triangle of odd numbers.

1.165.48 OEIS A122366

We claim that with n > 1 and n+p > m > p and z a free variable (we prove it
for x a positive integer but since both sides are polynomials in z we then have
it for all x):

(a2 - (o) ()
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We may use the third binomial coefficient to enforce the range and start
with

nptmion . m—k €T P
e (R ol (A [ W e
= (AP ) Y )

e P
S i

k>0

= (-1

Doing the extraction in z,

(st

q=

[w™PI(1 + w)™ 1 4+ w + wz]”.

With the extractor in w we must have ¢ < m—p but note that n > m—p >0
so we must reset i.e. lower the upper range of the sum, getting

m—p
x m—q
e Een()()
( qz::O q)\m—-p—q
Here the second binomial coefficient enforces the upper range of the sum and
we find

i s (1)

= q) (14+w)?

— ) L ]

14w
o = iy (R ) - (27

This is the claim.

This identity was found by a computer search which pointed to OEIS A122366,

binomial coefficient (2"; 1).

1.165.49 OEIS 165817

We claim that with n > m > p > 1 that where z is a free variable
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r—p\ _ m+p2 n+p r+k\(p+k—-1
D kE+p D p+k—m)’
Here we may prove it for x a positive integer and we then have it for all

x because both sides are polynomials in x. With the first binomial coefficient
enforcing the range,

VR IRIED SRS U T G

k>0 p

= (I R (T

k>0 p
= (=)™ (14 2)" PP lw™ (1 + w)P T P)(1 4 0)°
X 30 A DE L+ 0) (1 w)!
k>0
= (~1)™P[(1 4+ 214w )1+ o)
1
Tzl 1w +o)
= (~ 1) )P (1 ) )14 )
1
w1t 1/z/0 1)

The contribution from w is

1
w+1+1/z/(1+v)

Per the boundary conditions the residue at infinity is zero and we may eval-
uate using minus the residue at w = —1 — 1/2/(1 + v), getting

1
p—1
res o (14 w)

1
2P=1(1 4 v)P—1"

2™(1 4 v)™

(14 2(1+v))™ (1

—(=n™
This yields
1

[zn_m+p](1 + Z)n-l-;ﬂ[vp](l + U)$—P+mm

The contribution from z is

1
(1+2z(1+0v)™
Now put z/(1 + 2) = u so that z = u/(1 —u) and dz = 1/(1 — u)? du to get

1
. ntp
Tes — (1+2)
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1 1 1 1
0 = (1 — w1 (1 + u(l +0) /(1 — )™ (1 —u)?
1 1 1
= res .
w APt ] — g (1 4 wo)™

With the extractor in v,

7)1+ o)t 3

n—m-+p <q + m— 1
q=0

)i

m—1
With p < n —m + p the extractor requires that ¢ < p and we get
Ep: <q+m—1>(_1)q(x—p+m>
= m—1 pP—q

We now see that the second binomial coefficient enforces the upper range
because x — p+m > 1, giving

o 3 (T s

m—1
q>0

— [P T—p+m 1 = [P Z)EP — r—=p
= = ) ( . )

We have the claim.
This identity was found by a computer search which pointed to OEIS A165817,
number of compositions.

1.165.50 OEIS A111650

We claim that withn >p>1and n—p>m > 0 and £ > 1 for polynomials in
x

(05 e (LR e L)

We prove it for = a positive integer and then we have it because both sides
are polynomials in x. For starters we may use the fact that the second binomial
coefficient enforces the upper range to get

()P (14 22 S (n —;l—i— k) Lk (Ek - x) (—1)k (n - ]1 + k)

k>0 p

Continuing,
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1
T+w)?

X}:(n—;+k>fuﬁﬂw%pﬂﬁ<n—;+k)

k>0

(D)™ P[0+ 2)*" [w?]

= (=)™ PR+ 2) P [w?)

(1 +w)*

(0w ("

k>0

= (~1)™ L1+ ) ] [o™)(1+ o)

(1+w)*
1
A1 21+ 00 +w)h

Re-arrangeing,

(=1)™ P [w?] ™)1 +0)" T (1 + 2/ (1 + )™

(1+w)®
1
A1 21+ w)h)n
1 o1
(1—|—w)3’[v }
1
A1 21+ win
1 . 1
ﬂ+wﬁk]ﬂ+zﬂ+wmn

= ()]

— (~1)" 7]

< 2
x (—1yn—q< ")(1+-zﬁ”—%
q=0 9
First part

We will first evaluate the case of ¢ = 0. We get

1 n 1
Tt T wir

Here the contribution from z is

(—1)[w?] (14 2)20.

1
(14 2(14+w)f)
Now put z/(1 + 2) = u so that z = u/(1 —u) and dz = 1/(1 — u)? du to get

1 2n
I'(;S W(l —+ Z)
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1 1 1 1
BT (1 — w1 (14 a(l + ) /(1 — ) (1 —u)?
1 1 1
= T .
w1y (1—u+u(l+w))"

Residues sum to zero and the residue at infinity is zero, so we may evaluate

using minus the residues at u = 1 and at u = —1/((1 + w)’ — 1). We obtain
from the first one,

1 1 Pip 1
Gruparoe M Eges

- <£n+x—1+p)
) :

This the claim. The second residue requires the Leibniz rule,

(n - ! (unlﬂ 1 - u)l)(nl)

1 = /n—-1\(=1)(n+1)7 1
(n=1'=\ ¢ untlte (1 —qy)n—1-atl

n—1

2 ("3 etss s

q=

(~1)"[u’]

1n717q

Evaluate at u = —1/((1 +w)’ — 1) to get

ni:l (" + ‘1) (—1)9(—1)" (1 4 w)? — 1)H1te (1 +w)! —1)n—a

2\ (1w

n—1

q=0 q (14 w)n=2a"
Recall that we had

1 1 1 1
(I+w)f—1)m % w1 —u(u+ 1/((1+w) — )"
which makes for a multiple of ((1 +w)¢ —1)"+1 = ¢+t 4 ... But the

extractor on w is on [w?] and by our first boundary condition n + 1 > p which
makes for a zero contribution.

Second part

We now have with 1 < ¢ < m the contribution from z
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1
(1 +21+w))"

1 n—
res (14 9
1 1 1
— 1 2n—q
(1+w)2n I‘SS ZnJrl( +Z) (z+1/(1+w)€)n

This means the residue at infinity is zero and we may evaluate with minus
the residue at z = —1/(1 4+ w)*®. (There is definitely no pole at z = —1). Once
more with the Leibniz rule,

(n—1)
1 1 o
O (Zn+1(1+z) q)

n—1 T(n I
_ 1 Z (n; 1) (_1) ( + 1) (1 + Z)Qn—q—(n—l—r)(Qn _ q)n—l—r

(n—1)! s Zntitr
n—1
(=) (m+r Sl 2n —q
- 1+ 2l .
Sty (1+2) n—1-r

With 142 = w(l+--)/(1+w)’ and n+14+r—qg>n+l+r—-m>n+l—-m
we see that n + 1 —m > p because of the boundary condition which says that
n —p > m. This means the extractor [wP] gives a zero contribution and we may
conclude.

This identity was found by a computer search which pointed to OEIS A111650,
2n appears n times.

1.165.51 OEIS A121547

We claim that with n > m > p and polynomials in x

n m+1 s (M (E+1\(z+k\(m—n
-y : |
m+1/\p+1 = kJ\p+1/\m—p k
Here we will prove it for x a positive integer but then it holds for all x as we

are dealing with polynomials in . Replacing with the usual extractors, where
the first binomial coefficient enforces the range,

Coteaar A (PN (N (M

k>0

= (1" "1+ 2)"[wP (1 4+ w) Y 2R +w>'“<x+ k) (m 3 n)

= m-—p k

= (=1)"["](1 + 2)" [P (1 + w) [ P (L + )"
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x 314 w) (1 + v)k<m;n>

k>0

= (=1)"["](1 + 2)" [w" (1 + w) [P (L + )
1
2+ w1+ o)

Re-arrangeing,

(=)™ w1+ w) o™ P14+ 0) [z (1 + /(1 4 w))"
1
A1 2(1+o))—m
= (=1)"[w”t(1 + w) ™ P](1 + v)*[2"](1 + w + 2)"
1
1+ 2(14v))n—m’

Expanding the powered term in z,

T

n

5 (Yot s .

q=0

With the extractor in w

(pi 1) (14 2)" P! 4 (Z) (1+2)".

We evidently require with 0 <a <1
1
(14 2(14+wv))n—m
1 1
n(1 4 n—p—a .
S e A P VI o

The contribution from z is

[0 P)(L+ ) [ (1 4 )P

= ")

1
(z+ 1/ +v))mm
With the boundary conditions the residue at infinity is zero and we may

evaluate with minus the residue at z = —1/(1 4 v), which requires the Leibniz
rule

1 "
prP—a
res Py 1(1 +2)

(n—m—1)
1 1 n—p—a
(n—m—1)! (z"+1(1+z) ’ )

=0
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X (14 z)rpra=(n=m=l=a)(p _p_ gyn=m=1-q
y e <n+q)
= nt+l+q q

x(1+ z)Hita—p—a (n fr_np—_l a_ q)'

Evaluate at z = —1/(1 + v) taking care of the pending sign —(—1)"

—m—1 m —p—a
ni (1+4o)ntita ntq e n-p-a
= ¢ )Uroyrtrera\n —m—1-¢)

Now applying [v™P] to v™T1+4=P=4 gives [1°] applied to v!19~* and hence
only ¢ = a — 1 contributes, making for a zero contribution from a = 0. With
the remaining a = 1 and ¢ = 0 we get

(1))

We may re-write this as

n! B n m+1
p+Nxn—m—1)'x(m-p)! \m+1)\p+1)
This is precisely the claim.

This identity was found by a computer search which pointed to OEIS A121547,
slice of a number cube.

1.165.52 OEIS A013609

We claim that with n > m > p and polynomials in x and ¢ a positive integer

(o) = o s et () 20 (070

k=0
The middle binomial coefficient enforces the upper range:

(—1)HmHP[pn] (1 4 2)n pz (n—l—k) k(j;_i];)

k>0

= (=)L )P (1 )"

k>0 m=p

= (="M + )" P (1 + w) o (1 4 )"
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XZ F1+w)kk (1 +v)~ %
k>0
= (1)L (14 2)" P (1 4 w) " TP (1 + v)”
1
T 20+ w)/(1+0)E

Re-arrangeing,

(=1)" P [T (1 4 w)? [ (1 4 2/ (1 + w) PP (1 + )
o 1
14+ z/(1 +v)t
= (=L)"Y (L 4 w) P (L 4w 2)" TP TP (L - v) ot
1
g (14v)t

Here the contribution from z is

1

1
1 B
res I+w+2)" Py .

z n+1

Observe that the residue at infinity is zero by the boundary conditions, also
there is no pole at z = —(1 + w) and we may evaluate using minus the residue

at z = —(1 4 v)¥, getting
(= 1) (1 w) PP (1 A )

x (=1 (L+w—(L+v))"?

1
(1 + U)K(n—i—l)
1

= () ) T

((1+ v)e —1—w)"?

1

= (DMt ) ) e

X Z ( ) (14 v)f = 1)9(=1)" P aynP4

_ nmvm_p;nw n—p o 1ya(_qyp—a TTP
= U s 3 (v

o)

Now with n + p not negative we must have p+q¢—m >0 or ¢ > m —p. On
the other hand since ((1+ v)¢ —1)? = (%7 + - .. by the extractor in v we must

also have ¢ < m — p. Hence only ¢ = m — p makes a contribution, which is
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(s () (o) = ey (M)

— [vo]w<;__i> (4 -y = (:L—_Z;)gm_p.

This is the claim.
This identity was found by a computer search which pointed to/ OEIS A013609),

expansion of (14 2z)™.
1.165.53 OEIS A059304

We claim that with n > m > p and polynomials in x and ¢ a nonzero integer

o(3) - £ ()

k=0

We see that the second binomial coefficient enforces the upper range and
obtain

—1\™ [ L\ntp _1\k lk+x L 2p
s S0 () g ()
= (1) 2 )

2 ()

k>0

= (“1)" )1+ 21+ )P )+ o)

T e
= ()" 4 2 (L )P (L )
1
Ttz + )11 2)
= (=)L 2™ (L 0) )1+ v)”
1
Xl—l—z—l—zw(l—i—v)e
= (=) 2" 4 2)" P P (14 w) P [oP](1 4 v) "
1
0wt 1+ 2)/z/1 o)
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Here the contribution from w is
1
w+ (14 2)/z/(1+v)t

The residue at infinity is zero by inspection (check boundary conditions) so
we may evaluate using minus the residue at w = —(1 + 2)/2/(1 4+ v)* :

1 2
- - P
TeS - otm 1(1—|—w)

(—1P[" (1 2)" P P)(1 4+ 0)

2Pt )Pt D) (31 4 0)f — (1 4 2))%P
(1 + z)ptmtl 22r(1 + v)2rt

= (=1)P[z"™P)(1 + 2)" ™ [wP](1 + v)“"ﬁ(m*p)(z(l + v)z — (1+2))%.

Expanding the powered term,

2p

> (25)2‘1((1 +v)f = 1)9(=1)%.

q=0
With the extractor in z,

i (?) (n e q) ((1+0)" = 1)?(=1)?

q=0

S0

q:
Now note that ((1 + v)* —1)? = v9(¢ + ---)? so with the extractor in v
we must have ¢ < p. On the other hand with n — m not negative the second
binomial coefficient requires ¢ > p. Hence only ¢ = p contributes with

(—1)P (?5) (n :) m) [00] (1 + v)*Hm=P) (4 P(—1)P = (P (if)

This is the claim.
This identity was found by a computer search which pointed to OEIS A059304,
number of lattice paths.

1.165.54 OEIS A225419

We claim that with n > m > 0, an integer p and a polynomial in z

() = (e (L5 L)

We prove it for z a positive integer and then it holds for all  because both
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sides are polynomials in z. We find with the second binomial coefficient enforcing
the upper range,

(D) A+ 2y <:;> (—1)k(1j_];)k (k;lp)

k>0
1
(1+w)r

> (i) (_1)’6(152),6(1 +w)*

k>0

= (=1)"["](1 + 2)" " [w™]

— (D P e s 1 2

= (P g - sl

Extracting the coefficient in z,

n

1

(—1)n[wm]m

> ()

_ zm: (1‘) (—1)m~1 (m —q+p— 1)
= \4 m—q
Here the extractor in w has reset the upper limit of the sum in accordance
with the boundary conditions. Continuing,

R L D ¢ (S

q=0

= et - ]
1

(1 + w)xjtlfmfp

_ [ m] 1 _(xz—p
- W (1 —w)rtl-m=—p — \ m )
This is the claim.

This identity was found by a computer search which pointed to OEIS A225419,

binomial (2”; 2) .

= (-1 fu)

1.165.55 OEIS A013610

We claim that with n > m > 0 and a polynomial in  and y and ¢ an integer
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(e =2 GG ()

With the usual coefficient extractors,

007 (1) 0 ()

m
k=0

1
(14 2)*

= ("4 )" M (L w)? [Tz = (L4 w)f]

= (- 2 (L w) Y (Z) (~1(1+ )™
k=0

=(=D"[""(1 + 2)%[w™](1 + w)? [1 —

3

= O S ()R- )
k=0

Now from the coefficient extractor in z we require n —k <n—morm < k
and from the extractor in w, k < m because 1 — (1 +w)* = —fw — --- . Hence
only k£ = m will contribute and we get

(0 ()

>z"—m(—1)memwm(1 de)m

m

= (0PI 2 Y () imen ey = (e,
This is the claim.

This identity was found by a computer search which pointed to OEIS A013610,
coefficients of (1 + 3z)™.

1.165.56 OEIS A158405

We claim that with n > m > p and ¢ an integer and x a variable

() e ()

k=0

With the middle binomial coefficient enforcing the upper range,

a3 () sk (T

= p n—1
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= (=" (1 A+ 2)" T w0 (L A w) ™
k+z\ 4 & &
24(=1)"(1 4+ w)
2 ()
= (=)™ (14 2) T w0 (L 4 w) T (1 )
X Z DR+ w)k (1 4 v)
k>0
= (=)™ (14 2)" P w0 (L 4 w) ™ (1 )
1
T2+ w1+ o)

Re-arrangeing,

(=)™ P)(1 4+ o)™ 2 (1 + 2/ (14 0) ) T w" (1 4 w)™ !
1
Xi
1+ 2(1+w)
= (=)™ P14 o) (1 4 2/ (1 + o)) T ™ (14 w) ™
1
X —
w+1+1/z
Here the contribution from w is
1 me1 1
res n L) T

The residue at infinity is zero due to the boundary conditions so we may use
minus the contribution from the simple pole at w = —1 — 1/z to get

z" 1
(=) —= (1 m—-1__ ~
(0 o )
which yields with the remaining extractors
1

[WP](1 + v)" T 2™](1+ 2/(1 + U)Z)Hm‘(l TR

Expanding the sum in z,

> (")),

q=0 4

The second binomial coefficient enforces the upper range and we get

m n—1+m n—+m T quziq
N M (A [ R ey
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n+m
z

= ORI [

Collecting what we have,

R e B e (DL (R LRV

Extracting the term in z,

iﬁ—wm‘q (") o = e,

Here we can set the upper range to p since (1+v) —1 = fv+--- and m > p.
Continuing,

L n4m K
VP)(1 + v)*Hn - —— |

e 3 () [ e

q=0
Using the extractor on the range a second time we may extend ¢ to n +m
to get (here 1 — 1/(1+v)! =fv+---)
[Up](l + U)x-‘rén; _ [Up](l + U)x_gm _ xz —Im .

(1 + v)tntm) p

This is the claim.
This identity was found by a computer search which pointed to OEIS A158405,
triangle of odd numbers.

1.165.57 OEIS A112367

We claim that withn >m >pand p >0

() =2 (GG e

With the third binomial coefficient enforcing the upper range,

g () ()T o

k>0

S (R T TR D G [CERT (i [

k>0 p

= (=DPE"A+ 2" w1+ w)" [pP](1+ 0)”
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o)E w)k 5k k4+m—1\

xg(ur (1 +w) ( f )( 1)

= (1P + )" w1+ w)" [P)(1 + )P
1

T+ 20+ o) +w)"

The contribution from z is

“

1
(1+z(1+v)(1+w))™
Now put z/(1 + z) = u so that z = u/(1 —u) and dz = 1/(1 — u)? du to get

res (1+ z)"t™

z Zn+1

1 1 1 1
S un T (1 — )™ (1+ u(l+ 0)(1+w)/(1 — w)™ (1 — u)?
B 11 1
T e 1—u(l—u+ul+o)(l+w)™

The residue at infinity is zero here and we can evaluate using minus the
contribution from the finite residues. We get from the residue at u =1

1 1
(1 +o)m (14 w)™

()= ()

This is the claim. For the other residue we have

(=DPfw™ (1 + w)" [oP](1 + v)”

1 1 1 1
(o) +w) - D7 % w1 T (ut (1 +o)(I+w) - 1))

We require the Leibniz rule:

s ()

m—1

:1Z(m—1)(—1)q(n+1)q 1 T

(m—1)! q yntita (1 —u)ltm—1-q

q=0

-5 (n . q) e (1- i)m*q'

q=0

Evaluate at u =1/(1 — (1 4+ v)(1 +w)) to get with

l—u=—-14+v)(14+w)/(1—(1+v)(1+w))
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for the sum

m—1

) (“ ; q>(_1)q(1 — (L4 0)(1+ w))r e

q=

m—q(1 = (A +0)(1 +w))™™
A T

Restoring the factor in front and the remaining extractors

(=D)Plw" "] (1 4 w)" 7" P (1 + 0P (1L = (14 ) (14 w))"

m—1

x (":q)uw%uw)q.

q=0

Considering only the extractor in v we get

[0P](1 + v)P~™ (v + w + vw)" T

n+1 n+ 1
= [vP](1 + v)P~ ™t Z ( . )vr(l + w) w" T
r=0

Here we must actually have r < p due to that same extractor. From the
extractor in w we require n+1—r <n—morm+1 <r. But p < m so the
set of r that make a nonzero contribution is in fact empty, which concludes the
argument.

This identity was found by a computer search which pointed to OEIS A112367,
triangular numbers.

1.165.58 OEIS A094305

We claim that with n > m > p

(L)) = (O Em () (e

Using standard extractors,

e (e (R (MR

k=0 p

= (ST (L ) T YL )

x i (Z) (14 2)F(1 + w)* <” -k “’) (—1)

k=0 p
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= (S0P 2) (L )™ P14 )

> (Z) (14 2)"(1 + w)*(1 + v) " F(=1)*

k=0
= (S ) P ) (1)
1+2)(1+w)]"
. {1 B 1+w
1
(I42)m

X[v—2z—w—zwl".

= (=)™ [w™ YL+ w)™ P [P)(1 + 0)P

With the extractor in v,

% () (o-wsarar
SO () evruraswr
o) S (e (T ()
oSS (e (00

Working with the inner sum,

= "ML+ 2)" ™)L+ w) ™ {1 Ly

= [T+ 2) T TP+ )™ Pz — w]" T
With the terms that depend on g,

=3 (7))
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= (2 = w)" )1+ 0)P (L + 0(1 + 2)/(z = )"
= [ (1+v)"(z —w+ov(l+2)"
=[PlI(1+0)P(z1+v)+v—w)".
Applying the extractor in z,

i o S (1o (T) 1o -y

=0 q
= [P](1 +v)* %:(—1)”’”‘1 (Z) (14 v)? nz_:_: (” ; q) VT (1) W

Now from the extractor in w we must have » < m —p and from the extractor
invwegetn—qg—r<porn—p—gq<r. Thisrequiresn—p—qg<m—por
n —m < ¢q. Hence only the value ¢ = n — m makes a contribution, which is

o () ooy ()

Collecting everything that we have at this point,

(-1 <;L> [ L+ ) )L ) — )™

The contribution from w is

1
- m—p m
s T(1+w) (v—w)™.

Now put w/(1 +w) = u so that w = u/(1 — u) and dw = 1/(1 — u)? du to
obtain

1 m
O I (e

1 1 .
= res A= aymr (v—u(l+wv))™

Compute the residue,

()

q=0

Note however that from the extractor in v we require m—q < porm—p < q.
Hence only ¢ = m — p makes a contribution and we finally have

e (1) e oo
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y (2m —p—(m —p)) ( m )(_1)’”—”(1 +0)" PP

()= ()(E).

- (e () G)
m m p
This ends the computation.
This identity was found by a computer search which pointed to OEIS A094305,
values of (Z) (";‘2)

1.165.59 OEIS A027555

We claim that with n > m >0

(G e (e GG

The middle binomial coefficient enforces the upper range,

a3 (T et (F)

k>0
S S CE R ) o] (e G VR
k>0

1
I+z2z(14w))”

1
(14 z+4+zw)™

1

(14 zw/(1+ 2))"
e A G [

m 1+z)m

= (=D"["(1 4 2)" " ™)
= (=)™ "1+ 2) " w™]

= (=D"["0 4 2)" [w™]

= "ML+ 2)T ™ (n +Z - 1)

_ n+m-—1\/x—m
o m n—m/’
This is the claim.

This identity was found by a computer search which pointed to OEIS A027555,
values of (7).

1.165.60 OEIS A104684

We claim that withn>m >0and n >0
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G- () e ()

Here the first binomial coefficient enforces the upper range and we get for
the sum

(=)™ " "L+ 2)2”*’”[11)”](1 + w)"[p"](1 + )"
Y (=DRF 1+ w)E (1 + o)

k>0
= (=1)" T+ 22T w1+ w)" ")+ 0)"
1
T+ 20+ w) (1 +v)
— (_1)n—m[zn—m+1](1 4 Z)Qn—m[wn](l 4 w)n—l[vn](l 4 U)n
1
><1+1/z/(1+w) +v

Here the contribution from v is

1
1+1/z/(1+w)+v

We have that the residue at infinity is zero and we may evaluate using minus
the residue at v = —1 — 1/z/(1 + w) which gives

1 n
rgs m(l —+ U)

1 1 1
~ " rmarey Y S arer
_ z(1+ w)
(1+2(1+w))ntt’
Restoring the remaining extractors,
() P Y )
1 1

_ (_1)nfm[znfm](1 4 Z)anm[wn]

14w (z41/(1+w))n+t

The contribution from z is

1
(z 4+ 1/(1+w)+

Here the residue at infinity is zero (just barely) and we may evaluate using
minus the residue at z = —1/(1 4+ w) which requires the Leibniz rule:

1 o
I'SSW(l—‘rZ) n—m
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(n)
1 1 -
] (W<1+2) ! m)

- (n)(—1V01—nz+ly(mz—no”ﬂq1+zym_m_w_w

1
- E q Zn7m+1+q
q

- n—m—i—q) (—1)4 <2n—m) g
- _Cr (142,
n—m+1 —
q0< q z +1+4q n q
Next observe that
n—m+aq\(2n—m\ _ (2n — m)! _(2n—m)\ (n
q n—q/) ¢xm-mxn-q! \n-m/)\qg)

Good, we have the first factor (2”;’"). For the second factor we are left with
(substitute z = —1/(1 + w) and flip sign)

wn—i—q—m

(1)) 2 () w2

g (e

q=0

The only contribution here is from ¢ = m which yields (:l) That is our
second factor and we may conclude. See also [[.147.3]

This identity was found by a computer search which pointed to OEIS A104684,
lattice paths.

1.165.61 OEIS A144470
We claim that with n > m > 0 and x a free variable and ¢, p integers

(£ -or T ()

k=0

Here the third binomial coefficient enforces the upper range and we get

AR (7" (7
p—m+Ek

Ok W)
PR [CIRERY

L R T (RRU D B

k>0
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1
1+ 2(1 4 w)f)p—m+l
1
(z4+1/(1 + w)t)p—m+1"

The contribution from z is (here we suppose that p > m)

= (=D)"[z"](1 + 2)Pfw™](1 + w)*

= ()L 2P (14 ) Y

1
G+ 1/(1+ w)fyp=—mil’

The residue at infinity is zero using n > m and we may evaluate by minus
the residue at z = —1/(1 + w)’ which requires the Leibniz rule:

(p—m)
1 1
(Z"“ (127 )

(p—m)!

oo 2 () SR s oo

1
res —7 —(1+2)P

q=0

p—m

q n+ q p m-4q
Z Zn+1+q ( ) <m + q) (1+2) .

q=

Make the substitution and flip sign to get

S (L1919 4w <n+1+q><n+q>< p ><<1+w>4—1>m+q_

e(m+
q:O g J\m+q) (1+w)lm+ta

Next observe that ((1+4w)* —1)™+4 = gm+dqyym+4 4 ... but the extractor is
on [w™] and hence only ¢ = 0 contributes, which leaves

[w™](1 + w)T =M+ (_1)20(] 4 g)tn—m+D) (:;) ("™ + - )
= (D)o e = (e

This is the claim and we may conclude. It remains to do the case when
p < m. We put p=m — ¢ with ¢ a positive number. We find for the sum

BT ()6
g ()
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— ey (0 (1)

k>0
— (D o Y (1) st
k>0
= (BN 2 ) w4 (1 )2

The contribution from z is

1 e _
res ﬁ(l +2)™791 + (1 +w)bz]e L

Now put z/(1 + z) = u so that z = u/(1 —u) and dz = 1/(1 — u)? du to get

o
(1 —u)?

res —u)" M 4 (1 4 w) /(1 — )] 7

u yntl (1
_ ¢ 19—

This one has no poles other than the ones at zero and at infinity when
n+1—(n—m)—(¢g—1) < 2orq>m because ¢ is positive and n > m. (This
proves that we get zero from the sum when 1 < ¢ < m, which also follows by

inspection either of the residue in u or of the original problem statement in p.)
We get on extracting the coeflicient,

— (n—m qyn—r (9T 1 £ _ q\r
> (22 (@ -r
r=0
For the first binomial coefficient to be non-zero we need r > m and we find
recalling that n > m

DY (A [ g [ER S

r=m

Note however that ((1+w)*—1)" = w"¢" + - -- and the extractor is on [w™]
so only r = m contributes and we get

i (227 carn (7 e

n—m

= (e (q;j) - (mn; Q)em.

We once more have the claim and our identity holds for all integer p.
This identity was found by a computer search which pointed to OEIS A144470,

()3
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1.165.62 OEIS A059268

We seek to prove that with n > m >0

e S ()T

k=0

We will prove it for m > 1, the case m = 0 is at the end.

Initial binomial coefficient refactorization
2m + 2K\ [2m+ 2K\ (2k +m\ (m+k\
m+k ) m k m

(L)) - L)

so that our identity becomes
Z": n+k m+k—1\ [2m+ 2K\ 2K\ (m + k\ >
pors m m k m '
Observe also that
mA+k—1\(m+k\"" _ k
m m C m+k

(-1)”%(—1)k(2fz> (2m£2k>k<2kk)w<m;k>—l
R R (| e [ G

As the last factorization we have

() = e orem = () (1)

and obtain

Observe that

and

3
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g S () (T ()

k=0

Applying coefficient extractors to the sum

Re-indexing the sum we find

1 < (>(2n—k><2n+2m—2k—1>(n+m—k>
2(n+1)— Z
m — n+1 m—1 m
Starting with the second and third binomial coefficient:

2(’/1 + 1)%[zn+1](1 + Z)2n [wmfl](l + w)2n+2m71

" é(_”k Doz (0"

Recall from the following identity which was proved there: with 1 <

k<n
1/m\ " 1
TR

We can re-write this as

” (v— 1)""“.

1/n-1\"" 1 -
n(k—l) —[v]logl_v(v—l) .

Apply the identity to get

20+ D1+ 2)™ w1+ w)P 2 [ g -

- n 1 1 vk
3 (1) (k) A+ 2F L+ - DF

k=0

w1

Collapse the binomial to obtain

2(n + 1)[2" (1 + 2) 2" [w™ (1 + w)?r+2m—!

{1 (1421 +w)2(v—1)
=2(n+1)[z"1(1 + 2)" [w™ (1 + w)*™ !

x[0" ] log

-1
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n

1
x[v" ™ log 7

[(1+2)(1+w)*(v—1) — ]

Now expand the powered term with (1+ 2)w(2+w)(v—1)+ (v —1)z—1 to
get

> (1) 2t a4 ) - 19 - Dz - 1
— \q
a=
The contribution from w only happens whenn—g<m—1lorn+1—m <gq

from the coefficient extractor [w™~!]. We now fix ¢. The contribution from z
and v is

Zn+1 Z2n7q Uner 1 v — n—q - q —1)9IP(py —1)P2P
271+ 27" log (v~ 1) ;(p)< 1w - 1)

SO ()

p

b (o)
n+m P n—p+1l\n—p/\m-1+(g-p)) °

p=0

Now when g > n + 1 — m the following holds without the inverse binomial
coefficient going singular:

< 2n —q >(n+ml>_1_ (2n —q)! x (m—1+q—p)!

n—q+p)\n—q+p (n=p)!x (n+m—1)!
_(m—=1+qg—p\(n+m-—1 -t
N n—op 2n —q ’
We get for the remaining inner sum where we now suppose ¢ >n+1—m

e R )oY

p=0

e I Y (D) ) gk )

g+m—-1-n =\ (1+z)P

This has two pieces, the first is

T I 2 T (1 2) - 1)

n—q _
=(—1)71—— 1T [nH1 m-1 _ (.
(1 o)

The second is
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Ly (1 ey

g+m—-1-—n = p—1 1+ 2)P’

Without the scalar

L+ ey (A7) oy

—\p-1 (1+z)pt

p—1

= [+ )" 22/ (1 + 2) = 1] 7
= (1) M1+ 2)" " =0.
This shows that we get a zero contribution from the inner sum when n >
q > n+1—m and we have just one value, a singleton which is at ¢ =n+1—m.
Evaluation once singleton has been established
The contribution from w with ¢ =n—m + 1 is
[wm—l](l + w)2m—1wm—1(2 + w)m—l — 2m—1

so we are left with

27 (n+ 1"+ 2)" [T log T—

( " )(1 +2)" o= 1) (v — 1)z — 1) ™

m—1

Instantiating ¢ to the singleton we find

1 n+m-—1 71”51:“ n—m+1 (71)n7m+17pm+p—1 n—p
n+m\n+m-—1 = D n—p+1\n—-p/

Let us assemble everything we have into one formula:

Qm(n+1)< n >(1)"?ﬂ+11"i+1 (n—m+1>(1)p7rL—H’H

m—1 n+m =0 P n—p+1

To deal with the remaining sum we introduce
n—m-+1

£) = (1" m IR ]

1

z—1r

This has the property that
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—1 n—m-+1

resf(z):(71)”7m+1(n7m+1)!p+m71H L II

Z=p ntl=p P S

1
p—r

pAm—11 (~pr-mort
‘n+l—pp(n—m+1-p)!
p—«—m—l(l)p(n—m—l—l).

n+l-p p

These are the terms of our sum. Residues sum to zero and we may evaluate
using minus the residue at z = n + 1, getting

= ()" (n-m+1)

n—m-+1

()" m—m+1)(n+m) ] ﬁ
r=0
= (=)™ (n—m+1)(n+ m)m

Substitute into the formula to obtain where some factors are canceled im-
mediately

2m(n+1)(mri1> (n—m+1)!m
m 1 __ om
=2 m(n—m—&-l)!-? .

This at last concludes the argument.

Addendum

We now compute the case when m = 0 which reduces to

L=y é(—l)k L)

k
We find
n n n 1
(—1)"[")(1 + 2) §<—1>kzk<1+z>k[wk1ﬁ
S G L ——— LT

1+ 22

V1+4z(1+2)
(1 <”) (C1)927 = (“1)" (1 —2)" = 1
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and we have the claim.
This identity was found by a computer search which pointed to OEIS A059268,
binary powers.

1.166 MSE 4902676: Inverse central binomial coefficient
Suppose we claim that
2 fop\ Tt 2”: 1 (2m\ (2n—2m
n+1\n _m:02m+1 m n—m )

Re-indexing we find,

1 & 2m\ (2n — 2m
_ 2n+11 2m
1= }Ogl—zzz (m)(n—m)

m=0

- 2m 1
— 2n+1 1 2m n—m )
& ]ogl_ZZz <m>[w ]\/1—4w

m=0

We see that the extractor in w enforces the upper range of the sum,

1 1 2m
lo w" 22m w™
gl—z[ ]\/1—4wm§>:0 <m>
L L 1
1—2z VI—dw /1= dwz?’

[22n+1}

_ [22n+1]

log

Working with the square roots,

1 1
V1I—4dw /1 — 4w — 4w(z? — 1)
1 1
1—dw /1 —4w(z2 - 1)/(1 — 4w)

S C) S

[w"]

= [w"]

q=0 p=0
n q
2 1
— 4n—qz ( p) (22 —1)P49~P (q 1)
q=0 p=0 p P
n q
2 1
=43y ( p) (2% — 1)P4~P <q 1)
4=0 p—0 p p—
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p=0 q=p p
" (2p — (q+p-1
— 4" Z < )(22 —1)P4P ( )
—\P —\ p—1
p= q=

Applying the extractor in z,

e (Do) (e iy

For the inner sum introduce

This has the property that

q—1 p

B p! 1 1
§§Séf(z)_2n+1—2qH II

r:Oq_Tr:q+1q_r

I 1 (=1 1
_ p 107 (p (cipa— L
2n+1—-2q4¢! (p—q)! q 2n+1-—2¢q

Residues sum to zero and the residue at infinity is zero by inspection so we
may evaluate the sum using minus the residue at z = n + 1/2 writing

P

1 p! 1
f(z):_iz—(n—l—lﬂ)rljoz—r

to get

1|ﬁ 1 1,1 12\ 1 m—1/2\7
2p'T:On+1/2—r_2p'(p+1)! p+1 2+l p '

Collecting what we have,
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mr s ()G

For the quotient of the right binomial coefficients we find

p—1 p—1
H n—r :H 2n — 2r
n—1/2—r 242n—1-2r

r=0

op nl P 1
B (n—p)!gzn—l—w

nl (2n—1-2p)! 2" 1(n—-1)!
(n—p)! (@2n-1)! 2nr-l(n—-1-p)!

-1
_ 92 2n—1 2n—1-2p '
n n—1—p
This was for p < n. Note that the above yields 22" (an—1)*1 for p = n but
we should get

:2p

(n - 1/2) ! _ n! B nl2"
n [on—1/2=r) [ 5(2n—1-2r)
— —1
_ nmzn Yn—1)! _ g1 (2n—1
' (2n —1)! n '

S =300

2
g2t (20 =1 ' on —2p

n n—p )

We now obtain for p = n the value 227! (Q"n_l) !

what we have,
4 o\ 7! z”: 20\ [2n — 2p
2n+1\n p n—op

p=0

To merge the two cases we use (" ) to get

as required. Re-capitulating

N N | nepr 1
:2n—|—1<n) Z[z]m[z ]m

p=0

4n (2n ‘1[ " 1 24 (op\
= z = N
2n+1\n 1—4z 2n+1\n
This is the claim. Here have used that %(2"7;1)_1 = (2”)_1.

See also section [L8T] "
This was math.stackexchange.com problem 4902676.
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1.167 MSE 4906245: Another inverse binomial coefficient
We seek to show the identity

)2 ()G

p=0

Working with the RHS we see that the second binomial coefficient enforces
the upper range of the sum

G R

p=0

This assumes we assign non-singular values for inverse binomial coefficients
(Z)_l with k& > n. Recall from the following identity which was proved
there: with 1 <k <n

1/m\ " 1 -
k(k) :[v]logl_v(v—l) k.
This fits the bill, we get the exact value when p + 1 is in the range and the

other cases make a zero contribution due to the extractor in z and the fact that
p=gq-+k >k when ¢ > 1. Apply to the sum to get

1
241+ 2)H o1 log T—

T S (e I

p=>0 p

z

q—1—n+k
= [2F](1 4 2)" T w9 ] log %(’U —1)etk-l [1 - ] :

—v v—1

= [zk](l + z)n+1[vq+k:} log %(v — D" o—1- Z]q—1fn+k'

The contribution from v is

res

- - _ n _ _ q—1—n+k
e Uq+k+110g1f (v—1"v—1-¢] .

Now put v/(v — 1) = w so that v = w/(w — 1) and dv = —1/(w — 1)? dw to
get

1 1 1
+Ek+1 —1—n+k
) log —————[1/(w—1) —z]"""" w-12

1—w(w-— 1)"[1/(

res w—1

o8 ki (

Withg—1—-n+k+2+n—qg—k—1=0 this becomes

1 1

res R log

T [1—z(w—1))7" -tk
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1 1
1—w

Using the generalized binomial theorem and writing

[1+2z—wz]? 7tk

wz
142

qg—1—n+k
[]__|_Z_w]IJ1n+k (1_’_Z)q1n+k|:1_ :|

we obtain

1 1 g—1—-n+k ik
rfw%ﬂla_ng: ) sy,
p=Z

With both extractors (upper range enforced by w) we get a non-singular

fraction:
q4§1<q1n+k)<q+kp>(1)p 1
P k—p q+k—p

p=0

SR e

q—1

1 ety (1 1R (L
- JEa s (T

Here we have again extended to infinity as the extractor truncates at p = k
and k < g+ k — 1. Continuing,

é[zk](l + z)athl [1 -1 j_ Z} . = é[zk](l +2)" = ;(Z)

This is the claim. The boundary conditions for this are very simple and refer
to integers ¢ > 1 and n > k > 0.
Alternate proof
Starting once more from
ﬁi(mpq—l—n+k n+1\ 1 [q+k\~
= D k—p/p+1\p+1

we observe that

G—l—n+k> 1 G+%)”;:@—1—n+kﬂxm+k—1—M!

D p+1\p+1 (g—1—n+k—p)!x(¢g+k)
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1 q+k -t g+k—1-—p
T n+l\n+1 n

which yields for our sum

) o))

=0

We point out here that this only works when ¢+ k > n+ 1 for example with
q = n + 1. The first binomial coefficient enforces the range of the sum and we
get for the sum only

k Lyntl _1ypap g+k—1—p
0 (i)

wP

e R e e e S T

p=>0
- [Zk](l * Z)n+1[wq+k_l_n](1 + w)q+k_1 1+ zw/l(l + w) '

The contribution from w is

1
1+ zw/(14+w)

Now put w/(1 +w) = u so that w = u/(1 — u) and dw = 1/(1 — u)? du to
obtain

1
. +k—1
rs;b watk—n (1 + w)q

1 1 1 1
T wath—n (I—w) 114 z2u(1l—u)?
1 1 1 1
T2 yatken (1—w)rtlu+1/z2

Here the residue at infinity is zero and we may evaluate using minus the
residues at u =1 and at u = —1/z. We get from the latter

1

= [2F]29FF(—1)9tkn = 0,

1
[Zk] (1 + Z)n+1 ; (_1)q+k—nzq+k—n

The residue at u = 1 requires the Leibniz rule:

1 1 1 \™
1) —
(=1) n! (u‘”’“” (1+zu)1)

L s () (=DP(g+k —n)P (=) P1nPenr
= (-1 m;}(p) .

ud+k—n+p (1 + Zu)lJrnfp
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Set u =1 to get

Vk]ﬂJrZ)”“i <q+k L ”+p> b

112+
= p (1 2)tHn=r

Bt

p=0

¥ " q+k—1—n+p>
= g 14+ 2)P
( b ( )

=0

T | g+k—1—n+p WP 2\
e Hw]lwz< T w2

1 1
I—w(l—w(l+4 z))atk—mn’

Here we are making use of the boundary condition n > k. Continuing,

nfk][ n

= """

1 1
T (T () e

- e (o~ (00 ()

We conclude by collecting everything,

1 [q+k\ ‘" [qg—1\[k+gqg
n+1\n+1 n—=k k '
Note that

1 (q+k\ (=1 1 (a+D)Ix(g—1! (n\1/qg+k\""
n+1\n+1 n—k) n+l@+k)!xnh-kK! \k/)q\ ¢
Multiply by (k:q) to get the desired result.

This was math.stackexchange.com problem 4906245,

2" H][w”

1.168 Quadruple hypergeometric with an inverse binomial
coeflicient

We seek to show that

Z”: dn+2k+1\ 1 (2n+k\" 1 (dn+1
2k 2k+1\ k C2n4+1\2n+41)

k=0
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First observe that

DY) - () ()

This yields for the LHS
(3n>_1z<n>< 3n )<4n+2k+1> 1
n = k) \n—k 2k 2k +1
1 (3n *i n\ ([ 3n \ (4n+2k+1
C4dn+1\n P k)\n—k 2k +1

- () o () (o

k=0

We will now omit the scalar in front,

[w*™] (1 4 w)* " 1+z3"zn:<) (1+w)?

= [w*](1 4+ w)*" T 2" (1 + 2)®" [1 +z(1+w) ]

- [w4"](1 + w)4"+1[z”](1 + 2) 3" (Z) (14 2)" 929072 + w)?

q=0

e S0

q=0

-2 OOZ00)

p
Next observe that

<4n—q>(4n+1+p>_ (4n +1+p)!
3n dn—q ) (Bn)lx(n—q) x(g+p+1)!

_(in+1+p\(n+1+p
N 3n n—q )
Switching sums,

2 ("n OO0

p=0 q=p

We also have
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(6)0) = o= = () (0)

].] . ]d
p 3n q=p q p n q

p=0

21 ]G b [ (R

q

By Vandermonde this is

> () ("G

p=0

Continuing,

[w?m](l + w)4n+1[ 1 + 2 2n+1 Z < ) 1 + U)
= [w?"](1 4 w) " "1+ 2)2"“[1 +z2(1+w)]"

_ [an](1+w)4n+l[ 1—|—Z 2n+1z< > 1+Z NPy P

-2 ()"

To conclude observe that

2n+1+p)\ (4n+1 —(@nt1+p) (4n +1)!
D 2n+p) pp!x(2n+1)!><(2n+1—p)!

_2n+1+pfdn+1\/2n+1
o241 \2n+1 p )

The first piece without the (321}) here is

() -2 06 - ()

p=0

The second piece is

()G -2 ()0 - (0)

p
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These two were done by Vandermonde, again. Collecting everything that we

have
1 /3n\ ' [dn+1\ [[(3n+1 L[ 3
dn+1\n 2n+1 n n—1
B 1 n +1 3n+1+ n _ 1 in+1
T dn+1\2n+1) [2n+1  2n+1] 2n+1\2n+1)°
This is the claim.

This problem is from page 67 eqn. 11.2 of H.-W.Gould’s Combinatorial Iden-
tities [Gou72al.

1.169 Quadruple hypergeometric with two inverse bino-
mial coefficients

We seek to show that

O O N SORT NGRS

z+n
n

OO ()
R

Hence we obtain polynomials of degree 2n in x and it is sufficient to prove
it for an integer x > n to have it for x a free variable. Observe that

BEC) -6)

so the sum becomes

40\ o= (2\ [z +n\ [n+k\ "
OG-
k=0
Note also that

()0 -G

We thus have for the sum

We see that on multiplication by ( )2 we get
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zn: rT+n\[(r+n
n—k)\z—-k/)
k=0
Here the first term enforces the range and we get

)1+ 2 S 2k (z i Z)

k>0

— [Zn](l + Z)x—&-n[wm](l + w)x+7L szwk
k>0

= [](1+ 2)" ] (1 + )

1—wz
1
— _[,ntl 1 z+n(,, T 1 a:—i—ni.
I+ )7 (1w
The contribution from w is
1 1
. T+n
_rgb 7w$+1(1—|—w) 710_1/2.

Here residues sum to zero and we can use minus the residue at w = 1/z and
at infinity. We get for the former

n+1 z+n z+1 (1 + Z)ern 2z +2n
2" (14 2)* "2 praws on
The residue at infinity gives
1 1
n+1 x+n x+1 T+n
[2" (1 + 2) res —sw (1+1/w) Tw—1/z
1 1

= 2" + 2)* " res (1+ w)“"+"w T=wls w/z

With Vandermonde this becomes
1 [z +n 2 n 2x + 2n
2 n 2n '
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Add the two contributions and flip sign to get

1 T+n 2 n 2r + 2n
2 n 2n
as claimed.

This problem is from page 68 eqn. 12.3 of H.-W.Gould’s Combinatorial Iden-
tities [Gou72al.

1.170 MSE 4949815: Inverse binomial coefficient with har-
monic numbers
We seek to show that

m\ <~ 2% fon — k "1
<n> ;k(n—k>_z2k—l'

k=1

Working with the binomial coefficient in the sum on the LHS we get
2n)2 1 _(2n)\ (n) [2n -1
2n)k(n—k)! \n/)\k)\ k

and hence we have
Zn (n) 2k <2n) -t
= k)] k\ k

Recall from the following identity which was proved there: with 1 <
k<n

;(Z)_l = [v"]log ; i S,

Apply to our sum to get

[v2"] log - ! ~(v— 1) 1 (Z)?k(v 1)k,

Here we get two pieces, the first is

~[v?"log - ! (-1 = —i‘l (_ql)q (2:)

and the second
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1 n
2n
= 1 -1n" nH"
[v ]ogl_v(u (v+ Z % ()
qg=1
Sum with two instances appearing
We clearly require
> ()
q=1 4
With this in mind we introduce
JIR |
— (—1)™m! =
1@ = omm ] =
which has the property that for 1 < ¢ <m
19 1 &1
res f(z) = (-1)"m!= [ [ 11
#=a qr:Oq_rr:q—i-lq_T
11 (—1)m™¢ —1)4
)
7q' (m—q)! g \4q

With the residue at infinity being zero we have that our desired sum is
contribution from minus the residue at zero, which gives

m

m‘H
Z—’I" ’l"—Z

= _H7n~
z2=0

Collecting the pieces
Apply to the two pieces to get

2n

1
5 (T Hn) + Han = = Z2q Z 2%—1

q= 1

This is the claim and we may conclude.
This was math.stackexchange.com problem 4949815

1.171 MSE 4960823: Binomial coefficient scaled power
sum

We are interested in a closed form of

- (e

k=0
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for natural a. More precisely we seek P,(n) where

Qa(n)

Pa(n) = (n+a)!a

which is a polynomial. Keeping it simple we find

(n + a)l[z"+9) f:(—l)n—’f (Z) exp(kz)

k=0

— (n+ a)![2" ] (exp(z) — 1) = n!{” ; “}.
With a our constant we have combinatorially that we are counting the num-
ber of partitions of [n + a] into an ordered sequence of n sets. We can think of
this as first choosing n values to go into our n slots for a factor of n! (";’;a) Then
we partition the a remaining values into a sequence of ¢ sets where 1 < ¢ < a
and attach them at (Z) points to the bottom layer of singletons. However we
cannot use exp(z) — 1 to select the sets that form the partition of a because we
overcount by a factor of m on z™. This is because if we select a set containing m
elements the attachment point has m possibilities. Hence we must divide by m.
Integrate to get exp(z) — 1 — z and divide by z for an EGF of (exp(z)—1)/z—1.
Putting it all together,

w(" ) > (1) ot exnte) = 1)/ - 1

q=1 q

. (Z) (2] (exp(z) — 1 — 2)".

z
g=1

We have our factorial in front which is canceled. Here we already see that
we have a polynomial in n because the factors on the binomial coefficients do
not depend on n and the binomial coefficients yield polynomials in n upon
expansion. Continuing,

i n> 3 (q) (10727 (oxp(z) — 17

=1 \4 = \»
- q: (Z) p: (i)p!(—l)q—p[zw] <exp(;;)!—1)P
Ll

The conclusion is that
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200 1)

p=0

We can compute an explicit form of the coefficients of P,(n) by using

of)-cri

which then yields

ron = g3 Sl (e (37) {57}

p=0

The first sum in r iterates over the powers of n up to n%, forming a polynomial

in n.
Remark. Once we have seen the closed form from the combinatorial argu-

ment it becomes readily apparent that we can also get it by simple algebraic
manipulation, which goes as follows. We have

(" exp() = 10" = (0 ] Y () xpla) = 5 - 102

n
n
=(n+a)! Z ( > [2979) (exp(z) — z — 1)4.
— \4
g=

Note however that we may set the upper range to a. This is because when
a > n the binomial coefficient is zero in the added range and we are not adding
anything and may raise to a. On the other hand the sum term starts at 229 so
we get zero when 2q > ¢+ a or ¢ > a. Hence if a < n we may lower to a because

we are not losing anything. We find

a

(n+a)y (Z) [224] (exp(2) — 2 — 1)1

q=1
and may then continue with the computation as before. (The term for ¢ =0

does not go past the coefficient extractor.)
This was math.stackexchange.com problem 4960823\
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1.172 MSE 4964157: Two central binomial coefficients
and a fractional term

Introduction and initial binomial coefficient manipulation

We will show that with a,b positive integers that

Z": 1 (2k)(2n—2k>_4” “rak+b—a/2
k=0ak+b k n—=k b Pt ak +b
We may re-write the RHS as follows:
4" Frk+bla—1/2 4" (n+bla—1/2\ (n+b/a\”
b 1t k+bla b n n

This gives the equivalent equality

g: — <n +nb/a> (2:) <2Z - ik> _ %4n <n + b/z - 1/2).

Merging in the fractional term we find

1 n k-1 n
k+b/a ql;[l(q +b/a) = ql;[l(q +b/a) q:l;[ﬂ(q +b/a)

— (k—1)! <k +kb£a1— 1) (n ) <nn+_b2a>.

This gives for the sum

% <n +nb/a) (2;) . ; (k +kb£a1— 1) (nn—&—_béa) % (Z) -t (2:) <QZ - zk)
The sum plus the term in front simplify to
% kZ:: <k; +bja— 1) (nn—f—béa) (Z) ! (2:) (22 - ik)
SR 06

Finding a closed form in terms of three coefficient extractors

Recall from the following identity which was proved there: with 1 <k <n

566



We can re-write this as

YT g (= 1
b1 = nfv"]log T—(v .

Working with the sum without the scalar in front,

(204 1)[0*" 1] log - _—— . Z (‘3’!“) (";_bé“) (—1)* (Z) (0 — 1),

k=0

With the second and third remaining binomial coefficient enforcing the
range,

(2n 4+ 1)[v*" ] log . i 5 [2"](1 4 )" Z (—Z/a> (nn—i—_béa) (=1)F2F (v —1)%

k>0

= (2n+ D" log ﬁ [2")(1+ 2)" [w"] (1 + w)" o/

XZ < b/a) 1)k 2k (v — 1)%

k>0

= 20+ DR log T [7](1 + 2)"[u"](1 + )

x (1 — zw(v —1)2)7%e,

The contribution from w is

n+b/arq _ 1\2\—-b/a
res — (1 +w) (1 —zw(v—1)7) .

Now put w/(1 +w) = u so that w = u/(1 — u) and dw = 1/(1 — u)? du to
get

1 1 1
1-— —1?/(1—w))Yr———
tes T et L DY)
~ ves 1 T (- u(l+2(v —1)%))~e
w n+1 1—

zn: ( b/a> )9(1+ 2(v — 1)?)°.

=0
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Reverse expansion and subsequent simplification

Expanding the inner powered term

p=0 p

_ pz: <Z> PP (v — 1)P qff (q B p) (—1)"2"(v — 1)".

r=0

With the extractor in z,

and the extractor in v,

SOEC) ()G

Now observe that

(p1r> (2;14:7?))_1 - (nn!:@:)!_ji(;; 7“>!p)! = (an— p)_l (2n —p—r

Substitute into the sum,

> (Do (M) S (L

p=0 r=0

With the innermost sum,

ER IR (") v

—\r (1+2)

= [2"TP)(1+2) [1 - iz} a—p

m —p—
— sy = (1P ),
n—q

Once more observe that
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<2n—p>1<2n—p—q) n! x (2n —p—q)! <n)<2n—p>1
n n—gq (2n —p)! x (n—q)! q q '
Re-capitulating what we have,

e S () ()% Qs ()

q=0 p=0

Apply the logarithm formula one last time,

3 () sog 2oy

p=0 p
— [0 log —— (v — 1)9(v + 1)7
~ (4
_ 2n+1 —p. 2
[v°" "] log o Z (p) (—1)7Py?P
p=0
q
£
o\p 2n+1—-2p

For the remaining sum we introduce

B q! 1
f(z)_2n+1—2sz—r'

We then have
_ (4 q—p 1
Top 1) ( >( 2 2n+1—2p°

Evaluating with minus the residue at z = (2n 4 1)/2 because the residue at
infinity is zero and residues sum to zero we find

1 1 1 1 1
—aq! - 00— Zglo9tl
2q£[()(2n+1)/2—r 24 2n+1—2q£102n+1—2r
L1 (2n41-29
2 2n+1-2¢ (2n+1)!
:lq!2q+1 1 2"n! (2n+1—2q)!.
2 2+ 1—2q (2n+ 1) 27=4(n — q)!

Multiply by (2n + 1) (2;)
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|22qi (2n —2q)! 924 (n>_1 <2n - Zq)
q! — = .
n! (n—q)! q n-—gq

Substitute into the sum where the two () cancel each other,

e ()

ax- 992q[,49 —b/aj, n—q 1
q af.n—q 1
b Z : e ==

q()

— %[2”](1 _ 42,)—6/(1—1/2

_ Z(_l)n4n<—b/an— 1/2) _ %4n (n + b/z — 1/2)_

This is the claim.
This was math.stackexchange.com problem 4964157,

1.173 MSE 4976413: Riordan number asymptotics from
central trinomial coefficients

Seeking to prove that

26200

q>0
we get for the LHS

w=3 () ()

n — q+1 q
Y6 D200 )
q qg—1 =0 q n+1—2q

= ["F](1 + 2)" (Z) (1121)‘7

On the other hand the RHS is
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We then have

3\n
 ron+l 2m n+1 (1 —z )
Ba—An = [~ DL+ 2+ 27" =~
(n+1)/3] 1
_ 534 (1 —p\nfyntl=3q)____ =
B ungm[ 01— (213
= z z n—29
q=0
L(n+1)/3]

2n—1-3

- 3 (i)
= \4 n+1-3q

Here the second binomial coefficient enforces the upper range and we get

3q

,[ZnJrl](l + Z)anl Z <q> (71)11 (1 - Z)Sq

q=0

=~ 2P = (L )

— n+1 2)n
This is
1 1 2\n
— I‘SS ;ni_’_zm(l +3Z+32’ ) .
Now put z = (=1 + /1 +4w)/2 so that z(1 + 2) = w and dz = 7/71i4u, dw
and 22 = w — z to get
1 1 1+4 1
— res +m(1+3w)”7
w 2 2 V14 dw
1
E— — (14 3w)" —.
5 tes s (14 3w) VITtdw

Next put w/(1+ 3w) = v to get w = v/(1 —3v) and dw = 1/(1 — 3v)? dv to
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obtain

1 1
1+ 4v/(1—3v) (1 —30)%

Note that

!
_1\/1—31} _\/1—31; 11
2V 14w V14t vl1-3vl+w

or alternatively

li
1 [1— 1-
(1-20—3v2) [ —= su) _ [z
2V 14w 14w

Extracting the coefficient on [v™] yields

(TL + 1)Fn - 2nFn,1 - 3(n - ].)Fn,Q = (—2)Fn,1
This will produce the recurrence where n > 2

n—1
F, = m(QF”‘l +3F,_2).
This means that as soon as two positive values appear the remainder of the
sequence will be positive and we have our claim that F;, > 0 or B,, > A,,. Taking
Fy, = F5 =1 will do (values computed from the definition of 4,, and B,,).

This computation made extensive use of OEIS A005043.

Asymptotics

To compute the asymptotics of F;,, we may apply Darboux’ lemma as docu-
mented in Theorem 5.3.1 of Wilf’s generatingfunctionology (page 179, [Wil94]).
To do this we re-write as follows:

1 1—w
Fn — _73n+1 n+1 .
R Uy

The lemma then says that we can expand 1/4/1 4 v/3 as a series in 1 — v,
multiply by /1 —v and extract the coefficient on n + 1 to get the asymp-
totic expansion. Here the first term will suffice, which gives a contribution of
1/v/473 = V/3/2.

We get

572


https://oeis.org/A005043

713n+3/2[vn+1]m _ 13n+3/2(1)n+1( 1/2 )
4

4 n+1
1 1 -1/2
I n+3/2 _1 n+17
83 (=1 n+1( n )

_ 1311-‘,—3/2 1 277, 4—71.
8 n+1l\n

The asymptotics of the central binomial coefficient are classic, being given

by (2:) ~ % so that we find

longspp 1 1 .
8 n+1ymn  8/mn3/?

OP also asked about the relation to (7:;2) We get 27/+/7n/2 = 2"T1/2 /. /7n.
For the ratio we obtain

3n+3/2

3 1
3/2) /2 Z % :
(3/2) 8§ n+1
It follows that F,, > (n’;z), with an initial segment of seven values where

the inverse 1/(n + 1) dominates which is outperformed by the exponential term
(3/2)"*1/2 thereafter.

This was math.stackexchange.com problem 4976413,

1.174 MSE 4980771: Polynomials and the residue at in-
finity

We seek to show that with y and x, variables

n n

. H i + Yg ixk'
1 1

T — X
k=1 g=lg#k ~F 79 g

It holds for y = —1 by inspection. Henceforth suppose y # —1. Consider
the function

1 ~ 4 yx 1 1 z+yz
flz) =2 I1 b= 1] .
z—i—yzp:lz—xp 1+yp=12—a:p

Here we have that

n

res f(z) =z, H w.

Z2=xq LTy — T
p=1,p#q "4 p

Residues sum to zero so the target sum must equal minus the residue at
infinity, which is
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n

11 1/2 + yx, 1 1 14 1+zyz,
e z21—|—yH z—az, e 221+yH 1—zxp,

p=1 p=1

‘We have

/
e T Sl zyz, [ YTy . Tp
- IR — + .
<pl:[1 1zxp> pl;[llfz:cp ;1+zy:cp z;1720%

Set z =0 to get

1 n n n

as claimed.
This proof goes through with the z, being distinct non-zero integers. We
then have equality for x, variables because the original becomes an equality in
. . . . n n
polynomials upon multiplication by [[,_; [T, (zp — zr).
This was math.stackexchange.com problem 4980771.

1.175 MSE 4990784: Kravchuk polynomial and Vander-
monde convolution

Introducing

Vo) = 30 (3) () = 0 D7)

k>0

=[M(1+2)°(1 - 2)"
we seek a closed form of with AT = |mg + my|

n

S<n7m07m1) = Z V<m07 n —mo, Q)V(mhn —m, q)

q=0
where n > 1 and 0 < mg; < n. We obtain

n
Z V(m07n — Mo, N — Q)V(mlvn —mi,n — Q)
q=0

= [w" (1 +w)" (1 —w)™[2"](1+2)""™ (1 —2z)™ Z wizq.
q=0

Here we may extend the sum to infinity due to the coefficient extractors:
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)1+ w)" (1 = )1+ 2 (L = )

The contribution from z is

L res (14 2 (1 - 2y
—— res - _—
w e gt : A 1/w

Here the residue at infinity is zero (just barely) and residues sum to zero so
we may evaluate using minus the residue at z = 1/w, getting

(1+w)» ™ (w—1)™

wn—mi w™m1

[wnJrl](l 4 w)n7m0(1 _ w)mownJrl

mo+mi

= (1) (1w (1 = w)

This is

(=)™ res ) (1+ w)%fm(’fm1 (1 — w)motme,
Note there are no poles at +1 due to the stated boundary conditions. We

evaluate using minus the residue at infinity (residues again sum to zero):
n+1
(=)™ res —5—(1+ 1/w)?n=mo=mi (] — 1 Jap)motm
wow
1
= (~1)™ res g (L4 )0 (w — 1)
— (_1)m0 rgs wn+1 (1 + w)Qn—mg—ml(l _ w)mo—&-ml.
We thus have
mo+mi .

S(n,mo,m1) = %((—1)"’0 + (1)) [w")(1 + w)* (L — w)

Here we clearly obtain a zero value when A~ is odd which is half the claim.

Otherwise we have in terms of AT

(1+w)2 =27 (1 —w)2",

m
(1™ res —

Now put w/(1 +w) = v so that w = v/(1 —v) and dw = 1/(1 — v)? dv to

get
+
(—1)™ res 1 1 (1—2v)2 1
vt (1 —)n—1-A% (1 —y)A+ (1 —v)2
1 1
(1—20)2".

=(=1)m 108 ont 1 (1— v)ntt
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Next put v = (1 — /T — 4u)/2 so that v(1 — v) = u and dv = ——— du to

V1—4u
get

1 At 1

—1)™ res ——+/1 -4y —x

( ) u un+1 m

m At -1 m 1 ¥ 0
= (=1)m res unHm = (=1)me res prEs (1— 4u)A /2—1/2

AT/2-1/2

S Gy ISV

n

This is an acceptable closed form but apparently OP ask for additional
manipulation, which is (use A™/2 < n as well as the fact that now AT is even)

e (M), T ) - Aty

n _ _1\n—At/2 n— AT
_ (_1)mo+A /2 (AJIF//22> (A+/2)!(4}z)7T/2 (s_ Af/2> (n—A+/2)!%(—l)"4"

(_1)A+/2 At 1 (2n—AT) 1 n
TSI <A+/2) (A+/2)!4M+/2 (n— At/2)Inl
Al (20— A 1
(A+/2)! (n — A+/2)In!”

To conclude observe that (—1)moTAT/2 = (_1)3mo/2+m1/2 — (_1)=mo/2+m1/2
to get

= ()™

_ (71)m0+A+/2

At (2n— AT 1
(A+/2)! (n — A+/2)In!”

(-1)A772

This was math.stackexchange.com problem 4990784.

1.176 MSE 5003960: Sum of a certain hypergeometric
term

Supposing we are interested in where k > 2
S
q=0 k

Recall from [1.89] the following identity which was proved there: with 1 <
k<n
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We can re-write this as

m I o (o 1y
b1 = nfv"]log T——(v .

.- m-+
We get for our sum writing (' Tl 2)
> (m+ g+ D" log —— (v~ 1)*
420 -
= Z q[v?] log ! (v —1)F = res log L (v— 1)k Z d
1—w v 1—w vatl
q>m+1 g>m+1

1 1
:—rgslogl_v(v—l)k Z o

1 1 RN
)L (P S
1—v(v ) (vm“l—l/v)

11
vmoy—1) "

This produces two pieces, the first is

= —res log

We find for the derivative

res lo
o> 108 1—v pmtl

— m[v™] log liv(v )kl = (:_;)_1 — (’:_D_l.

and the second

res log (v—1)k2—
v — pm
= [’Um_l] IOg — (U — 1)k_2 = m(m — 1)[’Um_1] log — (1} — 1)k_2

1 m=2y"" 1 m-2\7!
S m—-1\m—k S m—1\k-2 '

Adding the two contributions

() [eaie )= () Fheas] ()

This confirms a result by Markus Scheuer.
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This was math.stackexchange.com problem 5003960.

1.177 MSE 5010757: Triple hypergeometric with two square
root terms

Supposing we are interested in
1 « 2n\ [4n —2k\ [ 2n — 2k
- 71 k 22k
24";:0( )(k>< 2n )(n—kz—i—l)

Doing a complete cancellation on the binomial coefficients we find

(4n — 2k)!
Elx 2n—k)!'x(n—k+1)!x (n—k—1)!
(1 (4n — 2k)!
_< k )(Qn—k)!x(n—l—l)!x(n—k—l)!

(NGOG

Note that here the value & = n+1 will produce zero from the middle binomial
coefficient so we may include it in the sum, getting

oS (") i (2 e

k=0

ntl k
_ n+1 1 2 n+1 _1) 1 2n—k 1
[Z + Z kz < k 24n 2k [U) ] m

. onp o 1 S (n1) (-1
= o= 3 () S

\/

= (14 ) )

1 w n+1
1—
Vl—w[ 1+z}

— [ZnJrl}(l + Z)nil[ﬂ)gn} 11_ [1 — w4+ Z}nJrl )

g

The contribution from z is
res —— 1 (142" —w+ 2"
z pnt2 ’
Now put z/(1 + 2) = u so that z = u/(1 —u) and dz = 1/(1 — u)? du to get
1

1 n
res ——— (1 —u)?[1 —w +u/(1 —u)] +1m

w ynt2
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1 1
=res ———[l —w+uw

]n+1
w ynt2 (1 _ u)n :

Here the residue at infinity is zero and we may evaluate using minus the
residue at © = 1 which requires the Leibniz rule:

(n—1)
1 1 )
— | =1 - n+1 _
(n—1)! <un+2[ w + uw] ) T
n—1 _
-1 —1)4 2)q
X Z (n . )%(n + 1)@[1 — w4+ uw]"H—("—l—q)wn—l—q.

q=0

Now put u =1 to get

n+1 n+1l4+q\/n+1\ ,_;_
Z (e

With the extractor in w,

n+1 n+1+4+q\/n+1 ntl4q 1
I R [

—w

Now observe that (this also gives the right answer when ¢ = 0)

<n+; +q> <n;11/i q) - Mﬁ(—l/z—p)

- M,ﬁo“” 2 pﬁf_l/ o
(e - () (57)

We therefore have for the target sum

LS

At last apply Chu-Vandermonde to get
—1/2\ [—1/2
n+1/\n—-1)"
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This was math.stackexchange.com problem 5010757,

1.178 MSE 4989609: An inverse binomial coeffcient

Seeking to find a closed form of

2n—1 op —1
> o)
k=1

Recall from [1.89] the following identity which was proved there: with 1 <
k<n

1/n\ " 1
- — [y -1 n—k.
(1) =g =)

We can re-write this as

—1
1/n—-1 N 1 h
- = 1 — 1) ",
n(k1> 0"} log ——— (v — 1)

") we obtain

Using (23_

2n—1

1
2n+1 k—1 k
(2n+ 1)w*" ] log — > (=DF k(v —1)
k=1
1 1
_ 2n+1 2n—1 _1\k—-1 o k _k
= (2n+ D" log T[22 — > (1) h(v = 1)Fz
k>1
— (27’L + 1)[1}2n+1} log [22"_1] 1 (U — 1)Z
1—w 1—2z(1+(v—=1)2)%
The contribution from z is
1 1 (v—1)z
res ——
z 221 —z(14(v—1)2)2
1 1 1 1

v—1'% 201 1—z(z+1/(v—1))2

Here the residue at infinity vanishes and residues sum to zero, so we may
evaluate with minus the residues at z =1 and at z = —1/(v — 1), getting first

1 -1
U~ 2n+ 1) log

9 1 2n+11 -
(2n+ 1™ ]log 7—-— T

(v—1)

_2n+1(2n+2 _1_ 2n +1
2 +3\2n+1) (2n+2)(2n+3)’

and second
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2n—1 1 1 1
22n 1 — 4 22n—1 (1 — 2)2 = 1/(v—1) ’

1 I
z2n=11 _ »

In terms of v,

1 1
v—1lv—1

(2n + 1)[v*" " log

x[-@2n—1)(v—-1)*"(v—1)/v— (v —1)>""" (v —1)*/0*] .

This gives two pieces, the first is

—(2n 4+ 1)(2n — D[] log v%l(v ~ )

-1
1 2n+1 2n—1

= —@2n+1)(2n -1 S
(2n+1)(2n )2n+2( 1 ) M + 2

and the second

1
—(2n + 1)[v*" 3] log 71(1) —1)%"
v —

1 /2n+2\" 1 1
- n41)— -9 .
(2n+ )2n+3< 2 ) 2n+22n+3

Adjust the sign and collect everything to get

2n + 3 +2n—1_ 2Zn.  n
(2n+2)(2n+3) 2n+2 2n+2 n+1

This was math.stackexchange.com problem 4989609.

1.179 Both types of Stirling numbers and the logarithm
identity

We start from

n—k . .
n _ n—147 2n — k n—k+j
:_1nk —1) .
R Yl HI S [ s S g
The RHS is
"i“( l)j(2n—1—k:—j)<2n—k>{2n—2k—j}
= 2n — 2k — 3 J n—k—j
We have with the standard Stirling set number EGF
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n—k

> (% 2—kk_jj) T L e e

=0 (n—Fk—j

222k Z 2n — 1 —k=j)! <2n - k) i (exp(z) = 1)+

j=0 - ! J (n—k—j)!
@L J2n-2k = 29 (exp(z) — 1)k
G ;0 ok —jj! (n—k —j)!
@k ook ane 1 = j ij (exp(z) — 1)n—k=J
B e e ]
n—=k
= m[ 2n_2k][ e k} log 1 _1 " Z(:) (n ; k) (—1)jwjzj(exp(z)—1)"_k_j
= (k_(?)lznk)_'k)l[ 2n—2k] [w2n—k] log _1w [—’LUZ + exp(z) _ 1]n—k
g (- e ele) -1
Expanding the powered term
(27’l — k)' 2n—2 2n— 1
i e M o

x ni (” - k) (—1)%(w — 1)729(exp(z) — z — 1)" 4,

Recall from MSE 4316307 the following identity which was proved there:
with 1 <k <n

. (Z)  log o

We can re-write this as

1/n-1\"" 1
n<k;—1> —[v]logl_

-k
—w-1)
Apply to our sum to find

(2n—k—1)!
(k= 1)l(n —k)!

[ 2n—2k]
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=\ q q
1 2n—2
R ‘
n—k
> (QTE;_]“,:;)?)’< 1) (exp(z) — 2 = 1)" 747
(”—1)! 2n—2
- (k—l)![ ’
o —k—1-¢g
(=1)929%(exp(z) — 2z — 1) k—q
< (0
_( 1)nfk Ez:ii:[ 2n 2k]
n—k
x (”ni?}> (—1)92" 59 (exp(2) — 2 — 1)".
q=0

Now observe that in the sum the power of z starts at 2"~ *%¢ which means
that when ¢ > n — k we get zero from the coefficient extractor and may extend
q to infinity. This yields

1
(14 (exp(2) =z = 1)/2)"

n

n—k]

_(_ n—k(n_l)! zn—k Z
= e

Note that there is no pole at zero here. We have for the extractor,

nep (m—1)! 1 z"
(=) (k— 1)1 'S 2n=F+1 (exp(z) — 1)n”

Now we put exp(z) — 1 = w to get (these are all formal power series)

g (n—1)! xlogk_1(1+w) 1
(=1 k(k—l)! o wn 1+w
n—1)! ogh~1 w
(1) logh (1 -+ w) = T "] log* ——

We have obtained the standard Stirling cycle number EGF and may con-
clude. This identity is from French Wikipedia on Stirling cycle numbers. See
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also [LL6l

1.180 MSE 5030526: A triple sum identity

Starting with the definition

=X () 0)

we seek to prove that

1. » 3. 1
—§j(j —Dvj_1 44— 1)v; + §J(J +1l)vjp = _ik(k +1)vj_1.

We get in terms of an extractor,

S () ()

m+j>
J

= (PG D e

m>0
1
(1+2(1+z))i+t
1
(14 2(1+2))7+t

= (=DM A+ 2)k (1 + 2)7

= (DI )

Using the residue at zero,

1
(14 21+ 2))+1"

Now put z/(1 + 2) = u so that 2 = u/(1 —u) and dz = 1/(1 — u)? du to get

4 1 .
(—1)k=3 res W(l + z)kt+d

(—1)%77 res ! L ! !
W = 0B (L a/( = w)/(1 = 0) 1 (1= w)?
; 1—u 1
— (—1)*7 res
= (=1 o gk (1 —u+u?)itt
— (k] 1+u

(1+u+ u2)itt’
With the LHS of the proposed identity we find first,
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1 . 14+u
LTRSS B N e s N
310 = Dt s
and second,
. i 1+u . .
3G — D" ]]m =j(j — D
and third
3 1+u 3

~j(j + D]

2 (I4+u+u2)it2 2

Adding the distinguishing features,

3+ D u?

1+u

(1 + u+ u2)itt

1+u
(14 u+u2)it+2’

2

1 U 3 u
P=—jG-D+jG-1)——— + S+ 1)

U =D+ =D + iU+ Vg

On the other hand for the RHS we have

1 o1 S I e

27‘3(1‘3"‘1)1’]71— 2k(k+1)[u ](1+u+u2)j

_ 1 kely g LFu

R S AP E

= 2k[u]<u (1+u+u2)j>

_,l[uk—l] ujHiu :

) (14 u+wu2)

1+u 1+u

=50 (v (earay) 2 (e

1+u 1+u

1+u

)' 5 — 1w (m))

1+u

= _%[um*q <u2 (W)” + 2ju (m) +3G—1) (W))

1+u
14+ u+u?)

— W]

Q.

Proving that P = @ is a matter of entering both into a CAS, doing the
differentiation and verifying that the result is the same. This is a constant time

operation in k and in 7 and we may conclude.
This was math.stackexchange.com problem 5030526.

1.181 The logarithm identity and a triple hypergeometric

We seek to evaluate
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z": W) (e L (nAR) (nr bk -
k 2k k k '
We have
n+k\ (n+b+E\ T (k)X (n4+b)!  (n4b) nrbtk\ ]
k k Conlx(nd+b+k) U n b '
Recall from the following identity which was proved there: with 1 <

k<n
1/m\ " 1
(1) v

")

(v—1)"k,

We get for our sum without the scalar ( in front

bi (Z)(_l)k;kll)(n"'z-i-k)l

= n>(1)k 1 (v—1)k

1 1 .
:brssmlogm@fl) Z<k
k=0

1 1 n v—11"

_1, Lo, 1
= b 768 S 0 T
1 1 1

= ﬂb res NOTERE] log -

(v —1)"(v+1)"

n

1 . 1 1 n ek 2k
= 2717 108 ento+1 log 1—v Z (k)(_l) v
k=0

1~ (n - 1
2nbz(k>( 2 2n +b— 2k

k=0

Introducing

n

1 1
=n!
1) n2n+b72szfq
q=0

we have that
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res f(2) = 2n—|—b 2ka 0, H k:—q

=k+1

— n! i( l)n ki n ( )nfk;
S 2n+b—2kk! (n—k)!  \k 2n +b— 2k

so we can evaluate the sum using minus the residue at z = n + b/2 and get

1 n+b/2\ "
ol ] ——— =~
2n'ql;[0n+b/2—q 2n'(n+1)!(n+l)

1 n+b/2-1\"
T on+b n

‘We obtain as our result

1 b n—+b\/n+0b/2—-1\"
2n2n+b\ n n
This problem has not yet appeared at math.stackexchange.com. The source

is the discussion in section 5.6 “hypergeometric transformations” from Concrete
Mathematics by Graham, Knuth and Patashnik, [GKP89].

1.182 MSE 5038213: A iterated sum identity
We seek to show that

S5 (L)) e

=0m,;(1+P)".
We get for the LHS

s S (7)) S () )

b=

With the innermost sum,

e () ()

= ()

b=0
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=["](1+2)"""(1 - zP)".
We will suppose that n > j. Continuing with the second sum,

(D))

a=0
> ()
=[w" "1+ w)""(1 - wP)™.

Substituting into the outer sum,

27791+ 2)" [w")(1+w)" (1~ wP)" Z<—”’”(<11_+f>)rr“’r
r>0

Here we have used the fact that the extractor in w enforces the upper limit
of the range in r as n. We find,

1
1+w(l—2P)/(1+2)

1
14+ 2z+w—wzP’

["](1 + 2)" [w"™) (1 + w)" " (1 — wP)™

= "1+ 2) (1 w) (= wP)"

The contribution from w is

1
14+2+w—wzP’

Now put w/(1 +w) = u so that w = u/(1 — u) and dw = 1/(1 — u)? du to
get

1 n—m m

1 1
1+z4+u(l—2P)/(1—u)(1—u)?

— u)m+1(1 —uP/(1—u))™

res g (1

= res

es —(1—u(l+P))"

1
14+ 2)(1—u)+u(l—=zP)
1
1+z—uz(1+P)’

= Tres

es ——(1—u(l+P)"

Collecting everything we have,

1
1—uz(l1+P)/(1+2)

[2"7)(1 4 2)" res #(1 —u(l+P)™
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Actually doing the extraction on wu,

P14 27 S (- 1)9(1 + P (m) W.

q=0

Supposing that n > m this yields where we must have n—q¢ <n—jorgq > j
due to the extractor in z

(1+P)" i(_m (’;) [2979)(1 + 2)? = (1 + P)" i(_nq (m) <q)

q=J q=j

Observe that

(7:;) (j) " (m—q)! xn;: <@ (T) (ZL_J]>

We find

= (-1’1 +P)" (T) m_j(_Dq (mq_j)

q=0
— (~1)I(1 + P)" (T) G-

With the remaining factor (—1)7 in front and the Kronecker delta we may
set m = j to obtain

14+ P)"pm ;.
as desired. This is the conclusion. Boundary conditions are n > m, j.

This was math.stackexchange.com problem 5038213,

1.183 MSE 5041394: Recurrence for a triple hypergeo-
metric

We seek a recurrence for

S w ol () [ C) [ G|

It is conjectured that

Q(n;a,b) = (Z) <’;> +Q(n—Lia—1,b) +Q(n—1;a,b—1).

589


https://math.stackexchange.com/questions/5038213/

We get with the standard extractors

[2°](1 + 2)" [w”](1 + w)" Z Z (p B q) (1 +Z:)p+q (1 +u;j)p+q'

p>0g50 v 4

Here we have extended the sums to infinity because the coefficient extractors
enforce the upper range. Continuing,

(1 + 2) )1+ ) 3 1 Z<p+q> 1 wd

2ot (twp 2=\ q )T+ (1 +w)

a n n 2P 1 1
=[2"](1+ 2) [wb]<1 +w) pgo L+ 2)P (L+w)P (1—w/(l+2)/(1+w)r

— 4 2) ]+ )t Y zp(“ AL+ w)

+1
= 1424 zw)P

1 1

=[]0+ Z)n+1[wb](1 + w)n+1 l+z4z2wl—2z/(1+ 2+ 2w)

= )0+ 2" )1 )

‘We now evaluate

Q(n;a,0) —Q(n —1;a—1,0) = Q(n — 1;a,b— 1).
The first term gives
11

1 1 1
—(1 " —(1 " ——(1 1 .
z“( +2) rgswb( +w) 1—|—zwzw( +2)(1 +w)

res
z
The second term has

1 1

res —.
z 1+ zww

1 n 1 n
Z—a(l +2) res E(l +w)

At last the third term yields
1 1
142wz’

We actually compute the difference of the terms not being shared which
turns out to be

1 1
res ;(1 +2)" res J(l +w)"

1 11 1 1 11
—(1+2)l+w)————-| =-——.
l+zw |zw w oz zZw

Activating the extractors,

590



1 11
_ 1 n _ 1 n -
res — (1+2) res — (1+w)

= [2*)(1 + 2)" ") (1 + w)" = (Z) (Z)
This is the claim.

This was math.stackexchange.com problem 5041394.

1.184 MSE 5070518: Equality from a paper by McKay

We seek to verify polynomials in v

n n—1

2n\2n — 2k +1 & 2n\n—k
E ST 1) = E A
k_g(k)%kﬂ(” ) =v ( )

k
k=0

(v —1)*.
Starting the computation we get for the first one

n

n

P(v)2(2n> 2n — 2k + 1

= \k)2n—k+1 (v—1)*
:é(f)w_l)k_;(2:>%_12H(v_1)k

kz; ()=~ ; ()=~

1

We now examine the coefficient on [v%] where 0 < ¢ < n by construction
We get for the first piece

[v?][z"]

1_2(1—2—&—1)2)2”

— "] (?) 29(1 = 2yntoa <2n> (_1ys <2n —1- q).

q n—q
We have for the second piece

(1420 = 1) = [o7][2"]

00— D" (L 20 = 1) = (o = D[t (1 - 2 4 02"

1—2
) e ) E e o

()G G (o)

q n—1-gq
‘We have shown that

991


https://math.stackexchange.com/questions/5041394/

e = [() (20 ) - () GE) - () G

We continue with

Qv) = vg (2;)71;% — D,

and do another coefficient extraction on two pieces, the first is (here we may
take ¢ > 1 by inspection as [v°]P(v) = 0 same as Q(v))

oI (1 2 = 1) = e

The second is

(1—z+wv2)™

[vqmg <2:_11> (v —1)% = 2T (v — 1) :Z_:_Q <2”k 1) (v —1)*

0

=2[" (v — 1)[,2”—2]%(1 +2(v— 1))

=2 (v — 1)[z" 2] (1—z+wz)* !

1—=2

L (2?1 _21) [ZTL—2]Z‘1_2(1_2)2”_1_(‘1_2)_1—2 (27’L —11> [zn_Q}Zq_l(1—2)2n_1_(q_1)_1
q- -

=2y (G5) () e (G55

‘We have shown that

R I ) L

)|

o

Now we just need to verify that these are the same. Dividing by (—1)”*‘1(

we get from P(v)
M n 2n 2n\ n—q
q)2n—q \g—1 q)2n—q
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and from Q(v)
2n 9 2n —1 _o 2n—1\ n—q
q—1 q—2 g—1/)2n—q
Next divide by (Qq") for the new pair

n q n—gq
2n—q 2n+1—q 2n-—gq

and

q o, alg—1) g n—g
2n+1—gq 2n(2n +1 — q) 2n2n —q

The rest is certainly feasible by hand or may be entrusted to a computer
algebra system and we may conclude.
This was math.stackexchange.com problem 5070518.

1.185 MSE 5076198: A sixtuple hypergeometric
Re-writing the identity from the MSE source we obtain

> GO R =060
Lo\ \e c r+p/\r+gq at+b+c ) \a)\b)\c/)

The contribution from p is

Z c a L+p+qg+r
So\p/\a—r—p a+b+c

c
p

S (ER T CER L) B

)z”(l + w)P
p=>0

= 771+ 2) [t (L w) T (L4 2(1 4 w))

Continuing with the contribution from ¢ we find

S ()60 Jorer
=P+ )" (Z) vI(1 4 w)?

q=0
= [vb_r](l +0)°(1 +v(1 4+ w))e.

Concluding the first step with the contribution from r and collecting every-
thing,
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[w* Y1+ w) [2°](1 4 2)* (1 + 2(1 + w)) "] (1 + v)°(1 + v(1 + w))°
1
% (1 —20(1 +w))ett”

The contribution from v is

1
(1 — 20(1 +w))ett’

Now put v/(1+v) = u so that v = u/(1 —u) and dv = 1/(1 — u)? du to get

1 c
res oy (1+0)(1 +v(1 +w))

u))c 1 1
(1= za(l +w)/(L = w)* (1— )

1
(1 —u(l+ 2+ zw))ctt’

1
res oy (IT—-w)(1+u(l+w)/(1-

= 1
ey (1 +ww)

The contribution from z is

1

1 C
res — (14 2)%(1 4 2(1 + w)) A=tz 5 20))

z zatl

Repeat the substitution with z/(1 + z) =t to get

1 1

1 c
res oy (1=) (1+¢(1+w)/ (1)) (1 —u(l+t/(1—t) +tw/(1 — 1)L (1 —t)2

1
(1—t—u(l+tw))ett’

We have succeeded in reducing the number of terms. We now re-capitulate
what we have,

= res —oy (1+ tw)°

1
(1 —u—t—utw)ett

[w P+ (1 4+ w) [t9] (1 + tw)°[u?](1 + ww)®

Extracting all coefficients,

o) (1 w) [ (1 4 ) c+1Z(b p)wb,,(c;p> m

- p>wb-p<czp> (e ()
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SIS )

q
Next observe that

<C+z+q>(o+£+Q>:(C+pﬂxq!f&—c—p—Q):(ﬁ)<i+;>

Switching sums we find

2011 ] g [ A [

q=0 p=0

Continuing we note that
c+p\({—q\ (£ —q)! (l=q\(l—c—q
P c+p) pxcdx{l—c—p—q)! \ ¢ P
to get
-GS0
a)\ c b—p)\a—q p )

q=0 p=0

Finally refactor a third time

to obtain ) e (O0))
55065

q=0 p=0

Good news! We have obtained the first factor. This leaves (i) (i)
Re-writing the inner sum in terms of extractors,

2 2)[p? 1 )¢ l—c—q o .
11+ 2L+ >Z( s )y
= [2](1+ 2)° ] (1 +0)°(1 + 2(1 +v)) 0.
The extractor in v enforces the upper limit of the outer sum and we get
[2)(1+ )1+ 0)° [0+ (1+ 2(1+0))]
= [2"](1 + 2)° (1 4+ v)°(1 + 2) (1 + v)*~°
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= [2°J(1 +2) o)1 + )" = <§) (2)

This concludes the argument.
This was math.stackexchange.com problem 5076198l
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