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The Egorychev method is from the book by G.P.Egorychev [Ego84]. We
collect several examples, the focus being on computational methods to produce
results. Those that are from posts to math.stackexchange.com have retained
the question answer format from that site. The website for this document is at
this hyperlink:

https://pnp.mathematik.uni-stuttgart.de/iadm/Riedel/egorychev.html.

The crux of the method is the use of integrals from the Cauchy Residue
Theorem to represent binomial coefficients, exponentials, the Iverson bracket
and Stirling numbers, Catalan numbers, Harmonic numbers, Eulerian numbers
and Bernoulli numbers. There is a tutorial at the following article: [RM23].

We use these types of integrals:

• First binomial coefficient integral (B1)(
n

k

)
=

1

2πi

∫
|z|=ε

(1 + z)n

zk+1
dz = res

z

(1 + z)n

zk+1

where 0 < ε < ∞.

• Second binomial coefficient integral (B2)(
n

k

)
=

1

2πi

∫
|z|=ε

1

(1− z)k+1zn−k+1
dz = res

z

1

(1− z)k+1zn−k+1

where 0 < ε < 1.

• Exponentiation integral (E)

nk =
k!

2πi

∫
|z|=ε

exp(nz)

zk+1
dz = k! res

z

exp(nz)

zk+1

where 0 < ε < ∞.
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• Iverson bracket (I)

[[k ≤ n]] =
1

2πi

∫
|z|=ε

zk

zn+1

1

1− z
dz = res

z

zk

zn+1

1

1− z

where 0 < ε < 1.

• Stirling numbers of the first kind[
n

k

]
=

n!

k!

1

2πi

∫
|z|=ε

1

zn+1

(
log

1

1− z

)k

dz =
n!

k!
res
z

1

zn+1

(
log

1

1− z

)k

where 0 < ε < 1.

• Stirling numbers of the second kind{
n

k

}
=

n!

k!

1

2πi

∫
|z|=ε

1

zn+1
(exp(z)− 1)

k
dz =

n!

k!
res
z

1

zn+1
(exp(z)− 1)

k

where 0 < ε < ∞.

The residue at infinity is coded R.
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List of identities in this document

section 1 B1

n∑
k=0

(−1)k
(
n

k

)(
n+ k

k

)(
k

j

)
= (−1)n

(
n

j

)(
n+ j

j

)
.

section 2 B1B2

r∑
k=0

(
r − k

m

)(
s+ k

n

)
=

(
s+ r + 1

n+m+ 1

)
.

section 3 B1

2m∑
q=0

(−1)q
(
p− 1 + q

q

)(
2m+ 2p+ q − 1

2m− q

)
2q = (−1)m

(
p− 1 +m

m

)
.

section 4 B1

⌊m/2⌋∑
k=0

(
n

k

)
(−1)k

(
m− 2k + n− 1

n− 1

)
=

(
n

m

)
.

section 5 B2

n∑
k=0

k

(
2n

n+ k

)
=

1

2
n

(
2n

n

)
.

section 6 I1
n∑

k=0

2−k

(
n+ k

k

)
= 2n.

section 7 B1

n∑
m=0

(
n

m

) n∑
k=0

1

a+ bk + 1

(
a+ bk

m

)(
k − n− 1

k

)
=

(
n

m

)
.

section 8 B1, R
n∑

k=0

(
2n+ 1

2k + 1

)(
m+ k

2n

)
=

(
2m

2n

)
.
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section 9 B1E

(−1)p
p∑

q=r

(
p

q

)(
q

r

)
(−1)qqp−r =

p!

r!
.

section 10 B1

n∑
k=0

(
n

k

)
2n−k

(
k

⌊k/2⌋

)
=

(
2n+ 1

n

)
.

section 11 B1

Verify that f1(n, k) = f2(n, k) where

f1(n, k) =

n∑
v=0

(2k + 2v)!

(k + v)!× v!× (2k + v)!× (n− v)!
2−v

and

f2(n, k) =

⌊n/2⌋∑
m=0

1

(k +m)!×m!× (n− 2m)!
2n−4m.

section 12 B1

If

T (n) =

⌊n/2⌋∑
k=1

(−1)k+1

(
n− k

k

)
T (n− k)

for n ≥ 2 then

T (n) = Cn−1 =
1

n

(
2n− 2

n− 1

)
.

section 13 B1

n∑
k=0

n∑
l=0

(−1)k+l

(
n+ k − l

n

)(
k + l

n

)(
n

k

)(
n

l

)
= (−1)m

(
2m

m

)
.

section 14 B1

2m+1∑
k=0

(
n

k

)
2k
(

n− k

⌊(2m+ 1− k)/2⌋

)
=

(
2n+ 1

2m+ 1

)
.

section 15
n∑

k=m

(−1)n+k 2k + 1

n+ k + 1

(
n

k

)(
n+ k

k

)−1(
k

m

)(
k +m

m

)
= δmn.
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section 16 B1

n∑
k=0

(
n

k

)3

=

n∑
k=⌈n/2⌉

(
n

k

)2(
2k

n

)
.

section 17 ∑
s

(
n+ s

k + ℓ

)(
k

s

)(
ℓ

s

)
=

(
n

k

)(
n

ℓ

)
.

section 18 B1

⌊n/3⌋∑
k=−⌊n/3⌋

(−1)k
(

2n

n+ 3k

)
= 2× 3n−1.

section 19 B1

ρ∑
k=0

(
2x+ 1

2k

)(
x− k

ρ− k

)
=

2x+ 1

2ρ+ 1

(
x+ ρ

2ρ

)
22ρ.

section 20 B1B2

min(a,b)∑
k=0

(
x+ y + k

k

)(
x

b− k

)(
y

a− k

)
=

(
x+ a

b

)(
y + b

a

)

section 21 B1I
n∑

q=0

(
n

2q

)(
n− 2q

p− q

)
22q =

(
2n

2p

)
.

section 22 B1R

n−1∑
k=0

(
k∑

q=0

(
n

q

)) n∑
q=k+1

(
n

q

) =
1

2
n

(
2n

n

)
.

section 23 B1

(1− x)2k+1
∑
n≥0

(
n+ k − 1

k

)(
n+ k

k

)
xn =

∑
j≥0

(
k − 1

j − 1

)(
k + 1

j

)
xj .
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section 24 B1

⌊n/3⌋∑
k=0

(−1)k
(
n+ 1

k

)(
2n− 3k

n

)
=

n∑
k=⌊n/2⌋

(
n+ 1

k

)(
k

n− k

)
.

section 25 B1

⌊(m+n)/2⌋∑
k=0

(
n

k

)
(−1)k

(
m+ n− 2k

n− 1

)
=

(
n

m+ 1

)
.

section 26 B1

n∑
k=0

(
n

k

)(
n+ k

k

)
Fk+1 =

n∑
k=0

(
n

k

)(
n+ k

k

)
(−1)n−kF2k+1.

section 27 B2R ∑
p,q≥0

(
n− p

q

)(
n− q

p

)
= F2n+2.

section 28 B1I
n∑

r=0

(
r + n− 1

n− 1

)(
3n− r

n

)
=

1

2

((
4n

2n

)
+

(
2n

n

)2
)
.

section 29 B1

n+1∑
r=1

1

r + 1

(
2r

r

)(
m+ n− 2r

n+ 1− r

)
=

(
m+ n

n

)
.

section 30 B1 ∑
k≥0

(
n+ k

m+ 2k

)(
2k

k

)
(−1)k

k + 1
=

(
n− 1

m− 1

)
.

section 31 B1∑
k

(
tk + r

k

)(
tn− tk + s

n− k

)
r

tk + r
=

(
tn+ r + s

n

)

section 32 B1

n−2∑
q=0

n∑
k=1

(
k + q

k

)(
2n− q − k − 1

n− k + 1

)
= n×

(
2n

n+ 2

)
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section 33 B1I

l∑
q=0

(
q + k

k

)(
l − q

k

)
=

(
l + k + 1

2k + 1

)
,

section 34 B1I
n∑

k=0

k

(
m+ k

m+ 1

)
=

nm+ 2n+ 1

m+ 3

(
n+m+ 1

m+ 2

)
.

section 35 B1IR
n∑

k=0

2n−k

(
k

⌊k/2⌋

)
= −2n + (2n+ 2 + (n mod 2))

(
n

⌊n/2⌋

)
.

section 36 IR
m−1∑
q=0

(
n− 1 + q

q

)
xn(1− x)q +

n−1∑
q=0

(
m− 1 + q

q

)
xq(1− x)m = 1

where n,m ≥ 1
as well as

n∑
k=0

(
m+ k

k

)
2n−k +

m∑
k=0

(
n+ k

k

)
2m−k = 2n+m+1.

section 37 B1

n∑
k=0

(−1)k
(
p+ q + 1

k

)(
p+ n− k

n− k

)(
q + n− k

n− k

)
=

(
p

n

)(
q

n

)
.

section 38 B1

n∑
k=0

(
n

k

)(
pn− n

k

)(
pn+ k

k

)
=

(
pn

n

)2

.

section 39 B1

min{m,n,p}∑
r=0

(
m

r

)(
n

r

)(
p+m+ n− r

m+ n

)
=

(
p+m

m

)(
p+ n

n

)
.
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section 40 B1

l∑
p=0

p∑
q=0

(−1)q
(
m− p

m− l

)(
n

q

)(
m− n

p− q

)
= 2l

(
m− n

l

)

section 41 E
n∑

q=0

(n− 2q)k
(

n

2q + 1

)
=

k+1∑
q=0

(
n

q

)
2n−q−1 × q!×

{
k + 1

q + 1

}
− 1

2
× n!×

{
k + 1

n+ 1

}
.

section 42 B1B2R
n∑

q=0

q

(
2n

n+ q

)(
m+ q − 1

2m− 1

)
= m× 4n−m ×

(
n

m

)
where n ≥ m.

section 43 B1B2R
n∑

q=0

q

(
2n

n+ q

)(
m+ q − 1

2m− 1

)
= m× 4n−m ×

(
n

m

)
where n ≥ m.

(different proof).

section 44 B1EIR

With

bnk =

k∑
l=1

(−1)k−lln
(
n+ 1

k − l

)
and we

show that bnk = bnn+1−k where 0 ≤ k ≤ n+ 1.

section 45 B1B2

Suppose we have a random variable X where

P[X = k] =

(
N

2n+ 1

)−1(
N − k

n

)(
k − 1

n

)
for k = n+ 1, . . . , N − n and zero otherwise.
We seek to show that these probabilities sum to one and compute the the

mean and the variance.
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section 46 B1

Suppose we have the Narayana number

N(n,m) =
1

n

(
n

m

)(
n

m− 1

)
and let

A(n, k, l) =
∑

i0+i1+···+ik=n
j0+j1+···+jk=l

k∏
t=0

N(it, jt + 1)

where the compositions for n are regular and the ones for l are weak and we
seek to verify that

A(n, k, l) =
k + 1

n

(
n

l

)(
n

l + k + 1

)
.

section 47 B1

Same as previous, generalized.

section 48 B1

(−1)m
(n+m)!

(n−m)!

(
d

dz

)n−m

(1− z2)n = (1− z2)m
(

d

dz

)n+m

(1− z2)n

section 49 B1

rk(r + n)! =

k∑
m=0

(r + n+m)!(−1)k+m
k−m∑
p=0

(
k

p

){
k + 1− p

m+ 1

}
np.

section 50 B1

n∑
k=0

k∑
q=0

(−1)q
(
k

q

)(
n− 1− qm

k − 1

)
= [zn]

1

1− w − w2 − · · · − wm
.

section 51{
n

m

}
=

n∑
k=m

(
k

m

) k∑
q=0

(−1)n
{
n+ q −m

k

}
(−1)k

[
k

q

](
n

n+ q −m

)

section 52 B1

m∑
k=0

q

pk + q

(
pk + q

k

)(
pm− pk

m− k

)
=

(
mp+ q

m

)
.
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section 53 B1B2

n−1∑
k=q

q

k

(
2n− 2k − 2

n− k − 1

)(
2k − q − 1

k − 1

)
=

(
2n− q − 2

n− 1

)
.

section 54
n∑

m=0

(−1)m
(
2n+ 2m

n+m

)(
n+m

n−m

)
= (−1)n22n.

section 55
m∑

k=0
k odd

(
2n

2n− k

)(
2m− 2n

m− k

)
=

1

2

(
2m

m

)
+ (−1)m+122m−1

(
n− 1/2

m

)

section 56
n∑

j=0

(−1)n+j

[
n

j

]{
m+ j

k

}
=

n!

k!

k∑
q=0

(
k

q

)(
q

n

)
(−1)k−qqm.

section 57

[zk]
1√

1− 4z

(
1−

√
1− 4z

2z

)n

=

(
n+ 2k

k

)

section 58.1
m−1∑
k=1

sin2q(kπ/m) = m
1

22q

(
2q

q

)
+m

1

22q−1

⌊q/m⌋∑
l=1

(
2q

q − lm

)
(−1)lm.

section 58.2 B1

⌊n/p⌋∑
j=−⌊n/p⌋

(−1)j
(

2n

n− pj

)

= [zn]

⌊p/2⌋∑
q=0

p

p− q

(
p− q

q

)
(−1)qzq

−1 ⌊(p−1)/2⌋∑
q=0

(
p− 1− q

q

)
(−1)qzq

section 58.3 B1

n∑
k=0

(
2k + 1

k

)(
m− (2k + 1)

n− k

)
=

n∑
k=0

(
m+ 1

k

)
.
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section 58.4∑
m≥0

mm+n z
m

m!
=

1

(1− T (z))2n+1

n∑
k=0

〈〈n
k

〉〉
T (z)k

section 58.5 ∑
n≥0

{
n+ r

n

}
zn =

1

(1− z)2r+1

r∑
k=0

〈〈 r
k

〉〉
zk

section 58.5.1∑
n≥0

[
n+ r + 1

n+ 1

]
zn =

1

(1− z)2r+1

r∑
k=0

〈〈
r

r − k

〉〉
zk

section 58.6(
q − j + k

k

)
+(−1)k

(
j

k

)
=

⌊k/2⌋∑
ℓ=0

(
q/2 + ℓ

2ℓ

)((
q/2− j + k − ℓ

k − 2ℓ

)
+

(
q/2− j + k − ℓ− 1

k − 2ℓ

))

section 58.7
k∑

j=0

(
2j

j + q

)(
2k − 2j

k − j

)
= 4k −

k∑
j=k−q+1

(
2k + 1

j

)

section 58.8
n∑

k=0

(
2n+ 1

2k + 1

)(
m+ k

2n

)
=

(
2m

2n

)

section 58.9
n∑

q=0

(
q

n− q

)
(−1)n−q

(
2q + 1

q + 1

)
= 2n+1 − 1

section 58.10
n∑

k=0

{
n+ k

k

}(
2n

n+ k

)
(−1)k

k + 1
= Bn

(
2n

n

)
1

n+ 1

section 58.11

With f(z) the OGF and g(w) the EGF of a sequence we have

g(w) =
1

2πi

∫
|z|=ϵ

f(z)

z
exp(w/z) dz
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section 58.12
r∑

q=0

(−1)q+r

[
r

q

]{
n+ q − 1

k

}
=

(−1)k−r

(k − r)!

k−r∑
p=0

(
k − r

p

)
(−1)p(p+ r)n−1

section 58.13
n∑

k=0

(
n

k

)(
k/2

m

)
=

n

m

(
n−m− 1

m− 1

)
2n−2m

section 58.14

[zn] log2
2

1 +
√
1− 4z

=

(
2n

n

)
(H2n−1 −Hn)

1

n

section 58.15
n∑

k=0

[
n+ 1

k + 1

]
Bk =

n!

n+ 1

section 58.16
K∑
q=0

(−1)q
(
2n+ 1− q

q

)(
2n− 2q

K − q

)
=

1

2
(1 + (−1)K)

section 58.17
n∑

k=0

(−1)k
(
n+ 1

k + 1

)[
1

fk(x)

](n)
fk+1(x) = [f(x)](n)

section 58.18

2n
(
2r

r

)(
2r + n

r

)(
r + n

n/2

)
=

n∑
k=0

(−1)k
(
k + r

r

)(
2k + 2r

k + r

)(
n− k + r

r

)(
2n− 2k + 2r

n− k + r

)

section 58.19[
n

m

]
= (−1)n−m (n− 1)!

(m− 1)!
[zn−m]

(
z

exp(z)− 1

)n

section ??

2n−m3m = (−1)n
n∑

k=0

(−1)k
(
m+ 3k

k

)(
n+ 2k

n− k

)
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1 Introductory example for the method (B1)

Suppose we seek to evaluate

Sj(n) =

n∑
k=0

(−1)k
(
n

k

)(
n+ k

k

)(
k

j

)
which is claimed to be

(−1)n
(
n

j

)(
n+ j

j

)
.

Introduce (
n+ k

k

)
=

1

2πi

∫
|z|=ϵ

(1 + z)n+k

zk+1
dz

and (
k

j

)
=

1

2πi

∫
|w|=γ

(1 + w)k

wj+1
dw.

This yields for the sum

1

2πi

∫
|z|=ϵ

(1 + z)n

z

1

2πi

∫
|w|=γ

1

wj+1

n∑
k=0

(−1)k
(
n

k

)
(1 + z)k(1 + w)k

zk
dw dz

=
1

2πi

∫
|z|=ϵ

(1 + z)n

z

1

2πi

∫
|w|=γ

1

wj+1

(
1− (1 + w)(1 + z)

z

)n

dw dz

=
1

2πi

∫
|z|=ϵ

(1 + z)n

zn+1

1

2πi

∫
|w|=γ

1

wj+1
(−1− w − wz)

n
dw dz

=
(−1)n

2πi

∫
|z|=ϵ

(1 + z)n

zn+1

1

2πi

∫
|w|=γ

1

wj+1
(1 + w + wz)

n
dw dz.

This is

(−1)n

2πi

∫
|z|=ϵ

(1 + z)n

zn+1

1

2πi

∫
|w|=γ

1

wj+1

n∑
q=0

(
n

q

)
wq(1 + z)q dw dz.

Extracting the residue at w = 0 we get

(−1)n

2πi

∫
|z|=ϵ

(1 + z)n

zn+1

(
n

j

)
(1 + z)j dz

=

(
n

j

)
(−1)n

2πi

∫
|z|=ϵ

(1 + z)n+j

zn+1
dz

= (−1)n
(
n

j

)(
n+ j

n

)
.
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thus proving the claim.
This is math.stackexchange.com problem 1331507.

2 Introductory example for the method, conver-
gence about zero (B1B2)

Suppose we seek to evaluate

r∑
k=0

(
r − k

m

)(
s+ k

n

)
where n ≥ s and m ≤ r. We then have it for non-negative r and arbitrary s
because the sum is a polynomial in r and s and we have agreement on an infinite
number of points.

Introduce (
r − k

m

)
=

1

2πi

∫
|z|=ϵ

1

zr−k−m+1

1

(1− z)m+1
dz.

Note that this is zero when k > r−m and ϵ < 1 so we may extend the sum
in k to infinity. Observe here that we get a zero value for

(
r−k
m

)
when k > r

i.e. the upper index becomes negative. We do not get (r − k)m/m! which does
not vanish. Introduce furthermore(

s+ k

n

)
=

1

2πi

∫
|w|=γ

(1 + w)s+k

wn+1
dw.

This yields for the sum

1

2πi

∫
|z|=ϵ

1

zr−m+1

1

(1− z)m+1

1

2πi

∫
|w|=γ

(1 + w)s

wn+1

∑
k≥0

zk(1 + w)k dw dz

=
1

2πi

∫
|z|=ϵ

1

zr−m+1

1

(1− z)m+1

1

2πi

∫
|w|=γ

(1 + w)s

wn+1

1

1− (1 + w)z
dw dz

= − 1

2πi

∫
|z|=ϵ

1

zr−m+2

1

(1− z)m+1

1

2πi

∫
|w|=γ

(1 + w)s

wn+1

1

w − (1− z)/z
dw dz

For the geometric series to converge we must have |z(1 + w)| < 1. Observe
that |z(1+w)| = ϵ|1+w| ≤ ϵ(1+γ). So we need to choose 1+γ < 1/ϵ with ϵ in
a neighborhood of zero. We also want the pole at w = (1 − z)/z to be outside
the contour in w. Now |(1− z)/z| > (1− ϵ)/ϵ so we need the latter to be larger
than γ. Taking γ = ϵ we require from the pole 1− ϵ > ϵ2 or ϵ < (

√
5− 1)/2. For

the convergence we need 1 + ϵ < 1/ϵ or once again ϵ < (
√
5 − 1)/2. Therefore

the choice ϵ = 1/2 and γ = 1/2 will work.
Continuing we evaluate the inner integral with minus the residue at w =
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(1−z)/z because residues sum to zero, the residue at infinity is zero by inspection
and the pole is outside the contour. We find

1

2πi

∫
|z|=ϵ

1

zr−m+2

1

(1− z)m+1

1

zs
zn+1

(1− z)n+1
dz

=
1

2πi

∫
|z|=ϵ

1

zr+s−n−m+1

1

(1− z)n+m+2
dz.

This yields (
r + s− n−m+ n+m+ 1

n+m+ 1

)
=

(
r + s+ 1

n+m+ 1

)
which concludes the argument.

Alternate proof

Start with

1

2πi

∫
|z|=ε

(1 + z)r

zm+1

1

2πi

∫
|w|=γ

(1 + w)s

wn+1

r∑
k=0

(1 + w)k

(1 + z)k
dw dz.

where ε > γ and this time we require n ≥ s and n,m ≥ 0. Note that here(
r−k
m

)
does not vanish when k > r but those k are outside the range of our sum.

We obtain

1

2πi

∫
|z|=ε

(1 + z)r

zm+1

1

2πi

∫
|w|=γ

(1 + w)s

wn+1

1− (1 + w)r+1/(1 + z)r+1

1− (1 + w)/(1 + z)
dw dz

=
1

2πi

∫
|z|=ε

(1 + z)r

zm+1

1

2πi

∫
|w|=γ

(1 + w)s

wn+1

1 + z − (1 + w)r+1/(1 + z)r

z − w
dw dz.

The sum was finite so no convergence issues. Now we have two pieces, the
first piece is

1

2πi

∫
|z|=ε

(1 + z)r+1

zm+1

1

2πi

∫
|w|=γ

(1 + w)s

wn+1

1

z − w
dw dz.

Note that with our choice of contour the pole at w = z of the integral in
w is outside the contour. With n ≥ s the residue at infinity is zero so we may
evaluate the integral with minus the residue at w = z. We get

1

2πi

∫
|z|=ε

(1 + z)r+s+1

zm+n+2
dz =

(
r + s+ 1

m+ n+ 1

)
.

This is the claim. The second piece gives
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− 1

2πi

∫
|z|=ε

1

zm+1

1

2πi

∫
|w|=γ

(1 + w)r+s+1

wn+1

1

z − w
dw dz.

Here we note that when n+ 2− (r + s+ 1) < 2 the residue at infinity does
not vanish, hence we cannot evaluate by the method that we used on the first
piece. Instead we apply the Leibniz rule to the integral in w to get

1

n!

(
(1 + w)r+s+1 1

(z − w)1

)(n)

=
1

n!

n∑
q=0

(
n

q

)
(1 + w)r+s+1−q(r + s+ 1)q

1

(z − w)1+n−q
1n−q.

Evaluate at w = 0 and simplify geometrics,

n∑
q=0

(
r + s+ 1

q

)
1

z1+n−q
.

Note however that

1

2πi

∫
|z|=ε

1

zm+1

1

zn+1−q
dz = [[m+ n+ 1− q = 0]] = 0

owing to the boundary conditions, which once more concludes the argument.
Remark. If we insist on evaluating the second piece with the residue at

infinity we get from the pole at w = z a value of −
(
r+s+1
n+m+1

)
, where we have

flipped the sign. We get from minus the residue at infinity

res
w

1

w2
wn+1 (1 + w)r+s+1

wr+s+1

1

1/w − z

= res
w

(1 + w)r+s+1

wr+s−n+1

1

1− wz

=

r+s−n∑
q=0

(
r + s+ 1

q

)
zr+s−n−q

With the remaining integral in z the only non-zero contribution is from
q = r+ s− n−m, giving

(
r+s+1

r+s−n−m

)
=
(
r+s−1
n+m+1

)
. Adding the two contributions

produces a zero value as before.
This was math.stackexchange.com problem 928271.
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3 Introductory example for the method, an in-
teresting substitution (B1)

Suppose we seek to verify that

2m∑
q=0

(−1)q
(
p− 1 + q

q

)(
2m+ 2p+ q − 1

2m− q

)
2q = (−1)m

(
p− 1 +m

m

)
.

Introduce(
2m+ 2p+ q − 1

2m− q

)
=

1

2πi

∫
|z|=ϵ

1

z2m−q+1
(1 + z)2m+2p+q−1 dz.

Observe that this controls the range being zero when q > 2m so we may
extend q to infinity to obtain for the sum

1

2πi

∫
|z|=ϵ

1

z2m+1
(1 + z)2m+2p−1

∑
q≥0

(
p− 1 + q

q

)
(−1)q2qzq(1 + z)q dz

=
1

2πi

∫
|z|=ϵ

1

z2m+1
(1 + z)2m+2p−1 1

(1 + 2z(z + 1))p
dz

=
1

2πi

∫
|z|=ϵ

1

z2m+1
(1 + z)2m+2p−1 1

((1 + z)2 + z2)p
dz

=
1

2πi

∫
|z|=ϵ

1

z2m+1
(1 + z)2m−1 1

(1 + z2/(1 + z)2)p
dz

=
1

2πi

∫
|z|=ϵ

1

z2m
(1 + z)2m

1

z(1 + z)

1

(1 + z2/(1 + z)2)p
dz.

Now put

z

1 + z
= u so that z =

u

1− u
and dz =

1

(1− u)2
du

to obtain for the integral

1

2πi

∫
|u|=γ

1

u2m

1

u/(1− u)× 1/(1− u)

1

(1 + u2)p
1

(1− u)2
du

=
1

2πi

∫
|u|=γ

1

u2m+1

1

(1 + u2)p
du.

This is

[u2m]
1

(1 + u2)p
= [vm]

1

(1 + v)p
= (−1)m

(
m+ p− 1

m

)
,
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as claimed.
For the conditions on ϵ and γ we require convergence of the geometric series

with |2z(1+z)| < 1 which holds for ϵ < (−1+
√
3)/2. Note that with u = z+ · · ·

the image of |z| = ϵ makes one turn around zero. The closest it comes to the
origin is at ϵ/(1 + ϵ) so we must choose γ < ϵ/(1 + ϵ) e.g. γ = ϵ2/(1 + ϵ) for
|w| = γ to be entirely contained in the image of |z| = ϵ. The poles at u = ±i
are definitely outside this image. Taking ϵ = 1/5 will work.

This was math.stackexchange.com problem 557982.

4 Introductory example for the method, another
interesting substitution (B1)

Suppose we seek to evaluate

⌊m/2⌋∑
k=0

(
n

k

)
(−1)k

(
m− 2k + n− 1

n− 1

)
where m ≤ n and introduce(

m− 2k + n− 1

n− 1

)
=

(
m− 2k + n− 1

m− 2k

)

=
1

2πi

∫
|z|=ϵ

1

zm−2k+1
(1 + z)m−2k+n−1 dz

which has the property that it is zero when 2k > m so we may set the upper
limit in the sum to n, getting

1

2πi

∫
|z|=ϵ

1

zm+1
(1 + z)m+n−1

n∑
k=0

(
n

k

)
(−1)k

z2k

(1 + z)2k
dz

=
1

2πi

∫
|z|=ϵ

1

zm+1
(1 + z)m+n−1

(
1− z2

(1 + z)2

)n

dz

=
1

2πi

∫
|z|=ϵ

1

zm+1
(1 + z)m−n−1(1 + 2z)n dz

=
1

2πi

∫
|z|=ϵ

(1 + z)m

zm
1

z(1 + z)

(1 + 2z)n

(1 + z)n
dz.

Now put

1 + 2z

1 + z
= u so that z = −u− 1

u− 2
, 1 + z = − 1

u− 2
,
1 + z

z
=

1

u− 1
,

1

z(1 + z)
=

(u− 2)2

u− 1
and dz =

1

(u− 2)2
du
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to get for the integral

1

2πi

∫
|u−1|=γ

1

(u− 1)m
(u− 2)2

u− 1
un 1

(u− 2)2
du

=
1

2πi

∫
|u−1|=γ

1

(u− 1)m+1
un du.

This is

[(u− 1)m]un = [(u− 1)m]

n∑
q=0

(
n

q

)
(u− 1)q =

(
n

m

)
.

This solution is more complicated than the obvious one (which can be found
at the stackexchange link) but it serves to illustrate the substitution aspect of
the method.

Concerning the choice of ϵ and γ the closest that the image of |z| = ϵ which
is 1 + z

1+z , gets to one, is ϵ/(1 + ϵ) so that must be the upper bound for γ.
Taking ϵ = 1/3 and γ = 1/5 will work. Note also that u = 1 + z + · · · makes
one turn around one.

This was math.stackexchange.com problem 1558659.

5 Introductory example for the method, yet an-
other interesting substitution (B2)

Suppose we seek to evaluate

n∑
k=0

k

(
2n

n+ k

)
.

Introduce (
2n

n+ k

)
=

1

2πi

∫
|z|=ϵ

1

zn−k+1

1

(1− z)n+k+1
dz.

Observe that this is zero when k > n so we may extend k to infinity to
obtain for the sum

1

2πi

∫
|z|=ϵ

1

zn+1

1

(1− z)n+1

∑
k≥0

k
zk

(1− z)k
dz

=
1

2πi

∫
|z|=ϵ

1

zn+1

1

(1− z)n+1

z/(1− z)

(1− z/(1− z))2
dz

=
1

2πi

∫
|z|=ϵ

1

zn
1

(1− z)n
1

(1− 2z)2
dz.
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Now put z(1 − z) = w so that (observe that with w = z + · · · the image of
|z| = ϵ with ϵ small is another closed circle-like contour which makes one turn
and which we may certainly deform to obtain another circle |w| = γ)

z =
1−

√
1− 4w

2
and (1− 2z)2 = 1− 4w

and furthermore

dz = −1

2
× 1

2
× (−4)× (1− 4w)−1/2 dw = (1− 4w)−1/2 dw

to get for the integral

1

2πi

∫
|w|=γ

1

wn

1

1− 4w
(1− 4w)−1/2 dw =

1

2πi

∫
|w|=γ

1

wn

1

(1− 4w)3/2
dw.

This evaluates by inspection to

4n−1

(
n− 1 + 1/2

n− 1

)
= 4n−1

(
n− 1/2

n− 1

)
=

4n−1

(n− 1)!

n−2∏
q=0

(n− 1/2− q)

=
2n−1

(n− 1)!

n−2∏
q=0

(2n− 2q − 1) =
2n−1

(n− 1)!

(2n− 1)!

2n−1(n− 1)!

=
n2

2n

(
2n

n

)
=

1

2
n

(
2n

n

)
.

Here the mapping from z = 0 to w = 0 determines the choice of square root.
For the conditions on ϵ and γ we have that for the series to converge we require
|z/(1− z)| < 1 or ϵ/(1− ϵ) < 1 or ϵ < 1/2. The closest that the image contour
of |z| = ϵ comes to the origin is ϵ − ϵ2 so we choose γ < ϵ − ϵ2 for example
γ = ϵ2 − ϵ3. This also ensures that γ < 1/4 so |w| = γ does not intersect the
branch cut [1/4,∞) (and is contained in the image of |z| = ϵ). For example
ϵ = 1/3 and γ = 2/27 will work.

This was math.stackexchange.com problem 1585536.

Using formal power series

We may use the change of variables rule 1.8 (5) from the Egorychev text (page
16) on the integral

1

2πi

∫
|z|=ε

1

zn
1

(1− z)n
1

(1− 2z)2
dz = res

z

1

zn
1

(1− z)n
1

(1− 2z)2

with A(z) = z
(1−2z)2 and f(z) = 1

1−z . We get h(z) = z(1− z) and find

res
w

1

wn+1

[
A(z)

f(z)h′(z)

]∣∣∣∣
z=g(w).
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with g the inverse of h.
This becomes

res
w

1

wn+1

[
z/(1− 2z)2

(1− 2z)/(1− z)

]∣∣∣∣
z=g(w)

or alternatively

res
w

1

wn+1

[
z(1− z)

(1− 2z)3

]∣∣∣∣
z=g(w)

= res
w

1

wn

[
1

(1− 2z)3

]∣∣∣∣
z=g(w).

Observe that (1− 2z)2 = 1− 4z + 4z2 = 1− 4z(1− z) = 1− 4w so this is

res
w

1

wn

1

(1− 4w)3/2

and the rest of the computation continues as before.
This was math.stackexchange.com problem 4007052.

6 Introductory example for the method, using
the Iverson bracket only (I1)

Suppose we seek to verify that

Sn =

n∑
k=0

2−k

(
n+ k

k

)
= 2n.

We introduce the Iverson bracket

[[k ≤ n]] =
1

2πi

∫
|z|=ϵ

1

zn−k+1

1

1− z
dz

so we may extend k to infinity, getting

1

2πi

∫
|z|=ϵ

1

zn+1

1

1− z

∑
k≥0

2−k

(
n+ k

n

)
zk dz

=
1

2πi

∫
|z|=ϵ

1

zn+1

1

1− z

1

(1− z/2)n+1
dz.

We evaluate this using the negative of the residues at z = 1, z = 2 and
z = ∞. Here the contour does not include the other two finite poles which also
ensures that the geometric series converges. We could choose ϵ = 1/2. We get
for the residue at z = 1

− 1

(1/2)n+1
= −2n+1.

For the residue at z = 2 we write
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(−1)n+1Resz=2
1

zn+1

1

1− z

1

(z/2− 1)n+1

= (−1)n+12n+1Resz=2
1

zn+1

1

1− z

1

(z − 2)n+1

= (−1)n2n+1Resz=2
1

(2 + (z − 2))n+1

1

1 + (z − 2)

1

(z − 2)n+1

= (−1)nResz=2
1

(1 + (z − 2)/2)n+1

1

1 + (z − 2)

1

(z − 2)n+1
.

This is

(−1)n
n∑

q=0

(−1)q
(
n+ q

q

)
2−q(−1)n−q =

n∑
q=0

(
n+ q

q

)
2−q = Sn.

Finally do the residue at z = ∞ getting (this also follows by inspection
having degree zero in the numerator and degree 2n+ 3 in the denominator)

Resz=∞
1

zn+1

1

1− z

1

(1− z/2)n+1

= −Resz=0
1

z2
zn+1 1

1− 1/z

1

(1− 1/2/z)n+1

= −Resz=0
1

z
zn+1 1

z − 1

zn+1

(z − 1/2)n+1

= −Resz=0z
2n+1 1

z − 1

1

(z − 1/2)n+1
= 0.

Using the fact that the residues sum to zero we thus obtain

Sn − 2n+1 + Sn = 0

which yields

Sn = 2n.

This was math.stackexchange.com problem 389099.

7 Verifying that a certain sum vanishes (B1)

Suppose we seek to evaluate

n∑
m=0

(
n

m

) n∑
k=0

1

a+ bk + 1

(
a+ bk

m

)(
k − n− 1

k

)
.

Now when n = 0 this becomes 1/(a+ 1) so we will suppose that n ≥ 1. We
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also assume that 1/(a+ bk + 1) does not become singular in the range.
Re-write this as

n∑
m=0

(
n

m

) n∑
k=0

(−1)k

a+ bk + 1

(
a+ bk

m

)(
n

k

)

=

n∑
k=0

(
n

k

)
(−1)k

a+ bk + 1

n∑
m=0

(
n

m

)(
a+ bk

m

)
.

We get for the inner sum with ε < 1

1

2πi

∫
|z|=ε

1

z
(1 + z)a+bk

n∑
m=0

(
n

m

)
1

zm
dz

=
1

2πi

∫
|z|=ε

1

z
(1 + z)a+bk

(
1 +

1

z

)n

dz

=
1

2πi

∫
|z|=ε

1

zn+1
(1 + z)a+bk+n dz =

(
a+ bk + n

n

)
.

This also follows by Vandermonde. There is the possibility of a pole at
z = −1 but it is not inside the contour. Substitute into the outer sum to get

n∑
k=0

(
n

k

)
(−1)k

a+ bk + 1

(
a+ bk + n

n

)
=

1

n

n∑
k=0

(
n

k

)
(−1)k

(
a+ bk + n

n− 1

)
.

With the extractor integral, where ε < 1 since we only want the one binomial
coefficient and no cancellation from a potential pole at z = −1

1

n

1

2πi

∫
|z|=ε

1

zn
(1 + z)a+n

n∑
k=0

(
n

k

)
(−1)k(1 + z)bk dz

=
1

n

1

2πi

∫
|z|=ε

1

zn
(1 + z)a+n(1− (1 + z)b)n dz.

This is zero and the sum vanishes, because

(1− (1 + z)b)n = (−1)nbnzn + · · ·

and the third term under the integral cancels the pole at zero. With this
last integral when a+ bk + n < 0 the residue at infinity is zero and when ε > 1
with both poles inside the contour we would get zero for the value of

(
a+bk+n

n−1

)
.

This was math.stackexchange.com problem 1789981.
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8 A case of radical cancellation (B1, R)

Suppose we seek to show that(
2m

2n

)
=

n∑
k=0

(
2n+ 1

2k + 1

)(
m+ k

2n

)
.

where m ≥ n. We introduce(
2n+ 1

2k + 1

)
=

(
2n+ 1

2n− 2k

)
=

1

2πi

∫
|z|=ϵ

1

z2n−2k+1
(1 + z)2n+1 dz.

Observe that this vanishes when k > n so that we may use it to control the
range and extend k to infinity. We also use(

m+ k

2n

)
=

1

2πi

∫
|w|=γ

1

w2n+1
(1 + w)m+k dw.

We thus obtain

1

2πi

∫
|z|=ϵ

(1 + z)2n+1

z2n+1

1

2πi

∫
|w|=γ

(1 + w)m

w2n+1

∑
k≥0

z2k(1 + w)k dw dz

=
1

2πi

∫
|z|=ϵ

(1 + z)2n+1

z2n+1

1

2πi

∫
|w|=γ

(1 + w)m

w2n+1

1

1− (1 + w)z2
dw dz.

Evalute the inner integral using the negative of the residue at the pole at

w =
1− z2

z2

(residues sum to zero) as in

1

2πi

∫
|z|=ϵ

(1 + z)2n+1

z2n+1

1

2πi

∫
|w|=γ

(1 + w)m

w2n+1

1

1− z2 − wz2
dw dz

= − 1

2πi

∫
|z|=ϵ

(1 + z)2n+1

z2n+3

1

2πi

∫
|w|=γ

(1 + w)m

w2n+1

1

w − (1− z2)/z2
dw dz.

The negative of the residue is

1

z2m
z4n+2

(1− z2)2n+1
=

1

z2m−4n−2

1

(1− z2)2n+1

and we obtain from the outer integral

1

2πi

∫
|z|=ϵ

(1 + z)2n+1

z2n+3

1

z2m−4n−2

1

(1− z2)2n+1
dz
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=
1

2πi

∫
|z|=ϵ

1

z2m−2n+1

1

(1− z)2n+1
dz

=

(
2m− 2n+ 2n

2n

)
=

(
2m

2n

)
.

This is the claim.
Remark. We also need to show that the contribution from the residue at

infinity of the inner integral is zero. We get

Resw=∞
(1 + w)m

w2n+1

1

1− (1 + w)z2

= −Resw=0
1

w2
(1 + 1/w)mw2n+1 1

1− z2 − z2/w

= −Resw=0(1 + w)mw2n−m 1

w(1− z2)− z2
.

No contribution when 2n ≥ m. Otherwise,

1

z2
Resw=0(1 + w)m

1

wm−2n

1

1− w(1− z2)/z2

=
1

z2

m−2n−1∑
q=0

(
m

m− 2n− 1− q

)
(1− z2)q

z2q

=
1

z2

m−2n−1∑
q=0

(
m

2n+ 1 + q

)(
1

z2
− 1

)q

Combining this with the integral in z yields

m−2n−1∑
q=0

(
m

2n+ 1 + q

)
1

2πi

∫
|z|=ϵ

(1 + z)2n+1

z2n+1

1

z2

q∑
p=0

(
q

p

)
(−1)q−p 1

z2p
dz.

The contribution from the residue is

[z2n+2+2p](1 + z)2n+1 = 0.

We can express this verbally by saying that the term from the integral is
[z2n](1+z)2n+1 and the sum only contributes negative powers of z with exponent
starting at two.

Remark, II. From the convergence we require that |z2(1 + w)| < 1 in the
double integral and must choose our contours appropriately. Choosing γ = ϵ we
require ϵ2(1+ϵ) < 1 so we may take ϵ < 1/2.We must also verify that (1−z2)/z2

is outside the contour |w| = γ. This is 1/z2−1 i.e. a circle of radius 1/ϵ2 shifted
by one to the left. The circle has radius at least four so it completely encloses
|w| = γ from the outside without touching the inner circle, showing that the
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pole is outside the contour.
This was math.stackexchange.com problem 1900578.

9 Basic usage of exponentiation integral (B1E)

Suppose we seek to verify that

(−1)p
p∑

q=r

(
p

q

)(
q

r

)
(−1)qqp−r =

p!

r!
.

We use the integral representation(
q

r

)
=

(
q

q − r

)
=

1

2πi

∫
|z|=ϵ

(1 + z)q

zq−r+1
dz

which is zero when q < r (pole vanishes) so we may extend q back to zero.
We also use the integral

qp−r =
(p− r)!

2πi

∫
|w|=γ

exp(qw)

wp−r+1
dw.

We thus obtain for the sum

(−1)p(p− r)!

2πi

∫
|w|=γ

1

wp−r+1

× 1

2πi

∫
|z|=ϵ

zr−1

p∑
q=0

(
p

q

)
(−1)q

(1 + z)q

zq
exp(qw) dz dw

=
(−1)p(p− r)!

2πi

∫
|w|=γ

1

wp−r+1

× 1

2πi

∫
|z|=ϵ

zr−1

(
1− 1 + z

z
exp(w)

)p

dz dw

=
(−1)p(p− r)!

2πi

∫
|w|=γ

1

wp−r+1

× 1

2πi

∫
|z|=ϵ

1

zp−r+1
(− exp(w) + z(1− exp(w)))p dz dw

=
(p− r)!

2πi

∫
|w|=γ

1

wp−r+1

× 1

2πi

∫
|z|=ϵ

1

zp−r+1
(exp(w) + z(exp(w)− 1))p dz dw.

We extract the residue on the inner integral to obtain
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(p− r)!

2πi

∫
|w|=γ

1

wp−r+1

(
p

p− r

)
exp(rw)(exp(w)− 1)p−r dw

=
p!

r!

1

2πi

∫
|w|=γ

1

wp−r+1
exp(rw)(exp(w)− 1)p−r dw.

It remains to compute

[wp−r] exp(rw)(exp(w)− 1)p−r.

Observe that exp(w)− 1 starts at w so (exp(w)− 1)p−r starts at wp−r and
hence only the constant coefficient from exp(rw) contributes, the value being
one, which finally yields

p!

r!
.

This was math.stackexchange.com problem 1731648.

10 Introductory example for the method, elim-
inating odd-even dependence (B1)

Suppose we seek to verify that

n∑
k=0

(
n

k

)
2n−k

(
k

⌊k/2⌋

)
=

(
2n+ 1

n

)
.

This is

n∑
q=0

(
n

2q

)
2n−2q

(
2q

q

)
+

n∑
q=0

(
n

2q + 1

)
2n−2q−1

(
2q + 1

q

)
.

We treat these in turn.
First sum. Observe that(

n

2q

)(
2q

q

)
=

(
n

q

)(
n− q

q

)
.

This yields for the sum

2n
n∑

q=0

(
n

q

)(
n− q

q

)
2−2q.

Introduce (
n− q

q

)
=

1

2πi

∫
|z|=ϵ

(1 + z)n−q

zq+1
dz
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which yields for the sum

2n

2πi

∫
|z|=ϵ

(1 + z)n

z

n∑
q=0

(
n

q

)
2−2q 1

zq(1 + z)q
dz

=
2n

2πi

∫
|z|=ϵ

(1 + z)n

z

(
1 +

1

4z(1 + z)

)n

dz

=
2−n

2πi

∫
|z|=ϵ

(1 + 2z)2n

zn+1
dz = 2−n

(
2n

n

)
2n =

(
2n

n

)
.

Second sum. Observe that(
n

2q + 1

)(
2q + 1

q

)
=

(
n

q

)(
n− q

q + 1

)
.

This yields for the sum

2n−1
n∑

q=0

(
n

q

)(
n− q

q + 1

)
2−2q.

This time introduce(
n− q

q + 1

)
=

1

2πi

∫
|z|=ϵ

(1 + z)n−q

zq+2
dz

which yields for the sum

2n−1

2πi

∫
|z|=ϵ

(1 + z)n

z2

n∑
q=0

(
n

q

)
2−2q 1

zq(1 + z)q
dz

=
2n−1

2πi

∫
|z|=ϵ

(1 + z)n

z2

(
1 +

1

4z(1 + z)

)n

dz

=
2−n−1

2πi

∫
|z|=ϵ

(1 + 2z)2n

zn+2
dz = 2−n−1

(
2n

n+ 1

)
2n+1 =

(
2n

n+ 1

)
.

Conclusion.
Collecting the two contributions we obtain(

2n

n

)
+

(
2n

n+ 1

)
=

(
2n+ 1

n

)
as claimed.
This was math.stackexchange.com problem 1442436.
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11 Introductory example for the method, prov-
ing equality of two double hypergeometrics
(B1)

Suppose we seek to verify that f1(n, k) = f2(n, k) where

f1(n, k) =

n∑
v=0

(2k + 2v)!

(k + v)!× v!× (2k + v)!× (n− v)!
2−v

and

f2(n, k) =

⌊n/2⌋∑
m=0

1

(k +m)!×m!× (n− 2m)!
2n−4m.

Multiplying by (n+ k)! we obtain

g1(n, k) =

n∑
v=0

(
n+ k

n− v

)(
2k + 2v

v

)
2−v

and

g2(n, k) = 2n
⌊n/2⌋∑
m=0

(
n+ k

m

)(
n+ k −m

n− 2m

)
2−4m.

We will work with the latter two.
Re-write the first sum as follows:

2−n
n∑

v=0

(
n+ k

v

)(
2k + 2n− 2v

n− v

)
2v

Introduce(
2k + 2n− 2v

n− v

)
=

1

2πi

∫
|z|=ϵ

1

zn−v+1
(1 + z)2k+2n−2v dz.

This integral is zero when v > n so we may extend v to infinity.
We get for g1(n, k)

2−n 1

2πi

∫
|z|=ϵ

1

zn+1
(1 + z)2k+2n

∑
v≥0

(
n+ k

v

)
zv

(1 + z)2v
2v dz

= 2−n 1

2πi

∫
|z|=ϵ

1

zn+1
(1 + z)2k+2n

(
1 + 2

z

(1 + z)2

)n+k

dz

= 2−n 1

2πi

∫
|z|=ϵ

1

zn+1

(
1 + 4z + z2

)n+k
dz.
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There are no convergence issues here as the sum in v is in fact finite.
For the second sum introduce(

n+ k −m

n− 2m

)
=

1

2πi

∫
|z|=ϵ

1

zn−2m+1
(1 + z)n+k−m dz.

This is zero when 2m > n so we may extend m to infinity.
We get for g2(n, k)

2n
1

2πi

∫
|z|=ϵ

1

zn+1
(1 + z)n+k

∑
m≥0

(
n+ k

m

)
z2m

(1 + z)m
2−4m dz

= 2n
1

2πi

∫
|z|=ϵ

1

zn+1
(1 + z)n+k

(
1 +

1

16

z2

1 + z

)n+k

dz

= 2n
1

2πi

∫
|z|=ϵ

1

zn+1

(
1 + z +

1

16
z2
)n+k

dz.

Finally put z = 4w in this integral to get

2n
1

2πi

∫
|w|=ϵ/4

1

4n+1wn+1

(
1 + 4w + w2

)n+k
4dw

= 2−n 1

2πi

∫
|w|=ϵ/4

1

wn+1

(
1 + 4w + w2

)n+k
dw.

This concludes the argument.
This was math.stackexchange.com problem 924966.

12 A remarkable case of factorization (B1)

We let T (0) = 0 and T (1) = 1 and prove that when

T (n) =

⌊n/2⌋∑
k=1

(−1)k+1

(
n− k

k

)
T (n− k)

for n ≥ 2 then

T (n) = Cn−1 =
1

n

(
2n− 2

n− 1

)
=

(
2n− 2

n− 1

)
−
(
2n− 2

n

)
.

In fact the case of a zero argument to T is not reached as for n ≥ 2 we also
have n− ⌊n/2⌋ ≥ 1. Applying the induction hypothesis on the RHS we get two
pieces, the first is
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A =

⌊n/2⌋∑
k=1

(−1)k+1

(
n− k

k

)(
2n− 2k − 2

n− k − 1

)

=

(
2n− 2

n− 1

)
+

⌊n/2⌋∑
k=0

(−1)k+1

(
n− k

k

)(
2n− 2k − 2

n− k − 1

)
and the second

B =

⌊n/2⌋∑
k=1

(−1)k+1

(
n− k

k

)(
2n− 2k − 2

n− k

)

=

(
2n− 2

n

)
+

⌊n/2⌋∑
k=0

(−1)k+1

(
n− k

k

)(
2n− 2k − 2

n− k

)
.

As we subtract B from A we see that we only need to show that the contri-
bution from the two sum terms call them A′ and B′ is zero.

For these two pieces we introduce the integral representation(
n− k

k

)
=

(
n− k

n− 2k

)
=

1

2πi

∫
|z|=ϵ

1

zn−2k+1
(1 + z)n−k dz.

This has the nice property that it vanishes when k > ⌊n/2⌋ so we may extend
the upper limit of the sum to infinity. We also introduce for the first sum(

2n− 2k − 2

n− k − 1

)
=

1

2πi

∫
|w|=γ

1

wn−k
(1 + w)2n−2k−2 dw.

We thus obtain

1

2πi

∫
|w|=γ

1

wn
(1 + w)2n−2

× 1

2πi

∫
|z|=ϵ

1

zn+1
(1 + z)n

∑
k≥0

(−1)k+1 z2kwk

(1 + z)k(1 + w)2k
dz dw

= − 1

2πi

∫
|w|=γ

1

wn
(1 + w)2n−2

× 1

2πi

∫
|z|=ϵ

1

zn+1
(1 + z)n

1

1 + z2w/(1 + z)/(1 + w)2
dz dw

= − 1

2πi

∫
|w|=γ

1

wn
(1 + w)2n

× 1

2πi

∫
|z|=ϵ

1

zn+1
(1 + z)n+1 1

(1 + z)(1 + w)2 + z2w
dz dw
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= − 1

2πi

∫
|w|=γ

1

wn+1
(1 + w)2n

× 1

2πi

∫
|z|=ϵ

1

zn+1
(1 + z)n+1 1

z + 1 + w

1

z + (1 + w)/w
dz dw.

We evaluate the inner integral by summing the residues at z = −(1 + w)
and z = −(1 + w)/w and flipping the sign. (We will verify that the residue at
infinity is zero.)

The residue at z = −(1 + w) yields

− 1

2πi

∫
|w|=γ

1

wn+1
(1 + w)2n

× (−1)n+1

(1 + w)n+1
(−1)n+1wn+1 1

−(1 + w) + (1 + w)/w
dw

= − 1

2πi

∫
|w|=γ

(1 + w)n−1 w

1− w2
dw.

This is zero as the pole at zero has been canceled. Next for the residue at
z = −(1 + w)/w we get

− 1

2πi

∫
|w|=γ

1

wn+1
(1 + w)2n

× (−1)n+1wn+1

(1 + w)n+1
(−1)n+1 1

wn+1

1

−(1 + w)/w + 1 + w
dw

=
1

2πi

∫
|w|=γ

1

wn+1
(1 + w)n−1 w

1− w2
dw

=
1

2πi

∫
|w|=γ

1

wn
(1 + w)n−2 1

1− w
dw.

With n ≥ 2 we can evaluate this as

n−1∑
q=0

(
n− 2

q

)
= 2n−2.

To wrap up the residue at infinity of the inner integral is

Resz=∞
1

zn+1
(1 + z)n+1 1

z + 1 + w

1

z + (1 + w)/w

= −Resz=0
1

z2
zn+1 (1 + z)n+1

zn+1

1

1/z + 1 + w

1

1/z + (1 + w)/w

= −Resz=0(1 + z)n+1 1

1 + z(1 + w)

1

1 + z(1 + w)/w
= 0.
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Collecting everything and flipping the sign we have shown that

A′ = −2n−2.

For piece B′ we see that it only differs from A′ in an extra 1/w factor on
the extractor in w at the front. We thus obtain

− 1

2πi

∫
|w|=γ

1

wn+2
(1 + w)2n

× 1

2πi

∫
|z|=ϵ

1

zn+1
(1 + z)n+1 1

z + 1 + w

1

z + (1 + w)/w
dz dw.

The residue at z = −(1 + w) vanishes the same because there was an extra
w to spare on the w/(1− w2) term:

− 1

2πi

∫
|w|=γ

(1 + w)n−1 1

1− w2
dw.

For the residue at z = −(1 + w)/w we are now extracting from

1

2πi

∫
|w|=γ

1

wn+1
(1 + w)n−2 1

1− w
dw.

to get

n∑
q=0

(
n− 2

q

)
= 2n−2

as before. The residue at infinity vanished in z and did not reach the front
extractor in w, for another contribution of zero. This means that

B′ = −2n−2

and we may conclude the proof. The fact that the sum term from the
geometric series factored as it did is the remarkable feature of this problem.

Addendum, four years later. In the present version with complex vari-
ables the proof requires the convergence of the geometric series. This is |z2w/(1+
z)/(1 + w)2| < 1 or |z2w| < |(1 + z)(1 + w)2|. Now we have |(1 + z)(1 + w)2| ≥
(1 − ϵ)(1 − γ)2 so (1 − ϵ)(1 − γ)2 > ϵ2γ will do. Suppose we take ϵ = γ. We
obtain (1 − γ)3 > γ3. Therefore e.g. ϵ = γ = 1/4 ensures convergence of the
series. This also ensures that the two poles at −(1 + w) and −(1 + w)/w are
outside the contour |z| = ϵ.

This was math.stackexchange.com problem 2113830
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13 Evaluating a quadruple hypergeometric(B1)

Suppose we seek to evaluate

n∑
k=0

n∑
l=0

(−1)k+l

(
n+ k − l

n

)(
k + l

n

)(
n

k

)(
n

l

)

=

n∑
k=0

(
n

k

)
(−1)k

n∑
l=0

(−1)l
(
n+ k − l

n

)(
k + l

n

)(
n

l

)
.

Evaluate the inner sum first and introduce(
n+ k − l

n

)
=

1

2πi

∫
|z|=ϵ

(1 + z)n+k−l

zn+1
dz.

and (
k + l

n

)
=

1

2πi

∫
|w|=ϵ

(1 + w)k+l

wn+1
dw.

This yields for the inner sum

1

2πi

∫
|z|=ϵ

(1 + z)n+k

zn+1

1

2πi

∫
|w|=ϵ

(1 + w)k

wn+1

n∑
l=0

(
n

l

)
(−1)l

(1 + w)l

(1 + z)l
dw dz

=
1

2πi

∫
|z|=ϵ

(1 + z)n+k

zn+1

1

2πi

∫
|w|=ϵ

(1 + w)k

wn+1

(
1− 1 + w

1 + z

)n

dw dz

=
1

2πi

∫
|z|=ϵ

(1 + z)k

zn+1

1

2πi

∫
|w|=ϵ

(1 + w)k

wn+1
(z − w)n dw dz.

Extracting the inner coefficient yields

n∑
q=0

(
k

q

)(
n

n− q

)
(−1)n−qzq.

The outer coefficient becomes

n∑
q=0

(
k

q

)(
n

n− q

)
(−1)n−q

(
k

n− q

)

=

n∑
q=0

(
k

q

)(
n

q

)
(−1)n−q

(
k

n− q

)
.

Call this S. By symmetry we have on re-indexing that

2S =

n∑
q=0

(
k

q

)(
n

q

)
((−1)q + (−1)n−q)

(
k

n− q

)
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= (1 + (−1)n)

n∑
q=0

(
k

q

)(
n

q

)
(−1)q

(
k

n− q

)
.

This is zero when n is odd so the entire sum being evaluated vanishes when
n is odd and we may assume that n = 2m and get

2m∑
q=0

(
k

q

)(
2m

q

)
(−1)q

(
k

2m− q

)
.

Substituting this into the outer sum yields

2m∑
q=0

(
2m

q

)
(−1)q

2m∑
k=0

(
2m

k

)
(−1)k

(
k

q

)(
k

2m− q

)
.

We evaluate the inner sum with the integrals(
k

q

)
=

1

2πi

∫
|z|=ϵ

(1 + z)k

zq+1
dz.

and (
k

2m− q

)
=

1

2πi

∫
|w|=ϵ

(1 + w)k

w2m−q+1
dw

to get

1

2πi

∫
|z|=ϵ

1

zq+1

1

2πi

∫
|w|=ϵ

1

w2m−q+1

2m∑
k=0

(
2m

k

)
(−1)k(1 + z)k(1 + w)k dw dz

=
1

2πi

∫
|z|=ϵ

1

zq+1

1

2πi

∫
|w|=ϵ

1

w2m−q+1
(z + w + wz)2m dw dz

=
1

2πi

∫
|z|=ϵ

1

zq+1

1

2πi

∫
|w|=ϵ

1

w2m−q+1
(w(1 + z) + z)2m dw dz.

Extracting the coefficient we get for the inner term(
2m

2m− q

)
(1 + z)2m−qzq

and for the outer integral(
2m

2m− q

)
1

2πi

∫
|z|=ϵ

1

z
(1 + z)2m−q dz =

(
2m

2m− q

)
.

We are now ready to conclude and return to the main sum which has been
transformed into
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2m∑
q=0

(
2m

q

)
(−1)q

(
2m

2m− q

)
which is

[v2m](1− v)2m(1 + v)2m = [v2m](1− v2)2m = [vm](1− v)2m

= (−1)m
(
2m

m

)
.

Observe carefully that there were no convergence issues as both sums were
finite, so there is no problem using one and the same value of ϵ ≪ 1 in the
integrals.

This was math.stackexchange.com problem 1577907.

14 An integral representation of a binomial co-
efficient involving the floor function (B1)

Suppose we seek to prove that

2m+1∑
k=0

(
n

k

)
2k
(

n− k

⌊(2m+ 1− k)/2⌋

)
=

(
2n+ 1

2m+ 1

)
.

Observe that from first principles we have that(
n

⌊q/2⌋

)
=

(
n

n− ⌊q/2⌋

)
=

1

2πi

∫
|z|=ϵ

1

zq+1

× 1

2πi

∫
|w|=γ

(1 + w)n

wn+1

(
1 + z + wz2 + wz3 + w2z4 + w2z5 + · · ·

)
dw dz.

This simplifies to

1

2πi

∫
|z|=ϵ

1

zq+1

1

2πi

∫
|w|=γ

(1 + w)n

wn+1

(
1

1− wz2
+ z

1

1− wz2

)
dw dz

=
1

2πi

∫
|z|=ϵ

1 + z

zq+1

1

2πi

∫
|w|=γ

(1 + w)n

wn+1

1

1− wz2
dw dz.

This correctly enforces the range as the reader is invited to verify and we
may extend k beyond 2m+ 1, getting for the sum

1

2πi

∫
|z|=ϵ

1 + z

z2m+2
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× 1

2πi

∫
|w|=γ

(1 + w)n

wn+1

1

1− wz2

∑
k≥0

(
n

k

)
2kzk

wk

(1 + w)k
dw dz

=
1

2πi

∫
|z|=ϵ

1 + z

z2m+2

× 1

2πi

∫
|w|=γ

(1 + w)n

wn+1

1

1− wz2

(
1 +

2wz

1 + w

)n

dw dz

=
1

2πi

∫
|z|=ϵ

1 + z

z2m+2

1

2πi

∫
|w|=γ

(1 + w + 2wz)n

wn+1

1

1− wz2
dw dz.

Extracting the inner coefficient now yields

n∑
q=0

(
n

q

)
(1 + 2z)qz2n−2q = z2n

n∑
q=0

(
n

q

)
(1 + 2z)qz−2q

= z2n
(
1 +

1 + 2z

z2

)n

= (1 + z)2n.

We thus get from the outer coefficient

1

2πi

∫
|z|=ϵ

(1 + z)2n+1

z2m+2
dz

which is (
2n+ 1

2m+ 1

)
as claimed. I do believe this is an instructive exercise.
This was math.stackexchange.com problem 2087559

15 Evaluating another quadruple hypergeomet-
ric

Suppose we seek to verify that

n∑
k=m

(−1)n+k 2k + 1

n+ k + 1

(
n

k

)(
n+ k

k

)−1(
k

m

)(
k +m

m

)
= δmn.

Here we may assume n ≥ m, the equality holds trivially otherwise.
Now we have (

n

k

)(
n+ k

k

)−1

=
n!

k!(n− k)

k!n!

(n+ k)!
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=
n!

(n− k)

n!

(n+ k)!
=

(
2n

n+ k

)(
2n

n

)−1

.

We get for the sum

n∑
k=m

(−1)n+k 2k + 1

n+ k + 1

(
2n

n+ k

)(
k

m

)(
k +m

m

)
= δmn ×

(
2n

n

)
.

which is

n∑
k=m

(−1)n+k(2k + 1)

(
2n+ 1

n+ k + 1

)(
k

m

)(
k +m

m

)

= δmn × (2n+ 1)×
(
2n

n

)
.

We also have(
k

m

)(
k +m

m

)
=

(k +m)!

m!× (k −m)!×m!
=

(
2m

m

)(
k +m

k −m

)
.

The target statement to prove now becomes(
2m

m

) n∑
k=m

(−1)n+k(2k + 1)

(
2n+ 1

n+ k + 1

)(
k +m

k −m

)

= δmn × (2n+ 1)×
(
2n

n

)
.

With the LHS in mind introduce(
2n+ 1

n+ k + 1

)
=

(
2n+ 1

n− k

)
=

1

2πi

∫
|z|=ε

1

zn−k+1
(1 + z)2n+1 dz.

Observe that this vanishes when k > n so we may extend k upward to
infinity. Furthermore introduce(

k +m

2m

)
=

1

2πi

∫
|w|=γ

1

w2m+1
(1 + w)k+m dw.

Observe once again that the integral vanishes, this time when 0 ≤ k < m so
we may extend k back to zero.

We then have for the sum without the scalar
(
2m
m

)
(−1)n

2πi

∫
|z|=ε

(1 + z)2n+1

zn+1

1

2πi

∫
|w|=γ

(1 + w)m

w2m+1

×
∑
k≥0

(−1)k(2k + 1)zk(1 + w)k dw dz
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=
(−1)n

2πi

∫
|z|=ε

(1 + z)2n+1

zn+1

1

2πi

∫
|w|=γ

(1 + w)m

w2m+1

× 1− z(1 + w)

(1 + z(1 + w))2
dw dz.

This is

(−1)n

2πi

∫
|z|=ε

(1 + z)2n+1

zn+3

1

2πi

∫
|w|=γ

(1 + w)m

w2m+1

× 1− z(1 + w)

(w + (1 + z)/z)2
dw dz.

Here the convergence of the geometric series requires |z(1+w)| < 1. We have
|z(1+w)| ≤ ε(1+γ) so we can take γ = ε and ε < 1/2.We will now work with the
pole at w = −(1+ z)/z. We have for this pole the norm |1/z+1| ≥ ε−1− 1 > γ
because 1 − ε > ε2 from the convergence requirement. This means the pole is
outside the contour in γ. With residues summing to zero and the residue at
infinity being zero by inspection we can evaluate the inner integral as minus the
contribution from the residue at that second finite pole.

We get for the first piece,[
m
(1 + w)m−1

w2m+1
− (2m+ 1)

(1 + w)m

w2m+2

]∣∣∣∣
w=−(1+z)/z

= m(−1)2m+1 z2m+1

(1 + z)2m+1
(−1)m−1 1

zm−1

−(2m+ 1)(−1)2m+2 z2m+2

(1 + z)2m+2
(−1)m

1

zm
.

Extracting the residue on z yields

(−1)mm

(
2n− 2m

n−m

)
− (−1)m(2m+ 1)

(
2n− 2m− 1

n−m

)
.

Continuing with the second piece, which has the factor z(1 + w)[
(m+ 1)

(1 + w)m

w2m+1
− (2m+ 1)

(1 + w)m+1

w2m+2

]∣∣∣∣
w=−(1+z)/z

= (m+ 1)(−1)2m+1 z2m+1

(1 + z)2m+1
(−1)m

1

zm

−(2m+ 1)(−1)2m+2 z2m+2

(1 + z)2m+2
(−1)m+1 1

zm+1
.

Once more extracting the residue on z yields
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−(−1)m(m+ 1)

(
2n− 2m

n−m

)
+ (−1)m(2m+ 1)

(
2n− 2m− 1

n−m

)
.

Subtract the second piece from the first,

(−1)m(2m+ 1)

(
2n− 2m

n−m

)
− (−1)m(4m+ 2)

(
2n− 2m− 1

n−m

)
.

Now when n = m this evaluates to −(−1)m(2m + 1) and when n > m we
get

(−1)m(2m+ 1)2

(
2n− 2m− 1

n−m− 1

)
− (−1)m(4m+ 2)

(
2n− 2m− 1

n−m

)
= 0.

Taking into account the sign flip from the residue we are left with

δnm

(
2m

m

)
(−1)n(−1)m(2m+ 1) = δnm(2n+ 1)

(
2n

n

)
which holds by inspection.
This was math.stackexchange.com problem 1817122.

16 An identity by Strehl (B1)

Suppose we seek to show that

n∑
k=0

(
n

k

)3

=

n∑
k=⌈n/2⌉

(
n

k

)2(
2k

n

)
.

With (
n

k

)(
2k

n

)
=

(2k)!

k!× (n− k)!× (2k − n)!
=

(
2k

k

)(
k

n− k

)
we find that the RHS is

n∑
k=⌈n/2⌉

(
n

k

)(
2k

k

)(
k

n− k

)
.

Introduce (
2k

k

)
=

1

2πi

∫
|z|=ϵ

(1 + z)2k

zk+1
dz

and (this integral is zero when 0 ≤ k < ⌈n/2⌉)(
k

n− k

)
=

1

2πi

∫
|w|=γ

(1 + w)k

wn−k+1
dw
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to get for the RHS

1

2πi

∫
|z|=ϵ

1

z

1

2πi

∫
|w|=γ

1

wn+1

n∑
k=0

(
n

k

)
wk(1 + w)k(1 + z)2k

zk
dw dz

=
1

2πi

∫
|z|=ϵ

1

z

1

2πi

∫
|w|=γ

1

wn+1

(
1 +

w(1 + w)(1 + z)2

z

)n

dw dz

=
1

2πi

∫
|z|=ϵ

1

zn+1

1

2πi

∫
|w|=γ

1

wn+1
(z + w(1 + w)(1 + z)2)n dw dz

=
1

2πi

∫
|z|=ϵ

1

zn+1

1

2πi

∫
|w|=γ

1

wn+1
(z + w(z + 1))n(1 + w(z + 1))n dw dz.

Extracting first the residue in w in next the residue in z we get

1

2πi

∫
|z|=ϵ

1

zn+1

n∑
q=0

(
n

q

)
zn−q(1 + z)q

(
n

n− q

)
(1 + z)n−q dz

=

n∑
q=0

(
n

q

)2
1

2πi

∫
|z|=ϵ

(1 + z)n

zq+1
dz

=

n∑
q=0

(
n

q

)3

QED.
Addendum May 27 2018. We compute this using formal power series as

per request in comment. Start from(
2k

k

)
= [zk](1 + z)2k

and (
k

n− k

)
= [wn−k](1 + w)k.

Observe that this coefficient extractor is zero when n− k > k or k < ⌈n/2⌉
where k ≥ 0. Hence we are justified in lowering k to zero when we substitute
these into the sum and we find

n∑
k=0

(
n

k

)
[zk](1 + z)2k[wn−k](1 + w)k

= [z0][wn]

n∑
k=0

(
n

k

)
1

zk
(1 + z)2kwk(1 + w)k
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= [z0][wn]

(
1 +

(1 + z)2w(1 + w)

z

)n

= [zn][wn](z + (1 + z)2w(1 + w))n

= [zn][wn](1 + w(1 + z))n(z + w(1 + z))n.

We extract the coefficient on [wn] then the one on [zn] and get

[zn]

n∑
q=0

(
n

q

)
(1 + z)q

(
n

n− q

)
(1 + z)n−qzq

=

n∑
q=0

(
n

q

)2

[zn−q](1 + z)n =

n∑
q=0

(
n

q

)2(
n

n− q

)
=

n∑
q=0

(
n

q

)3

.

The claim is proved.
This was math.stackexchange.com problem 586138.

17 A simple triple hypergeometric

We seek to verify with n ≥ k, ℓ ≥ 0 that∑
s≥0

(
n+ s

k + ℓ

)(
k

s

)(
ℓ

s

)
=

(
n

k

)(
n

ℓ

)
.

We get with the usual extractors,

1

2πi

∫
|z|=ε

(1 + z)n

zk+ℓ+1

1

2πi

∫
|w|=γ

(1 + w)ℓ

wℓ+1

∑
s≥0

(
k

s

)
(1 + z)sws dw dz.

Here we have ε, γ ≪ 1 and we may evalate the sum without regard to
convergence issues because it contains a finite number of terms. Doing so will
produce

1

2πi

∫
|z|=ε

(1 + z)n

zk+ℓ+1

1

2πi

∫
|w|=γ

(1 + w)ℓ

wℓ+1
[1 + (1 + z)w]k dw dz.

Expanding the binomial as

k∑
q=0

(
k

q

)
(1 + w)qzk−qwk−q

yields

k∑
q=0

(
k

q

)(
ℓ+ q

ℓ+ q − k

)(
n

ℓ+ q

)
.
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Next observe that

(
ℓ+ q

k

)(
n

ℓ+ q

)
=

n!

(n− ℓ− q)!× k!× (ℓ+ q − k)!
=

(
n

k

)(
n− k

ℓ+ q − k

)
.

We have obtained the first factor
(
n
k

)
. This leaves

k∑
q=0

(
k

q

)(
n− k

ℓ+ q − k

)
=

k∑
q=0

(
k

q

)(
n− k

n− ℓ− q

)

=
1

2πi

∫
|v|=ρ

(1 + v)n−k

vn−ℓ+1

k∑
q=0

(
k

q

)
vq dv

=
1

2πi

∫
|v|=ρ

(1 + v)n−k

vn−ℓ+1
(1 + v)k dv

=
1

2πi

∫
|v|=ρ

(1 + v)n

vn−ℓ+1
dv =

(
n

n− ℓ

)
=

(
n

ℓ

)
.

This is the second factor and we may conclude. The second sum also yields
to Vandermonde seeing as if k < n− ℓ we may raise q to n− ℓ due to the first
binomial coefficient and if k > n − ℓ we may lower to n − ℓ due to the second
one.

This was math.stackexchange.com problem 2381429.

18 Working with negative indices (B1)

Suppose we seek to prove that

⌊n/3⌋∑
k=−⌊n/3⌋

(−1)k
(

2n

n+ 3k

)
= 2× 3n−1.

We start by introducing the integral(
2n

n+ 3k

)
=

(
2n

n− 3k

)
=

1

2πi

∫
|z|=ϵ

1

zn−3k+1
(1 + z)2n dz.

Observe that this vanishes for 3k > n (pole canceled) and for 3k < −n
(upper range of polynomial term exceeded) so we may extend the summation
to [−n, n] getting

1

2πi

∫
|z|=ϵ

1

zn+1
(1 + z)2n

n∑
k=−n

(−1)kz3k dz
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=
1

2πi

∫
|z|=ϵ

1

zn+1
(1 + z)2n(−1)nz−3n

2n∑
k=0

(−1)kz3k dz

=
1

2πi

∫
|z|=ϵ

1

z4n+1
(1 + z)2n(−1)n

1− (−1)2n+1z3(2n+1)

1 + z3
dz.

Only the first piece from the difference due to the geometric series contributes
and we get

1

2πi

∫
|z|=ϵ

1

z4n+1
(1 + z)2n(−1)n

1

1 + z3
dz

=
1

2πi

∫
|z|=ϵ

1

z4n+1
(1 + z)2n−1(−1)n

1

1− z + z2
dz.

We have two poles other than zero and infinity at ρ and 1/ρ where

ρ =
1 +

√
3i

2

and using the fact that residues sum to zero we obtain

S +
(−1)n

ρ(1 + ρ)

1

ρ− 1/ρ

(
(1 + ρ)2

ρ4

)n

+
(−1)n

1/ρ(1 + 1/ρ)

1

1/ρ− ρ

(
(1 + 1/ρ)2

1/ρ4

)n

+Resz=∞
1

z4n+1
(1 + z)2n−1(−1)n

1

1− z + z2
= 0.

We get for the residue at infinity

−Resz=0
1

z2
z4n+1(1 + 1/z)2n−1(−1)n

1

1− 1/z + 1/z2

= −Resz=0z
2n+2(1 + z)2n−1(−1)n

1

z2 − z + 1
= 0.

Now if z2 = z − 1 then z4 = z2 − 2z + 1 = −z and thus

(1 + 1/ρ)2

1/ρ4
=

(1 + ρ)2

ρ4
=

ρ− 1 + 2ρ+ 1

−ρ
= −3

and furthermore with z(1+z)(z−1/z) = (1+z)(z2−1) and (1+z)(z−2) =
z2 − z − 2 = −3 we finally get

S + (−1)n ×
(
−1

3

)
(−3)n + (−1)n ×

(
−1

3

)
(−3)n = 0

or

S = 2× 3n−1.
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This was math.stackexchange.com problem 2054777.

19 Two companion identities by Gould (B1)

Suppose we seek to evaluate

Q(x, ρ) =

ρ∑
k=0

(
2x+ 1

2k

)(
x− k

ρ− k

)
where x ≥ ρ.
Introduce(

x− k

ρ− k

)
=

(
x− k

x− ρ

)
=

1

2πi

∫
|z|=ε

1

zx−ρ+1
(1 + z)x−k dz.

Note that this controls the range being zero when ρ < k ≤ x so we can
extend the sum to x supposing that x > ρ. And when x = ρ we may also set
the upper limit to x.

We get for the sum

1

2πi

∫
|z|=ε

1

zx−ρ+1
(1 + z)x

x∑
k=0

(
2x+ 1

2k

)
1

(1 + z)k
dz.

This is

1

2

1

2πi

∫
|z|=ε

1

zx−ρ+1
(1 + z)x

((
1 +

1√
1 + z

)2x+1

+

(
1− 1√

1 + z

)2x+1
)

dz

=
1

2

1

2πi

∫
|z|=ε

1

zx−ρ+1

1√
1 + z

(
(1 +

√
1 + z)2x+1 + (1−

√
1 + z)2x+1

)
dz.

Observe that the second term in the parenthesis (i.e. 1 −
√
1 + z) has no

constant term and hence starts at z2x+1 making for a zero contribution. This
leaves

1

2

1

2πi

∫
|z|=ε

1

zx−ρ+1

1√
1 + z

(1 +
√
1 + z)2x+1 dz.

Here we have ε ≪ 1 so the pole at z = −1 is not inside the contour. Now
put 1 + z = w2 so that dz = 2w dw to get

1

2πi

∫
|w−1|=γ

1

(w2 − 1)x−ρ+1

1

w
(1 + w)2x+1 w dw

=
1

2πi

∫
|w−1|=γ

1

(w − 1)x−ρ+1

1

(w + 1)x−ρ+1
(1 + w)2x+1 dw
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=
1

2πi

∫
|w−1|=γ

1

(w − 1)x−ρ+1
(1 + w)x+ρ dw

=
1

2πi

∫
|w−1|=γ

1

(w − 1)x−ρ+1

x+ρ∑
q=0

(
x+ ρ

q

)
2x+ρ−q(w − 1)q dw.

Here we use the principal branch of the logarithm as in
√
1 + z = exp( 12 log(1+

z)) with branch cut (−∞,−1]. We have for |z| < 1 that
√
1 + z = 1+ 1

2z−
1
8z

2+
· · · .

This means that the image of |z| = ε under this substitution approximates
the circle |w − 1| = 1

2ε, making one turn. It contains the one pole at w = 1.
With the radius of convergence ρ being one we obtain |w − 1| = 1

2ε + O(ε2)
from the geometric series (ε/ρ)2/(1 − ε/ρ). The image approximates the circle
as closely as we wish as ε is small. Hence we may take γ = 1

2ε. Continuing we
find

[(w − 1)x−ρ]

x+ρ∑
q=0

(
x+ ρ

q

)
2x+ρ−q(w − 1)q

=

(
x+ ρ

x− ρ

)
2x+ρ−(x−ρ) =

(
x+ ρ

x− ρ

)
22ρ =

(
x+ ρ

2ρ

)
22ρ.

We can also prove the companion identity from above.
Suppose we seek to evaluate

Q(x, ρ) =

ρ∑
k=0

(
2x+ 1

2k + 1

)(
x− k

ρ− k

)
where x ≥ ρ. With the same preliminaries as before we obtain

1

2

1

2πi

∫
|z|=ε

(1 + z)x

zx−ρ+1

√
1 + z

((
1 +

1√
1 + z

)2x+1

−
(
1− 1√

1 + z

)2x+1
)

dz

=
1

2

1

2πi

∫
|z|=ε

1

zx−ρ+1

(
(1 +

√
1 + z)2x+1 − (1−

√
1 + z)2x+1

)
dz.

We observe once more that the second term in the parenthesis (i.e. 1 −√
1 + z) has no constant term and hence starts at z2x+1 making for a zero

contribution, which leaves

1

2

1

2πi

∫
|z|=ε

1

zx−ρ+1
(1 +

√
1 + z)2x+1 dz.
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We again put 1 + z = w2 so that dz = 2w dw to get

1

2πi

∫
|w−1|=γ

1

(w2 − 1)x−ρ+1
(1 + w)2x+1 w dw

=
1

2πi

∫
|w−1|=γ

1

(w − 1)x−ρ+1

1

(w + 1)x−ρ+1
(1 + w)2x+1 w dw

=
1

2πi

∫
|w−1|=γ

1

(w − 1)x−ρ+1
(1 + w)x+ρ w dw.

Writing w = (w − 1) + 1 this produces two pieces, the first is

1

2πi

∫
|w−1|=γ

1

(w − 1)x−ρ

x+ρ∑
q=0

(
x+ ρ

q

)
2x+ρ−q(w − 1)q dw.

This is

[(w − 1)x−ρ−1]

x+ρ∑
q=0

(
x+ ρ

q

)
2x+ρ−q(w − 1)q

=

(
x+ ρ

x− ρ− 1

)
2x+ρ−(x−ρ−1) =

(
x+ ρ

x− ρ− 1

)
22ρ+1 =

(
x+ ρ

2ρ+ 1

)
22ρ+1.

The second piece is

[(w − 1)x−ρ]

x+ρ∑
q=0

(
x+ ρ

q

)
2x+ρ−q(w − 1)q

=

(
x+ ρ

x− ρ

)
2x+ρ−(x−ρ) =

(
x+ ρ

x− ρ

)
22ρ =

(
x+ ρ

2ρ

)
22ρ.

Joining the two pieces we finally obtain(
2× x− ρ

2ρ+ 1
+ 1

)
×
(
x+ ρ

2ρ

)
22ρ

=
2x+ 1

2ρ+ 1

(
x+ ρ

2ρ

)
22ρ.

This was math.stackexchange.com problem 1383343.
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20 Exercise 1.3 from Stanley’s Enumerative Com-
binatorics

Suppose we seek to verify that

min(a,b)∑
k=0

(
x+ y + k

k

)(
x

b− k

)(
y

a− k

)
=

(
x+ a

b

)(
y + b

a

)
where we take y ≥ a and x ≥ b both integers We then have it for all x and y as
both sides are polynomials in those variables. We also take a, b ≥ 0.

We have for the LHS with the usual extractors,

1

2πi

∫
|z|=ε

(1 + z)x

zb+1

1

2πi

∫
|w|=γ

(1 + w)y

wa+1

∑
k≥0

(
x+ y + k

k

)
zkwk dw dz.

Here we have extended the range of the sum to infinity because the two
residues combined enforce the upper limit of min(a, b). Continuing,

1

2πi

∫
|z|=ε

(1 + z)x

zb+1

1

2πi

∫
|w|=γ

(1 + w)y

wa+1

1

(1− zw)x+y+1
dw dz.

Now for the geometric series to converge we take ε, γ ≪ 1. We re-write

1

2πi

∫
|z|=ε

(1 + z)x

zb+1

1

2πi

∫
|w|=γ

(1 + w)y

wa+1

1

(1 + z − z(1 + w))x+y+1
dw dz

=
1

2πi

∫
|z|=ε

1

zb+1

1

(1 + z)y+1

1

2πi

∫
|w|=γ

(1 + w)y

wa+1

1

(1− z(1 + w)/(1 + z))x+y+1
dw dz.

Expanding the fractional term taking the residue in z into account we find

b∑
q=0

(
x+ y + q

q

)
zq

(1 + w)q

(1 + z)q
.

Substitute into the integrals to get

b∑
q=0

(
x+ y + q

q

)
(−1)b−q

(
y + b

b− q

)(
y + q

a

)
.

Note that

(
y + b

b− q

)(
y + q

a

)
=

(y + b)!

(b− q)!× a!× (y + q − a)!
=

(
y + b

a

)(
y + b− a

b− q

)
.

53



We have obtained the first factor on the RHS. This leaves

b∑
q=0

(
x+ y + q

q

)
(−1)b−q

(
y + b− a

b− q

)

=
1

2πi

∫
|v|=ρ

1

vb+1
(1 + v)y+b−a

∑
q≥0

(
x+ y + q

q

)
(−1)b−qvq dv.

Here we have extended to infinity due to the residue in v and we take ρ ≪ 1.
We finally have

(−1)b
1

2πi

∫
|v|=ρ

1

vb+1
(1 + v)y+b−a 1

(1 + v)x+y+1
dv

= (−1)b
(
b− a− x− 1

b

)
=

(
x+ a

b

)
.

This is the second factor which concludes the argument. Observe that when
we expanded into the alternate series convergence requires |z(1+w)/(1+z)| < 1.
The norm is bounded by ε(1+γ)/(1−ε) so we need ε(2+γ) < 1 or ε < 1/(2+γ).
For example ε = 1/5 and γ = 1/2 will work.

This was math.stackexchange.com problem 1426447.

21 Counting m-subsets (B1)

Suppose we seek to verify that

n∑
q=0

(
n

2q

)(
n− 2q

p− q

)
22q =

(
2n

2p

)
.

Observe that the sum is

n∑
q=0

(
n

p− q

)(
n− p+ q

n− p− q

)
4q

which is

p∑
q=0

(
n

p− q

)(
n− p+ q

n− p− q

)
4q = 4p

p∑
q=0

(
n

q

)(
n− q

n+ q − 2p

)
4−q

= 4p
p∑

q=0

(
n

q

)(
n− q

2p− 2q

)
4−q.

Now introduce
1

2πi

∫
|z|=ϵ

1

z2p−2q+1
(1 + z)n−q dz
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This is zero when q > p so it provides the range control. Continuing we get
for the sum

4p
1

2πi

∫
|z|=ϵ

1

z2p+1
(1 + z)n

∑
q≥0

(
n

q

)
4−q z2q

(1 + z)q
dz

= 4p
1

2πi

∫
|z|=ϵ

1

z2p+1
(1 + z)n

(
1 +

1

4

z2

1 + z

)n

dz

= 4p
1

2πi

∫
|z|=ϵ

1

z2p+1

(
1 + z +

1

4
z2
)n

dz

Now put z = 2w to get

4p
1

2πi

∫
|w|=γ

1

22p+1w2p+1

(
1 + 2w + w2

)n
2dw

=
1

2πi

∫
|w|=γ

1

w2p+1
(1 + w)2n dw.

This is (
2n

2p

)
as claimed. Here we take γ = 2ϵ < 1. This was math.stackexchange.com problem
1430202.

22 Method applied to an iterated sum (B1R)

Suppose we seek to show that

n−1∑
k=0

(
k∑

q=0

(
n

q

)) n∑
q=k+1

(
n

q

) =
1

2
n

(
2n

n

)
.

Using the integral representation(
n

q

)
=

(
n

n− q

)
=

1

2πi

∫
|z|=ϵ

(1 + z)n

zn−q+1
dz

where we shall see that only finite sums appear and there are no convergence
issues, we get for the first factor

1

2πi

∫
|z|=ϵ

(1 + z)n

zn+1

k∑
q=0

zq dz =
1

2πi

∫
|z|=ϵ

(1 + z)n

zn+1

1− zk+1

1− z
dz

= 2n − 1

2πi

∫
|z|=ϵ

(1 + z)n

zn+1

zk+1

1− z
dz
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and for the second factor

1

2πi

∫
|z|=ϵ

(1 + z)n

zn+1

zk+1 − zn+1

1− z
dz =

1

2πi

∫
|z|=ϵ

(1 + z)n

zn+1

zk+1

1− z
dz.

These add to 2n as they obviously should.
Summing from k = 0 to n − 1 we get a positive and a negative piece. The

positive piece is

2n
1

2πi

∫
|z|=ϵ

(1 + z)n

zn

n−1∑
k=0

zk

1− z
dz

= 2n
1

2πi

∫
|z|=ϵ

(1 + z)n

zn
1− zn

(1− z)2
dz

= 2n
1

2πi

∫
|z|=ϵ

(1 + z)n

zn
1

(1− z)2
dz.

The negative piece is

1

2πi

∫
|z|=ϵ

(1 + z)n

zn(1− z)

1

2πi

∫
|w|=ϵ

(1 + w)n

wn(1− w)

n−1∑
k=0

zkwk dw dz

=
1

2πi

∫
|z|=ϵ

(1 + z)n

zn(1− z)

1

2πi

∫
|w|=ϵ

(1 + w)n

wn(1− w)

1− znwn

1− zw
dw dz

=
1

2πi

∫
|z|=ϵ

(1 + z)n

zn(1− z)

1

2πi

∫
|w|=ϵ

(1 + w)n

wn(1− w)

1

1− zw
dw dz.

We evaluate the inner integral by taking the sum of the negatives of the
residues of the poles at w = 1 and w = 1/z instead of computing the residue of
the pole at zero by using the fact that the residues sum to zero.

Re-write the integral as follows.

1

2πi

∫
|w|=ϵ

(1 + w)n

wn(w − 1)

1

zw − 1
dw

=
1

z

1

2πi

∫
|w|=ϵ

(1 + w)n

wn(w − 1)

1

w − 1/z
dw.

Now the negative of the residue at w = 1 is

−1

z
2n

1

1− 1/z
= 2n

1

1− z
.

Substituting this into the outer integral we get

2n
1

2πi

∫
|z|=ϵ

(1 + z)n

zn(1− z)2
dz.
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We see that this piece precisely cancels the positive piece that we obtained
first.

Continuing the negative of the residue at w = 1/z is

−1

z

(1 + 1/z)n

1/zn × (1/z − 1)
= −1

z

(1 + z)n

(1/z − 1)
= − (1 + z)n

(1− z)
.

We now substitute this into the outer integral flipping the sign because this
was the negative piece to get

1

2πi

∫
|z|=ϵ

(1 + z)2n

zn(1− z)2
dz.

Extracting the residue at z = 0 we get

n−1∑
q=0

(
2n

n− 1− q

)
(q + 1) =

n−1∑
q=0

(
2n

n+ q + 1

)
(q + 1)

= −n

n−1∑
q=0

(
2n

n+ q + 1

)
+

n−1∑
q=0

(
2n

n+ q + 1

)
(n+ q + 1)

= −n

(
1

2
22n − 1

2

(
2n

n

))
+ 2n

n−1∑
q=0

(
2n− 1

n+ q

)

= −n

(
1

2
22n − 1

2

(
2n

n

))
+ 2n

1

2
22n−1

=
1

2
n

(
2n

n

)
.

Remark. If we want to do this properly we also need to verify that the
residue at infinity of the inner integral is zero. We use the formula for the
residue at infinity

Resz=∞h(z) = Resz=0

[
− 1

z2
h

(
1

z

)]
which in the present case gives for the inner term in w

−Resw=0
1

w2

(1 + 1/w)n

1/wn × (1− 1/w)

1

1− z/w

= −Resw=0
1

w2

(1 + w)n

(1− 1/w)

1

1− z/w

= −Resw=0
(1 + w)n

(w − 1)

1

w − z
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which is zero by inspection. Here z runs on the circle |z| = ϵ > 0.
This was math.stackexchange.com problem 889892.

23 A pair of two double hypergeometrics (B1)

We seek to show that

(1− x)2n+1
∑
j≥0

(
j + n− 1

n

)(
j + n

n

)
xj =

∑
j≥0

(
n− 1

j − 1

)(
n+ 1

j

)
xj .

where we set n ≥ 1 for the parameter. We obtain for the coefficient on [xj ]
of the LHS that it is

j∑
q=0

(
2n+ 1

q

)
(−1)q

(
j − q + n

n

)(
j − q + n− 1

n

)
.

With the usual coefficient extractor integrals,

1

2πi

∫
|z|=ε

1

zj+1

1

(1− z)n+1

1

2πi

∫
|w|=γ

1

wj

1

(1− w)n+1

×
∑
q≥0

(
2n+ 1

q

)
(−1)qzqwq dw dz.

Here we have removed the upper limit on q because the residue in z vanishes
when q > j. Note that the sum is finite, so we may just deploy the usual ε, γ < 1.
We get

1

2πi

∫
|z|=ε

1

zj+1

1

(1− z)n+1

1

2πi

∫
|w|=γ

1

wj

1

(1− w)n+1
(1− zw)2n+1 dw dz.

Now write

(1−zw)2n+1 = (1−z+(1−w)z)2n+1 =

2n+1∑
q=0

(
2n+ 1

q

)
(1−z)2n+1−q(1−w)qzq.

Extracting the residues we obtain using the fact that the residue in z vanishes
when q > j

j∑
q=0

(
2n+ 1

q

)(
n− q

j − q

)
(−1)j−q

(
n− q + j − 1

j − 1

)
.

Now observe that

58

http://math.stackexchange.com/questions/889892/


(
n− q

j − q

)(
n− q + j − 1

n− q

)
=

(n− q + j − 1)!

(j − q)!× (n− j)!× (j − 1)!

=

(
n− 1

j − 1

)(
n− q + j − 1

n− 1

)
.

We have obtained the first factor of the closed form coefficient, leaving us
with

j∑
q=0

(
2n+ 1

q

)
(−1)j−q

(
n− q + j − 1

j − q

)
which is

1

2πi

∫
|v|=ρ

1

vj+1
(1 + v)n+j−1

∑
q≥0

(
2n+ 1

q

)
(−1)j−q vq

(1 + v)q
dv.

Here we have again removed the upper limit on the sum because the residue
at zero will produce zero when q > j. Note also that when q > n + j − 1 a
pole appears at v = −1. We don’t want it to contribute so we choose ρ < 1.
Continuing,

(−1)j

2πi

∫
|v|=ρ

1

vj+1
(1 + v)n+j−1(1− v/(1 + v))2n+1 dv

=
(−1)j

2πi

∫
|v|=ρ

1

vj+1

1

(1 + v)n−j+2
dv

= (−1)j(−1)j
(
n− j + 1 + j

j

)
=

(
n+ 1

j

)
.

This is the second factor, which concludes the argument. The sums were
finite.

This was math.stackexchange.com problem 869982.

24 A two phase application of the method (B1)

We seek to show that

⌊n/3⌋∑
k=0

(−1)k
(
n+ 1

k

)(
2n− 3k

n

)
=

n∑
k=⌊n/2⌋

(
n+ 1

k

)(
k

n− k

)
.

Note that the second binomial coefficient in both sums controls the range of
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the sum, so we can write our claim like this:

n+1∑
k=0

(
n+ 1

k

)
(−1)k

(
2n− 3k

n− 3k

)
=

n+1∑
k=0

(
n+ 1

k

)(
k

n− k

)
.

To evaluate the LHS introduce the integral representation(
2n− 3k

n− 3k

)
=

1

2πi

∫
|z|=ϵ

(1 + z)2n−3k

zn−3k+1
dz.

We can check that this really is zero when k > ⌊n/3⌋.
This gives for the sum the representation

1

2πi

∫
|z|=ϵ

(1 + z)2n

zn+1

n+1∑
k=0

(
n+ 1

k

)
(−1)k

(
z3

(1 + z)3

)k

dz

=
1

2πi

∫
|z|=ϵ

(1 + z)2n

zn+1

(
1− z3

(1 + z)3

)n+1

dz

=
1

2πi

∫
|z|=ϵ

1

zn+1

1

(1 + z)n+3

(
3z2 + 3z + 1

)n+1
dz

=
1

2πi

∫
|z|=ϵ

1

zn+1

1

(1 + z)n+3

n+1∑
q=0

(
n+ 1

q

)
3qzq(1 + z)q dz

=
1

2πi

∫
|z|=ϵ

n+1∑
q=0

(
n+ 1

q

)
3qzq−n−1(1 + z)q−n−3 dz

=
1

2πi

∫
|z|=ϵ

n+1∑
q=0

(
n+ 1

q

)
3q

1

zn+1−q

1

(1 + z)n+3−q
dz.

Computing the residue we find

n+1∑
q=0

(
n+ 1

q

)
3q(−1)n−q

(
n− q + n+ 2− q

n+ 2− q

)

=

n+1∑
q=0

(
n+ 1

q

)
3q(−1)n−q

(
2n− 2q + 2

n− q + 2

)
.

Now introduce the integral representation(
2n− 2q + 2

n− q + 2

)
=

1

2πi

∫
|z|=ϵ

(1 + z)2n−2q+2

zn−q+3
dz
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which gives for the sum the integral

1

2πi

∫
|z|=ϵ

(1 + z)2n+2

zn+3

n+1∑
q=0

(
n+ 1

q

)
3q(−1)n−q

(
z

(1 + z)2

)q

dz

= − 1

2πi

∫
|z|=ϵ

(1 + z)2n+2

zn+3

(
3z

(1 + z)2
− 1

)n+1

dz

= − 1

2πi

∫
|z|=ϵ

1

zn+3
(−1 + z − z2)n+1 dz.

Put w = −z which just rotates the small circle to get

1

2πi

∫
|w|=ϵ

1

(−w)n+3
(−1− w − w2)n+1 dw

=
1

2πi

∫
|w|=ϵ

1

wn+3
(1 + w + w2)n+1 dw.

We get for the final answer

[wn+2](1 + w + w2)n+1

but we have 2n+2−n− 2 = n and thus exploiting the symmetry of 1+w+w2

we get
[wn](1 + w + w2)n+1.

To evaluate the RHS introduce the integral representation(
k

n− k

)
=

1

2πi

∫
|z|=ϵ

(1 + z)k

zn−k+1
dz.

This gives for the sum the representation

1

2πi

∫
|z|=ϵ

1

zn+1

n+1∑
k=0

(
n+ 1

k

)
((1 + z)z)

k
dz

=
1

2πi

∫
|z|=ϵ

1

zn+1
(1 + z(1 + z))n+1 dz.

The answer is
[zn](1 + z + z2)n+1,

the same as the LHS, and we are done.
This was math.stackexchange.com problem 664823.
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25 An identity from Mathematical Reflections
(B1)

Suppose we seek to evaluate

⌊(m+n)/2⌋∑
k=0

(
n

k

)
(−1)k

(
m+ n− 2k

n− 1

)
.

Observe that in the second binomial coefficient we must have m+ n− 2k ≥
n − 1 in order to avoid hitting the zero value in the product in the numerator
of the binomial coefficient, so the upper limit for the sum is in fact m+ 1 ≥ 2k
with the sum being

⌊(m+1)/2⌋∑
k=0

(
n

k

)
(−1)k

(
m+ n− 2k

n− 1

)
.

Introduce(
m+ n− 2k

n− 1

)
=

(
m+ n− 2k

m+ 1− 2k

)
=

1

2πi

∫
|z|=ϵ

(1 + z)m+n−2k

zm+2−2k
dz.

This integral correctly encodes the range for k being zero when k is larger
than ⌊(m+ 1)/2⌋. Therefore we may let k go to infinity in the sum and obtain
for n > m

1

2πi

∫
|z|=ϵ

(1 + z)m+n

zm+2

∑
k≥0

(
n

k

)
(−1)k

z2k

(1 + z)2k
dz

=
1

2πi

∫
|z|=ϵ

(1 + z)m+n

zm+2

(
1− z2

(1 + z)2

)n

dz

=
1

2πi

∫
|z|=ϵ

1

(1 + z)n−mzm+2
(1 + 2z)n dz.

This produces the closed form

m+1∑
q=0

(
n

q

)
2q(−1)m+1−q

(
m+ 1− q + n−m− 1

n−m− 1

)

= (−1)m+1
m+1∑
q=0

(
n

q

)
(−1)q2q

(
n− q

n−m− 1

)
.

This is

(−1)m+1
m+1∑
q=0

(
n

q

)
(−1)q2q

(
n− q

m+ 1− q

)
.
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Introduce (
n− q

m+ 1− q

)
=

1

2πi

∫
|z|=ϵ

(1 + z)n−q

zm+2−q
dz

which once more correctly encodes the range with the pole at z = 0 disap-
pearing when q > m+ 1. Therefore we may extend the range to n to get

(−1)m+1

2πi

∫
|z|=ϵ

(1 + z)n

zm+2

n∑
q=0

(
n

q

)
(−1)q2q

zq

(1 + z)q
dz

=
(−1)m+1

2πi

∫
|z|=ϵ

(1 + z)n

zm+2

(
1− 2

z

1 + z

)n

dz

=
(−1)m+1

2πi

∫
|z|=ϵ

(1 + z)n

zm+2

(1− z)n

(1 + z)n
dz

=
(−1)m+1

2πi

∫
|z|=ϵ

(1− z)n

zm+2
dz

= (−1)m+1

(
n

m+ 1

)
(−1)m+1 =

(
n

m+ 1

)
.

This was math.stackexchange.com problem 390321.

26 A triple Fibonacci-binomial coefficient con-
volution (B1)

We seek to show that

n∑
k=0

(
n

k

)(
n+ k

k

)
Fk+1 =

n∑
k=0

(
n

k

)(
n+ k

k

)
(−1)n−kF2k+1.

Start from (
n+ k

n

)
=

1

2πi

∫
|z|=1

1

zn+1
(1 + z)n+k dz.

This yields the following expression for the sum on the LHS

1

2πi

∫
|z|=1

n∑
k=0

(
n

k

)
1

zn+1
(1 + z)n+kφ

k+1 − (−1/φ)k+1

√
5

dz

This simplifies to

1√
5

1

2πi

∫
|z|=1

(1 + z)n

zn+1

n∑
k=0

(
n

k

)(
φ (φ(1 + z))

k
+

1

φ

(
− 1

φ
(1 + z)

)k
)

dz

which finally yields
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1√
5

1

2πi

∫
|z|=1

(1 + z)n

zn+1

(
φ (1 + φ(1 + z))

n
+

1

φ

(
1− 1

φ
(1 + z)

)n)
dz

Continuing we have the following expression for the sum on the RHS

1

2πi

∫
|z|=1

n∑
k=0

(
n

k

)
(−1)n−k 1

zn+1
(1 + z)n+kφ

2k+1 − (−1/φ)2k+1

√
5

dz

This simplifies to
1√
5

1

2πi

∫
|z|=1

(1 + z)n

zn+1

×
n∑

k=0

(
n

k

)
(−1)n−k

(
φ
(
φ2(1 + z)

)k
+

1

φ

(
1

φ2
(1 + z)

)k
)

dz

which finally yields

1√
5

1

2πi

∫
|z|=1

(1 + z)n

zn+1

(
φ
(
−1 + φ2(1 + z)

)n
+

1

φ

(
−1 +

1

φ2
(1 + z)

)n)
dz

Apply the substitution z = 1/w to this integral to obtain (the sign to correct
the reverse orientation of the circle is canceled by the minus on the derivative)

1√
5

1

2πi

∫
|w|=1

(
1 +

1

w

)n

wn+1

×
(
φ

(
−1 + φ2(1 +

1

w
)

)n

+
1

φ

(
−1 +

1

φ2
(1 +

1

w
)

)n)
1

w2
dw

which is
1√
5

1

2πi

∫
|w|=1

(
1 +

1

w

)n
1

w

×
(
φ
(
−w + φ2(w + 1)

)n
+

1

φ

(
−w +

1

φ2
(w + 1)

)n)
dw

which finally yields
1√
5

1

2πi

∫
|w|=1

(1 + w)n

wn+1

×
(
φ
(
−w + φ2(w + 1)

)n
+

1

φ

(
−w +

1

φ2
(w + 1)

)n)
dw

This shows that the LHS is the same as the RHS because

−w + φ2(w + 1) = −w + (1 + φ)(w + 1) = 1 + φ(w + 1)
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and

−w +
1

φ2
(w + 1) = −w + (1− 1

φ
)(w + 1)

= −w + (w + 1)− 1

φ
(w + 1) = 1− 1

φ
(w + 1).

This is math.stackexchange.com problem 53830.

27 Fibonacci numbers and the residue at infin-
ity (B2R)

Suppose we seek to evaluate in terms of Fibonacci numbers∑
p,q≥0

(
n− p

q

)(
n− q

p

)
.

We use the integrals(
n− p

q

)
=

1

2πi

∫
|z|=ϵ

1

(1− z)q+1zn−p−q+1
dz

and (
n− q

p

)
=

1

2πi

∫
|w|=γ

1

(1− w)p+1wn−p−q+1
dw.

These correctly control the range so we may let p and q go to infinity to
get for the sum (note that we get zero from the binomial coefficients when the
upper index goes negative which is necessary for the sum to be finite, in general
these vanish when the upper index is less than the lower one)

1

2πi

∫
|z|=ϵ

1

(1− z)zn+1

1

2πi

∫
|w|=γ

1

(1− w)wn+1

∑
p,q≥0

zp+qwp+q

(1− w)p(1− z)q
dw dz

=
1

2πi

∫
|z|=ϵ

1

(1− z)zn+1

1

2πi

∫
|w|=γ

1

(1− w)wn+1

× 1

1− zw/(1− w)

1

1− zw/(1− z)
dw dz

=
1

2πi

∫
|z|=ϵ

1

zn+1

1

2πi

∫
|w|=γ

1

wn+1

1

1− w − zw

1

1− z − zw
dw dz

=
1

2πi

∫
|z|=ϵ

1

zn+2(1 + z)

1

2πi

∫
|w|=γ

1

wn+1

1

w − 1/(1 + z)

1

w − (1− z)/z
dw dz.

Here we require for convergence that |zw/(1 − w)/(1 − z)| < 1. We have
|z/(1− z)| < ϵ/(1− ϵ) so we may take ϵ < 1/2 and γ < 1/2 as well.
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We evaluate the inner integral using the fact that the residues of the function
in w sum to zero. We have two simple poles. We get for the first pole at
w = (1− z)/z = 1/z− 1 that it lies on a circle of radius 1/ϵ > 2 centered at −1.
This circle encloses the circle |w| = γ < 1/2 so this pole is outside the contour in
w. For the second pole at w = 1/(1+z) we get |1/(1+z)| > 1/(1+ ϵ) > ϵ which
holds when ϵ < 1/2 so this pole also is outside the contour. Collecting everything
we have that we can evaluate the integral using minus the contribution from
the residues of both poles.

Starting with the pole at w = (1− z)/z we find

zn+1

(1− z)n+1

1

(1− z)/z − 1/(1 + z)
=

zn+1

(1− z)n+1

z(1 + z)

(1− z)(1 + z)− z

=
zn+2

(1− z)n+1

1 + z

1− z − z2
.

Substituting this expression into the outer integral we see that the pole
at z = 0 is canceled making for a contribution of zero. The poles from the
quadratic are outside the contour in z, as is the pole at z = 1. For the second
pole at w = 1/(1 + z) we get

(1 + z)n+1 1

1/(1 + z)− (1− z)/z
= (1 + z)n+1 z(1 + z)

z − (1− z)(1 + z)
.

This yields the contribution (taking into account the sign flip from the sum
of residues)

1

2πi

∫
|z|=ϵ

1

zn+2(1 + z)
(1 + z)n+1 z(1 + z)

1− z − z2
dz

=
1

2πi

∫
|z|=ϵ

1

zn+1
(1 + z)n+1 1

1− z − z2
dz.

We evaluate this using again the fact that the residues sum to zero. There
are simple poles at z = −φ and z = 1/φ which are outside the contour in z.

These yield(
1− φ

−φ

)n+1
1

−1 + 2φ
+

(
1 + 1/φ

1/φ

)n+1
1

−1− 2/φ

=
1√
5

1

φ2n+2
− 1√

5
φ2n+2.

Taking into account the sign flip this is obviously Binet / de Moivre for

F2n+2.

Remark. If we want to do this properly we also need to verify that the
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residue at infinity in both cases is zero. For example in the first application we
use the formula for the residue at infinity

Resz=∞h(z) = Resz=0

[
− 1

z2
h

(
1

z

)]
which in the present case gives for the inner term in w

−Resw=0
1

w2
wn+1 1

1/w − 1/(1 + z)

1

1/w − (1− z)/z

= −Resw=0w
n+1 1

1− w/(1 + z)

1

1− w(1− z)/z

which is zero by inspection. Alternatively observe that we have a rational
function with denominator degree exceeding numerator degree by at least two.
The two poles in z do not vanish.

This was math.stackexchange.com problem 801730.

28 Permutations containing a given subsequence
(B1)

We seek to show that

S =

n∑
r=0

(
r + n− 1

n− 1

)(
3n− r

n

)
=

1

2

{(
4n

2n

)
+

(
2n

n

)2
}
.

This gives 1 on both sides when n = 0, we will work with n ≥ 1. We write
this as

S = S2 − S1 =

2n∑
r=0

(
r + n− 1

n− 1

)(
3n− r

n

)
−

2n∑
r=n+1

(
r + n− 1

n− 1

)(
3n− r

n

)
.

We start with S2 and introduce(
3n− r

n

)
=

1

2πi

∫
|z|=ε

1

z2n−r+1

1

(1− z)n+1
dz

where ε ≪ 1. Note that this will vanish when r > 2n so we have for S2

1

2πi

∫
|z|=ε

1

z2n+1

1

(1− z)n+1

∑
r≥0

(
r + n− 1

n− 1

)
zr dz

=
1

2πi

∫
|z|=ε

1

z2n+1

1

(1− z)n+1

1

(1− z)n
dz
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=
1

2πi

∫
|z|=ε

1

z2n+1

1

(1− z)2n+1
dz =

(
4n

2n

)
.

This was the easy part. We now get for S1

n−1∑
r=0

(
r + 2n

n− 1

)(
2n− 1− r

n

)
.

Using the integral(
2n− 1− r

n− 1− r

)
=

1

2πi

∫
|z|=ε

1

zn−r
(1 + z)2n−1−r dz

we see that this will vanish when r ≥ n so it controls the upper range of the
sum and we obtain

1

2πi

∫
|z|=ε

1

zn
(1 + z)2n−1

∑
r≥0

(
r + 2n

n− 1

)
zr

(1 + z)r
dz

=
1

2πi

∫
|z|=ε

1

zn
(1 + z)2n−1 1

2πi

∫
|w|=γ

1

wn
(1 + w)2n

∑
r≥0

(1 + w)r
zr

(1 + z)r
dw dz

=
1

2πi

∫
|z|=ε

1

zn
(1 + z)2n−1 1

2πi

∫
|w|=γ

1

wn
(1 + w)2n

1

1− z(1 + w)/(1 + z)
dw dz

=
1

2πi

∫
|z|=ε

1

zn
(1 + z)2n

1

2πi

∫
|w|=γ

1

wn
(1 + w)2n

1

1− wz
dw dz.

Here we require for convergence that |z(1 + w)/(1 + z)| < 1. We have the
upper bound ε(1 + γ)/(1− ε). Taking γ = ε we require 2ε+ ε2 < 1 so we may
use ε < 1/3. Note that the pole at w = 1/z is outside the unit circle and hence
the contour and does not contribute, so we directly extract the residue in w to
get

n−1∑
q=0

(
2n

n− 1− q

)
zq.

With the integral in z this will produce

n−1∑
q=0

(
2n

n− 1− q

)(
2n

n− 1− q

)
=

n−1∑
q=0

(
2n

q

)2

.

Now observe that

2n∑
q=n+1

(
2n

q

)2

=

n−1∑
q=0

(
2n

2n− q

)2

=

n−1∑
q=0

(
2n

q

)2

.

We have by Vandermonde
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2n∑
q=0

(
2n

q

)(
2n

2n− q

)
=

(
4n

2n

)
.

It follows that

n−1∑
q=0

(
2n

q

)2

=
1

2

{(
4n

2n

)
−
(
2n

n

)2
}
.

That was S1. Subtract from S2 to get

1

2

{(
4n

2n

)
+

(
2n

n

)2
}

as claimed.
This was math.stackexchange.com problem 1255356.

29 A binomial coefficient - Catalan number con-
volution (B1)

A problem from MSE asks us to show that

n+1∑
r=1

1

r + 1

(
2r

r

)(
m+ n− 2r

n+ 1− r

)
=

(
m+ n

n

)
.

This identity has a certain simplicity but it will be easier to include the term
at r = 0 where we need to show that

n+1∑
r=0

1

r + 1

(
2r

r

)(
m+ n− 2r

n+ 1− r

)
=

(
m+ n

n

)
+

(
m+ n

n+ 1

)
=

(
m+ n+ 1

n+ 1

)
.

Here we may now take advantage of the fact that the second binomial coef-
ficient enforces the upper range, so we obtain

1

2πi

∫
|w|=γ

1

wn+2
(1 + w)m+n

∑
r≥0

1

r + 1

(
2r

r

)
wr

(1 + w)2r
dw.

The Catalan number OGF is

1−
√
1− 4z

2z

The binomial term (1 − 4z)1/2 has radius of convergence 1/4 about zero

where we get series coefficient (−1)r4r
(
1/2
r

)
hence to close the sum we require
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|w/(1 + w)2| < 1/4. (Note that there is no pole at z = 0.) We get the upper
bound γ/(1− γ)2 so we may set γ < 1/6. We then obtain

1

2πi

∫
|w|=γ

1

wn+2
(1 + w)m+n 1−

√
1− 4w/(1 + w)2

2w/(1 + w)2
dw

=
1

2πi

∫
|w|=γ

1

wn+2
(1 + w)m+n+1 1 + w −

√
(1 + w)2 − 4w

2w
dw

=
1

2πi

∫
|w|=γ

1

wn+2
(1 + w)m+n+1 1 + w − (1− w)

2w
dw

=
1

2πi

∫
|w|=γ

1

wn+2
(1 + w)m+n+1 dw =

(
m+ n+ 1

n+ 1

)
.

This is the claim.
This was math.stackexchange.com problem 563307.

30 A new obstacle from Concrete Mathematics
(Catalan numbers) (B1)

Suppose we seek to evaluate

∑
k≥0

(
n+ k

m+ 2k

)(
2k

k

)
(−1)k

k + 1

where m,n ≥ 0. In fact we may assume that n ≥ m because if m > n
the binomial coefficient vanishes using the definition

(
n
k

)
= nk/k! because zero

appears in the falling factorial.
Furthermore observe that when k = n−m+q with q > 0 we obtain

(
2n−m+q
2n−m+2q

)
which is zero by the same argument.

This gives
n−m∑
k=0

(
n+ k

n−m− k

)(
2k

k

)
(−1)k

k + 1
.

Introduce (
n+ k

n−m− k

)
=

1

2πi

∫
|z|=ϵ

1

zn−m−k+1
(1 + z)n+k dz.

Observe that this is zero when k > n−m so we may extend k to infinity to
get for the sum

1

2πi

∫
|z|=ϵ

1

zn−m+1
(1 + z)n

∑
k≥0

(
2k

k

)
(−1)k

k + 1
zk(1 + z)k dz.
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Here we recognize the generating function of the Catalan numbers

∑
k≥0

(
2k

k

)
1

k + 1
wk =

1−
√
1− 4w

2w

where the binomial (1 − 4w)1/2 has coefficient (−1)k4k
(
1/2
k

)
and radius of

convergence 1/4.We certainly have analyticity in a neighborhood of zero. We
obtain

− 1

2πi

∫
|z|=ϵ

1

zn−m+1
(1 + z)n

1−
√

1 + 4z(1 + z)

2z(1 + z)
dz

= −1

2

1

2πi

∫
|z|=ϵ

1

zn−m+2
(1 + z)n−1

(
1−

√
(1 + 2z)2

)
dz.

Now with z in a neighborhood of zero the square root produces the positive
root so we finally have

−1

2

1

2πi

∫
|z|=ϵ

1

zn−m+2
(1 + z)n−1(−2z) dz

=
1

2πi

∫
|z|=ϵ

1

zn−m+1
(1 + z)n−1 dz

which evaluates by inspection to
(
n−1
n−m

)
which is(

n− 1

m− 1

)
.

Note that for the series to converge we need |z(1+z)| < 1/4 Nopw |z(1+z)| ≤
ϵ(1 + ϵ). With ϵ ≪ 1 this is less than 2ϵ. Therefor ϵ = 1/8 will work.

This problem has not yet appeared at math.stackexchange.com.

31 Abel-Aigner identity from Table 202 of Con-
crete Mathematics (B1)

Seeking to prove that∑
k

(
tk + r

k

)(
tn− tk + s

n− k

)
r

tk + r
=

(
tn+ r + s

n

)
We will prove it with integers t, r, s ≥ 1 and r, s ≥ t. We then have it for

arbitrary t, r, s because the sum is a polynomial in these variables and we have
agreement on an infinite number of points. Under these additional asumptions
we see that LHS of our identity is in fact
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n∑
k=0

(
tk + r

k

)(
tn− tk + s

n− k

)
−

n∑
k=0

(
tk + r

k

)(
tn− tk + s

n− k

)
tk

tk + r
.

First do the case t ≥ 2. Starting with the first sum we introduce(
tk + r

k

)
=

1

2πi

∫
|w|=γ

1

wk+1
(1 + w)tk+r dw.

Now put w/(1 +w)t = v and introduce the inverse f(v) = w. We then have
by Lagrange inversion that [vn]f(v) = 1

tn+1

(
tn+1
n

)
= 1

n

(
tn

n−1

)
with the coefficient

on the index zero term being zero. For the radius of convergence we have with
n ≥ t

n

n+ 1

(
tn+ t

n

)(
tn

n− 1

)−1

=
n

n+ 1

(n− 1)!

n!

n−1∏
q=0

(tn+ t− q)

n−2∏
q=0

(tn− q)−1

=
1

n+ 1

t−1∏
q=0

(tn+ t− q)

n−2∏
q=n−t

(tn− q)−1

=
n

n+ 1

t−1∏
q=0

(t+ t/n− q/n)

t−2∏
q=0

(t− (n− 2)/n+ q/n)−1 ∼ tt

(t− 1)t−1
.

It follows that f(v) is analytic in a neighborhood of the origin with radius
of convergence ρ = (t− 1)t−1/tt. With w/(1+w)t = w+ · · · a convergent series
the image of |w| = γ approximates a circle |v| = γ as γ ≪ 1. Therefore we may
deform the image to |v| = γ where we take γ < ρ. We obtain

1

2πi

∫
|v|=γ

1

vk
1

f(v)
(1 + f(v))rf ′(v) dv.

From the definition of f(v),

1

2πi

∫
|v|=γ

1

vk+1
(1 + f(v))r−tf ′(v) dv.

Now introduce(
tn− tk + s

n− k

)
=

1

2πi

∫
|z|=ε

1

zn−k+1
(1 + z)tn−tk+s dz.

This will vanish when k ≥ n so we may extend the sum to infinity, getting

72



1

2πi

∫
|z|=ε

1

zn+1
(1 + z)tn+s

∑
k≥0

zk

(1 + z)tk

× 1

2πi

∫
|v|=γ

1

vk+1
(1 + f(v))r−tf ′(v) dv dz.

Note that the terms involving f(v) and f ′(v) are analytic on and inside the
contour hence the product has a convergent Laurent series there with empty
principal part. In the sum we are extracting all cofficients of this series, evalu-
ating the corresponding power at z/(1 + z)t. Hence we obtain

1

2πi

∫
|z|=ε

1

zn+1
(1 + z)tn+s(1 + f(z/(1 + z)t))r−tf ′(z/(1 + z)t) dz.

Note that here we require |z/(1+ z)t| < ρ. With |z/(1+ z)t| ≤ ε/(1− ε)t we
may take ε < ε∗ where ε∗ is the unique solution of ε = ρ(1− ε)t in the interval
[0, 1].

Computing the derivative we find

f ′(v)

(1 + f(v))t
− tf(v)

(1 + f(v))t+1
f ′(v) = 1

so that

f ′(v) =
(1 + f(v))t

1− tf(v)/(1 + f(v))
.

We get for the integral

1

2πi

∫
|z|=ε

1

zn+1
(1 + z)tn+s(1 + z)r−t (1 + z)t

1− tz/(1 + z)
dz

=
1

2πi

∫
|z|=ε

1

zn+1
(1 + z)tn+r+s+1 1

1 + (1− t)z
dz.

Continuing with the second sum we obtain

t

n∑
k=1

(
tk + r − 1

k − 1

)(
tn− tk + s

n− k

)

= t

n−1∑
k=0

(
tk + t+ r − 1

k

)(
t(n− 1)− tk + s

(n− 1)− k

)
.

We can recycle the earlier computation and find

t

2πi

∫
|z|=ε

1

zn
(1 + z)t(n−1)+r+t−1+s+1 1

1 + (1− t)z
dz
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=
t

2πi

∫
|z|=ε

1

zn
(1 + z)tn+r+s 1

1 + (1− t)z
dz.

Now we have subtracting the second piece from the first that (1+ z)/z− t =
(1 + z − tz)/z and we get

1

2πi

∫
|z|=ε

1

zn+1
(1 + z)tn+r+s dz =

(
tn+ r + s

n

)
which is the claim. For t = 1 we get the following two sums, first,

n∑
k=0

(
k + r

k

)(
n− k + s

n− k

)
= [zn]

1

(1− z)r+1

1

(1− z)s+1

= [zn]
1

(1− z)r+s+2
=

(
n+ r + s+ 1

n

)
.

Repeat for the second sum to get(
n− 1 + r + t− 1 + s+ 1

n− 1

)
=

(
n+ r + s

n− 1

)
.

The difference gives (
n+ r + s

n

)
as required.
This was math.stackexchange.com problem 2814898.

32 Reducing the form of a double hypergeomet-
ric (B1)

Suppose we seek to evaluate

S(n) =

n−2∑
q=0

n∑
k=1

(
k + q

k

)(
2n− q − k − 1

n− k + 1

)
.

which we re-write as

−
n−2∑
q=0

(
2n− q − 1

n+ 1

)
−

n−2∑
q=0

(
n+ 1 + q

n+ 1

)
+

n−2∑
q=0

n+1∑
k=0

(
k + q

k

)(
2n− q − k − 1

n− k + 1

)
.

Call these pieces up to sign from left to right S1, S2 and S3.
The two pieces in front cancel the quantities introduced by extending k to

include the values zero and n+ 1.
Evaluation of S1.
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Introduce(
2n− q − 1

n+ 1

)
=

(
2n− q − 1

n− q − 2

)
=

1

2πi

∫
|z|=ϵ

(1 + z)2n−q−1

zn−q−1
dz.

This vanishes when q > n− 2 so we may extend the sum to infinity to get

1

2πi

∫
|z|=ϵ

(1 + z)2n−1

zn−1

∑
q≥0

zq

(1 + z)q
dz

=
1

2πi

∫
|z|=ϵ

(1 + z)2n−1

zn−1

1

1− z/(1 + z)
dz

=
1

2πi

∫
|z|=ϵ

(1 + z)2n

zn−1
dz

=

(
2n

n− 2

)
.

Evaluation of S2.
Introduce (

n+ 1 + q

n+ 1

)
=

1

2πi

∫
|z|=ϵ

(1 + z)n+1+q

zn+2
dz.

This yields for the sum

1

2πi

∫
|z|=ϵ

(1 + z)n+1

zn+2

n−2∑
q=0

(1 + z)q dz

=
1

2πi

∫
|z|=ϵ

(1 + z)n+1

zn+2

(1 + z)n−1 − 1

1 + z − 1
dz

=
1

2πi

∫
|z|=ϵ

(1 + z)n+1

zn+3
((1 + z)n−1 − 1) dz

=

(
2n

n+ 2

)
.

A more efficient evaluation is to notice that when we re-index q as n− 2− q
in S2 we obtain

n−2∑
q=0

(
n+ 1 + n− 2− q

n+ 1

)
=

n−2∑
q=0

(
2n− q − 1

n+ 1

)
which is S1.
Evaluation of S3.
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Introduce (
2n− q − k − 1

n− k + 1

)
=

1

2πi

∫
|z|=ϵ

(1 + z)2n−q−k−1

zn−k+2
dz.

This effectively controls the range so we can let k go to infinity to get

1

2πi

∫
|z|=ϵ

(1 + z)2n−1

zn+2

n−2∑
q=0

∑
k≥0

(
k + q

q

)
zk

(1 + z)q+k
dz

=
1

2πi

∫
|z|=ϵ

(1 + z)2n−1

zn+2

n−2∑
q=0

1

(1 + z)q
1

(1− z/(1 + z))q+1
dz

=
1

2πi

∫
|z|=ϵ

(1 + z)2n

zn+2

n−2∑
q=0

1

(1 + z)q+1

1

(1− z/(1 + z))q+1
dz

=
1

2πi

∫
|z|=ϵ

(1 + z)2n

zn+2
× (n− 1)× dz

= (n− 1)×
(

2n

n+ 1

)
.

Finally collecting the three contributions we obtain

(n− 1)×
(

2n

n+ 1

)
− 2

(
2n

n+ 2

)
= (n+ 2)

(
2n

n+ 2

)
− 2

(
2n

n+ 2

)

= n×
(

2n

n+ 2

)
.

This is math.stackexchange.com problem 129913.

33 Basic usage of the Iverson bracket (B1I)

Suppose we seek to evaluate

S(k, l) =

l∑
q=0

(
q + k

k

)(
l − q

k

)
.

We start with the Iverson bracket valid for q ≥ 0

[[0 ≤ q ≤ l]] =
1

2πi

∫
|z|=ϵ

zq

zl+1

1

1− z
dz
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This gives for the sum

1

2πi

∫
|w|=γ

(1 + w)l

wk+1

1

2πi

∫
|z|=ϵ

1

zl+1

1

1− z

∑
q≥0

(
q + k

q

)
zq

(1 + w)q
dw dz

=
1

2πi

∫
|w|=γ

(1 + w)l

wk+1

1

2πi

∫
|z|=ϵ

1

zl+1

1

1− z

1

(1− z/(1 + w))k+1
dw dz

=
1

2πi

∫
|w|=γ

(1 + w)l+k+1

wk+1

1

2πi

∫
|z|=ϵ

1

zl+1

1

1− z

1

(1 + w − z)k+1
dw dz.

We evaluate the inner integral by taking the negative of the sum of the
residues at z = 1 and at z = 1 + w and z = ∞. With ϵ and γ small the second
pole is not inside the contour.

The negative of the residue at z = 1 is

1

wk+1

which when substituted into the outer integral yields

1

2πi

∫
|w|=γ

(1 + w)l+k+1

w2k+2
dw =

(
l + k + 1

2k + 1

)
,

which is the formula we are trying to establish.
Next we prove that the residue at infinity is zero. This is given by

−Resz=0
1

z2
zl+1 1

1− 1/z

1

(1 + w − 1/z)k+1
= −Resz=0z

l 1

z − 1

zk+1

(z(1 + w)− 1)k+1

= − 1

(1 + w)k+1
Resz=0

1

z − 1

zl+k+1

(z − 1/(1 + w))k+1
.

This is zero by inspection, which leaves the residue at z = 1 + w. Write

(−1)k+1

2πi

∫
|w|=γ

(1 + w)l+k+1

wk+1

1

2πi

∫
|z|=ϵ

1

zl+1

1

1− z

1

(z − (1 + w))k+1
dw dz.

We require the derivative

1

k!

(
1

zl+1

1

1− z

)(k)

=
1

k!

k∑
q=0

(
k

q

)
(−1)q

(l + q)!

l!× zl+1+q

(k − q)!

(1− z)1+k−q

=

k∑
q=0

(
l + q

q

)
(−1)q

1

zl+1+q

1

(1− z)1+k−q
.
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Evaluate this at z = 1 + w to get

k∑
q=0

(
l + q

q

)
(−1)q

1

(1 + w)l+1+q

1

(−w)1+k−q

and substitute into the outer integral to obtain

(−1)k+1

2πi

∫
|w|=γ

(1 + w)l+k+1

wk+1

k∑
q=0

(
l + q

q

)
(−1)q

1

(1 + w)l+1+q

1

(−w)1+k−q
dw

=
1

2πi

∫
|w|=γ

(1 + w)l+k+1

wk+1

k∑
q=0

(
l + q

q

)
1

(1 + w)l+1+q

1

w1+k−q
dw

=

k∑
q=0

(
l + q

q

)
1

2πi

∫
|w|=γ

(1 + w)k−q

w2k+2−q
dw.

The inner term here is

[w2k+1−q](1 + w)k−q.

But we have 2k+1− q ≥ k+1 while k− q ≤ k so these terms are zero, thus
concluding the proof.

Simplified solution. As observed elsewhere this can be done without the
Iverson bracket.

Introduce (
l − q

k

)
=

1

2πi

∫
|z|=ϵ

1

zl−q−k+1

1

(1− z)k+1
dz.

This controls the range becoming zero when q > l − k so we may extend q
to infinity.

We obtain for the sum

1

2πi

∫
|z|=ϵ

1

zl−k+1

1

(1− z)k+1

∑
q≥0

(
q + k

k

)
zq dz

=
1

2πi

∫
|z|=ϵ

1

zl−k+1

1

(1− z)k+1

1

(1− z)k+1
dz

=
1

2πi

∫
|z|=ϵ

1

zl−k+1

1

(1− z)2k+2
dz.

This evaluates by inspection to(
l − k + 2k + 1

2k + 1

)
=

(
l + k + 1

2k + 1

)
.
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This was math.stackexchange.com problem.

34 Basic usage of the Iverson bracket II (B1I)

Suppose we seek to compute

S(n,m) =

n∑
k=0

k

(
m+ k

m+ 1

)
.

Introduce (
m+ k

m+ 1

)
=

1

2πi

∫
|z|=ϵ

1

zm+2
(1 + z)m+k dz

as well as the Iverson bracket

[[0 ≤ k ≤ n]] =
1

2πi

∫
|w|=γ

wk

wn+1

1

1− w
dw.

This yields for the sum

1

2πi

∫
|z|=ϵ

1

zm+2
(1 + z)m

1

2πi

∫
|w|=γ

1

wn+1

1

1− w

∑
k≥0

kwk(1 + z)k dw dz.

For this to converge we must have |w(1 + z)| < 1. We get

1

2πi

∫
|z|=ϵ

1

zm+2
(1 + z)m

1

2πi

∫
|w|=γ

1

wn+1

1

1− w

w(1 + z)

(1− w(1 + z))2
dw dz

=
1

2πi

∫
|z|=ϵ

1

zm+2
(1 + z)m+1 1

2πi

∫
|w|=γ

1

wn

1

1− w

1

(1− w(1 + z))2
dw dz.

We evaluate the inner integral using the fact that the residues at the poles
sum to zero. The residue at w = 1 produces

− 1

2πi

∫
|z|=ϵ

1

zm+2
(1 + z)m+1 1

(−z)2
dz = − 1

2πi

∫
|z|=ϵ

1

zm+4
(1 + z)m+1 dz = 0.

For the residue at w = 1/(1 + z) we re-write the inner integral to get

1

(1 + z)2
1

2πi

∫
|w|=γ

1

wn

1

1− w

1

(w − 1/(1 + z))2
dw.
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We thus require (
1

wn

1

1− w

)′
∣∣∣∣∣
w=1/(1+z)

=

(
−n

wn+1

1

1− w
+

1

wn

1

(1− w)2

)∣∣∣∣
w=1/(1+z)

= −n(1 + z)n+1(1 + z)/z + (1 + z)n(1 + z)2/z2.

Substituting this into the outer integral and flipping signs we get two pieces
which are

1

2πi

∫
|z|=ϵ

1

zm+2
(1 + z)m−1n(1 + z)n+2/z dz

=
n

2πi

∫
|z|=ϵ

1

zm+3
(1 + z)n+m+1 dz = n×

(
n+m+ 1

m+ 2

)
.

The second piece is

− 1

2πi

∫
|z|=ϵ

1

zm+2
(1 + z)m−1(1 + z)n+2/z2 dz

= − 1

2πi

∫
|z|=ϵ

1

zm+4
(1 + z)n+m+1 dz = −

(
n+m+ 1

m+ 3

)
.

It follows that our answer is(
n− n− 1

m+ 3

)(
n+m+ 1

m+ 2

)
=

nm+ 2n+ 1

m+ 3

(
n+m+ 1

m+ 2

)
.

Remark. Being rigorous we also verify that the residue at infinity in the
calculation of the inner integral is zero. We get

−Resw=0
1

w2
wn 1

1− 1/w

1

(1− (1 + z)/w)2

= −Resw=0w
n−2 w

w − 1

w2

(w − (1 + z))2
= −Resw=0

wn+1

w − 1

1

(w − (1 + z))2
.

There is certainly no pole at zero here and the residue is zero as claimed
(the term 1+z rotates in a circle around the point one on the real axis and with
ϵ < 1 it is never zero). This last result could also be obtained by comparing
degrees of numerator and denominator.

This was math.stackexchange.com problem 1836190.
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35 Iverson bracket used twice (B1IR)

Suppose we seek to evaluate

Y (n) =

n∑
k=0

2n−k

(
k

⌊k/2⌋

)
,

by considering

Y1(n) =

⌊n/2⌋∑
k=0

2n−2k

(
2k

k

)
and Y2(n) =

⌊(n−1)/2⌋∑
k=0

2n−2k−1

(
2k + 1

k

)
.

We will use the following Iverson bracket:

[[0 ≤ k ≤ n]] =
1

2πi

∫
|z|=ϵ

zk

zn+1

1

1− z
dz

where we must have ϵ ≪ 1.
Evaluation of Y1(n).
Introduce (

2k

k

)
=

1

2πi

∫
|w|=γ

1

wk+1
(1 + w)2k dw.

With the Iverson bracket controlling the range we can extend k to infinity
to get for the sum

2n

2πi

∫
|w|=γ

1

w

1

2πi

∫
|z|=ϵ

1

z⌊n/2⌋+1

1

1− z

∑
k≥0

2−2kzk
(1 + w)2k

wk
dz dw.

We can instantiate these contours to get convergence of the series. In partic-
ular we require |z(1 +w)2/w/4| < 1. We have |z(1 +w)2/w/4| ≤ ϵ(1 + γ)2/γ/4
hence we may take ϵ = γ and γ ≪ 1.

We thus obtain

2n

2πi

∫
|w|=γ

1

w

1

2πi

∫
|z|=ϵ

1

z⌊n/2⌋+1

1

1− z

1

1− z(1 + w)2/w/4
dz dw

=
2n+2

2πi

∫
|w|=γ

1

(1 + w)2
1

2πi

∫
|z|=ϵ

1

z⌊n/2⌋+1

1

z − 1

1

z − 4w/(1 + w)2
dz dw.

We evaluate the inner piece by computing the negative of the sum of the
residues at z = 1, z = 4w/(1 + w)2 and z = ∞. This works because z = 1
and z = ∞ are outside of the contour as is z = 4w/(1 + w)2 because |z| <
|4w/(1 + w)2| by the constraint on the convergence.
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We get for z = 1

1

1− 4w/(1 + w)2
=

(1 + w)2

(1 + w)2 − 4w
=

(1 + w)2

(1− w)2

for a zero contribution.
We get for z = ∞

−Resz=0
1

z2
1

1/z⌊n/2⌋+1

1

1/z − 1

1

1/z − 4w/(1 + w)2

= −Resz=0z
⌊n/2⌋+1 1

1− z

1

1− 4wz/(1 + w)2

again for a zero contribution.
Finally for z = 4w/(1 + w)2 we get

− (1 + w)2⌊n/2⌋+2

22⌊n/2⌋+2 × w⌊n/2⌋+1

(1 + w)2

(1− w)2
.

Substitute into the outer integral to obtain

−2n mod 2

2πi

∫
|w|=γ

(1 + w)2⌊n/2⌋+2

w⌊n/2⌋+1

1

(1− w)2
dw.

Extracting the negative of the residue we get the sum

2n mod 2

⌊n/2⌋∑
q=0

(
2⌊n/2⌋+ 2

q

)
(⌊n/2⌋ − q + 1).

This yields

2n mod 2(⌊n/2⌋+ 1)
1

2

(
22⌊n/2⌋+2 −

(
2⌊n/2⌋+ 2

⌊n/2⌋+ 1

))

−2n mod 2(2⌊n/2⌋+ 2)

⌊n/2⌋∑
q=1

(
2⌊n/2⌋+ 1

q − 1

)

= 2n mod 2(⌊n/2⌋+ 1)
1

2

(
22⌊n/2⌋+2 −

(
2⌊n/2⌋+ 2

⌊n/2⌋+ 1

))
−2n mod 2(⌊n/2⌋+ 1)

(
22⌊n/2⌋+1 − 2

(
2⌊n/2⌋+ 1

⌊n/2⌋

))
= 2n mod 2(⌊n/2⌋+ 1)

(
2− 1

2

2⌊n/2⌋+ 2

⌊n/2⌋+ 1

)(
2⌊n/2⌋+ 1

⌊n/2⌋

)
= 2n mod 2(⌊n/2⌋+ 1)

(
2⌊n/2⌋+ 1

⌊n/2⌋

)
.
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Evaluation of Y2(n).
We get

Y2(n) =

⌊(n−1)/2⌋∑
k=0

2n−2k−2

(
2k + 2

k + 1

)
=

1+⌊(n−1)/2⌋∑
k=1

2n−2k

(
2k

k

)
= −2n+

1

2
Y1(n+1).

Evaluation of Y (n).
We get for n = 2p the contributions

−22p(p+ 1)

(
2p+ 1

p

)
− 22p + (p+ 1)

(
2p+ 1

p

)
= −22p + (4p+ 2)

(
2p

p

)
.

On the other hand for n = 2p+ 1 we obtain

2(p+ 1)

(
2p+ 1

p

)
− 22p+1 +

1

2
(p+ 2)

(
2p+ 3

p+ 1

)

= −22p+1 + (4p+ 5)

(
2p+ 1

p

)
.

Joining the two formulae we get the compact closed form

−2n + (2n+ 2 + (n mod 2))

(
n

⌊n/2⌋

)
.

Alternate proof.
Using ∑

k≥0

(
2k

k

)
z2k =

1√
1− 4z2

and

∑
k≥0

(
2k + 1

k

)
z2k+1 =

1

2z

∑
k≥0

(
2k + 2

k + 1

)
z2k+2 = − 1

2z
+

1

2z

1√
1− 4z2

we obtain

Y (n) = [zn]
1

1− 2z

[
− 1

2z
+

1

2z

1√
1− 4z2

+
1√

1− 4z2

]
= −2n + [zn]

1

1− 2z

[
1

2z

1√
1− 4z2

+
1√

1− 4z2

]
.
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Now observe that

[z2p]
1

1− 2z

1√
1− 4z2

=
1

2
[z2p]

2

(1− 4z2)3/2
=

(
−3/2

p

)
(−1)p4p

=

(
−1/2

p

)
(−1)p4p

−3/2− (p− 1)

−1/2
= (2p+ 1)

(
2p

p

)
and

[z2p+1]
1

1− 2z

1√
1− 4z2

=
1

2
[z2p+1]

4z

(1− 4z2)3/2
= 2(2p+ 1)

(
2p

p

)
.

Collecting everything we have for n = 2p

−22p + (2p+ 1)

(
2p

p

)
+ (2p+ 1)

(
2p

p

)
= −22p + (4p+ 2)

(
2p

p

)
and for n = 2p+ 1

−22p+1 + 2(2p+ 1)

(
2p

p

)
+

1

2
(2p+ 3)

(
2p+ 2

p+ 1

)
= −22p+1 + 2(p+ 1)

(
2p+ 1

p

)
+ (2p+ 3)

(
2p+ 1

p

)
= −22p+1 + (4p+ 5)

(
2p+ 1

p

)
.

This is the same result as what we obtained earlier.
This was math.stackexchange.com problem 1219731.

36 Iverson bracket and an identity by Gosper,
generalized (IR)

Suppose we seek to show that

m−1∑
q=0

(
n− 1 + q

q

)
xn(1− x)q +

n−1∑
q=0

(
m− 1 + q

q

)
xq(1− x)m = 1

where n,m ≥ 1.
We will evaluate the second term by a contour integral and show that is

equal to one minus the first term which is the desired result.
Introduce the Iverson bracket

[[0 ≤ q ≤ n− 1]] =
1

2πi

∫
|z|=ϵ

zq

zn
1

1− z
dz.
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With this bracket we may extend the sum in q to infinity to get

1

2πi

∫
|z|=ϵ

1

zn
1

1− z

∑
q≥0

(
m− 1 + q

q

)
zqxq(1− x)m dz

=
(1− x)m

2πi

∫
|z|=ϵ

1

zn
1

1− z

∑
q≥0

(
m− 1 + q

q

)
zqxq dz

=
(1− x)m

2πi

∫
|z|=ϵ

1

zn
1

1− z

1

(1− xz)m
dz.

For the series to converge we need |xz| < 1. With |z| = ϵ ≪ 1 we may restrict
to |x| < 1. The claim then holds for all x because the sum is a polynomial in x.
Now we have three poles here at z = 0 and z = 1 and z = 1/x and the residues
at these poles sum to zero, so we can evaluate the residue at zero by computing
the negative of the residues at z = 1 and z = 1/x.

Observe that the residue at infinity is zero as can be seen from the following
computation:

−Resz=0
1

z2
zn

1

1− 1/z

1

(1− x/z)m

−Resz=0
1

z2
zn

z

z − 1

zm

(z − x)m

−Resz=0z
n+m−1 1

z − 1

1

(z − x)m
= 0.

Returning to the main thread the residue at z = 1 as seen from

− (1− x)m

2πi

∫
|z|=ϵ

1

zn
1

z − 1

1

(1− xz)m
dz.

is

−(1− x)m
1

(1− x)m
= −1.

For the residue at z = 1/x we consider

(1− x)m

xm × 2πi

∫
|z|=ϵ

1

zn
1

1− z

1

(1/x− z)m
dz

=
(−1)m(1− x)m

xm × 2πi

∫
|z|=ϵ

1

zn
1

1− z

1

(z − 1/x)m
dz.

and use the following derivative:

1

(m− 1)!

(
1

zn
1

1− z

)(m−1)
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=
1

(m− 1)!

m−1∑
q=0

(
m− 1

q

)
(−1)q(n+ q − 1)!

(n− 1)!zn+q

(m− 1− q)!

(1− z)m−q

=

m−1∑
q=0

1

q!

(−1)q(n+ q − 1)!

(n− 1)!zn+q

1

(1− z)m−q

=

m−1∑
q=0

(
n+ q − 1

q

)
(−1)q

zn+q

1

(1− z)m−q
.

Evaluate this at z = 1/x and multiply by the factor in front to get

(−1)m(1− x)m

xm
×

m−1∑
q=0

(
n+ q − 1

q

)
(−1)qxn+q 1

(1− 1/x)m−q

=
(−1)m(1− x)m

xm
×

m−1∑
q=0

(
n+ q − 1

q

)
(−1)qxn+q xm−q

(x− 1)m−q

= (−1)m(1− x)m ×
m−1∑
q=0

(
n+ q − 1

q

)
(−1)qxn(−1)m−q 1

(1− x)m−q

=

m−1∑
q=0

(
n+ q − 1

q

)
xn(1− x)q.

This yields for the second sum term the value

1−
m−1∑
q=0

(
n+ q − 1

q

)
xn(1− x)q

showing that when we add the first and the second sum by cancellation the
end result is one, as claimed.

This was math.stackexchange.com problem 538309.

Special case by formal power series

Here we show the special case:

n∑
k=0

(
m+ k

k

)
2n−k +

m∑
k=0

(
n+ k

k

)
2m−k = 2n+m+1.

which is obtained from x = 1/2. We have by inspection i.e. same as before
that

n∑
k=0

(
m+ k

k

)
2n−k = 2n[zn]

1

1− z

1

(1− z/2)m+1
.
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This is

2n × Resz=0
1

zn+1

1

1− z

1

(1− z/2)m+1

= −2n × Resz=0
1

zn+1

1

z − 1

2m+1

(2− z)m+1

= 2n+m+1(−1)m × Resz=0
1

zn+1

1

z − 1

1

(z − 2)m+1
.

With

f(z) = 2n+m+1(−1)m
1

zn+1

1

z − 1

1

(z − 2)m+1

we will be using the fact that residues sum to zero i.e.

Resz=0f(z) + Resz=1f(z) + Resz=2f(z) + Resz=∞f(z) = 0.

The residue at infinity is zero since limR→∞ 2πR/Rn+1/R/Rm+1 = 0.
The residue at one is

2n+m+1(−1)m × (−1)m+1 = −2n+m+1.

For the residue at two we use the Leibniz rule:

1

m!

(
1

zn+1

1

z − 1

)(m)

=
1

m!

m∑
k=0

(
m

k

)
(−1)k

(n+ k)!

n!

1

zn+1+k
(−1)m−k (m− k)!

(z − 1)m−k+1

= (−1)m
m∑

k=0

(
n+ k

k

)
1

zn+1+k

1

(z − 1)m−k+1
.

Restore factor in front and evaluate at z = 2:

2n+m+1(−1)m × (−1)m
m∑

k=0

(
n+ k

k

)
1

2n+1+k
=

m∑
k=0

(
n+ k

k

)
2m−k.

Summing the residues we have shown that

n∑
k=0

(
m+ k

k

)
2n−k +

m∑
k=0

(
n+ k

k

)
2m−k − 2n+m+1 = 0

which is the claim.
This was math.stackexchange.com problem 3024722.
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37 Factoring a triple hypergeometric sum (B1)

Suppose we seek to evaluate

n∑
k=0

(−1)k
(
p+ q + 1

k

)(
p+ n− k

n− k

)(
q + n− k

n− k

)
which is claimed to be (

p

n

)(
q

n

)
.

We will prove it for p, q ≥ n and then we have it for all p, q because the sum
is a polynomial in p, q.

Re-write as follows:

(−1)n
n∑

k=0

(−1)k
(
p+ q + 1

n− k

)(
p+ k

k

)(
q + k

k

)
.

Introduce (
p+ q + 1

n− k

)
=

1

2πi

∫
|z|=ε

1

zn−k+1
(1 + z)p+q+1 dz

and (
q + k

q

)
=

1

2πi

∫
|w|=γ

1

wq+1
(1 + w)q+k dw

Note that the first integral vanishes when k > n so we may extend k to
infinity, getting

(−1)n
1

2πi

∫
|z|=ε

1

zn+1
(1 + z)p+q+1 1

2πi

∫
|w|=γ

1

wq+1
(1 + w)q

×
∑
k≥0

(
p+ k

k

)
(−1)kzk(1 + w)k dw dz.

Here we have ε < 1 and γ < 1 and we require for convergence that |z(1 +
w)| < 1. We have |z(1 + w)| ≤ ε(1 + γ) so we may choose ε = γ and γ < 1/2.
Continuing,

(−1)n
1

2πi

∫
|z|=ε

1

zn+1
(1 + z)p+q+1 1

2πi

∫
|w|=γ

1

wq+1
(1 + w)q

× 1

(1 + z(1 + w))p+1
dw dz

= (−1)n
1

2πi

∫
|z|=ε

1

zn+p+2
(1 + z)p+q+1 1

2πi

∫
|w|=γ

1

wq+1
(1 + w)q
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× 1

(w + (1 + z)/z)p+1
dw dz.

Here the residue at infinity in w is zero by inspection and the pole at w =
−(1+ z)/z has norm lower bounded by (1− γ)/γ = 1/γ − 1 > γ so it is outside
the contour. Hence we may evaluate using minus the residue at that pole with
the Leibniz rule:

1

p!

(
1

wq+1
(1 + w)q

)(p)

=
1

p!

p∑
k=0

(
p

k

)
(−1)k(q + 1)k

wq+1+k
qp−k(1 + w)q−(p−k)

=

p∑
k=0

(−1)k
(
q + k

k

)
1

wq+1+k

(
q

p− k

)
(1 + w)q+k−p.

Evaluate at w = −(1 + z)/z and flip sign to get

−
p∑

k=0

(−1)k
(
q + k

k

)
(−1)q+1+k zq+1+k

(1 + z)q+1+k

(
q

p− k

)
(−1)q+k−p 1

zq+k−p

= (−1)p
p∑

k=0

(−1)k
(
q + k

k

)(
q

p− k

)
zp+1

(1 + z)q+1+k
.

Substitute into the integral to obtain

(−1)n+p

p∑
k=0

(−1)k
(
q + k

k

)(
q

p− k

)(
p− k

n

)
.

Now note that

(
q

p− k

)(
p− k

n

)
=

q!

(q − (p− k))!× n!× (p− k − n)!
=

(
q

n

)(
q − n

p− k − n

)
.

Both sides here are zero when q < p−k and we have used the initial condition
q ≥ n in this step. We obtain

(−1)n+p

(
q

n

) p∑
k=0

(−1)k
(
q + k

k

)(
q − n

p− k − n

)
.

We have obtained the first factor. With the standard extractor on the re-
maining sum using the initial condition p ≥ n

(−1)n+p 1

2πi

∫
|z|=ε

1

zp−n+1
(1 + z)q−n

∑
k≥0

(−1)k
(
q + k

k

)
zk dz.
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Here the residue enforces k ≤ p−n so we may extend to infinity, with ε < 1.
We find

(−1)n+p 1

2πi

∫
|z|=ε

1

zp−n+1
(1+z)−n−1 dz = (−1)n+p

(
−n− 1

p− n

)
=

(
p

p− n

)
=

(
p

n

)
.

We have obtained the second factor and may conclude.
This is math.stackexchange.com problem 174054.

38 Factoring a triple hypergeometric sum II (B1)

Suppose we seek to verify that

n∑
k=0

(
n

k

)(
pn− n

k

)(
pn+ k

k

)
=

(
pn

n

)2

.

We use the integrals(
pn− n

k

)
=

1

2πi

∫
|z|=ϵ

(1 + z)pn−n

zk+1
dz

and (
pn+ k

k

)
=

1

2πi

∫
|w|=ϵ

(1 + w)pn+k

wk+1
dw.

This yields for the sum

1

2πi

∫
|z|=ϵ

(1 + z)pn−n

z

1

2πi

∫
|w|=ϵ

(1 + w)pn

w

n∑
k=0

(
n

k

)
(1 + w)k

zkwk
dw dz

=
1

2πi

∫
|z|=ϵ

(1 + z)pn−n

z

1

2πi

∫
|w|=ϵ

(1 + w)pn

w

(
1 +

1 + w

zw

)n

dw dz

=
1

2πi

∫
|z|=ϵ

(1 + z)pn−n

zn+1

1

2πi

∫
|w|=ϵ

(1 + w)pn

wn+1
(1 + w + zw)n dw dz.

Expanding the binomial in the inner sum we get

n∑
q=0

(
n

q

)
wq(1 + z)q

which yields
n∑

q=0

(
n

q

)
1

2πi

∫
|z|=ϵ

(1 + z)pn−n+q

zn+1

(
pn

n− q

)
dz
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=

n∑
q=0

(
n

q

)(
pn− n+ q

n

)(
pn

n− q

)
.

The inner term is (
n

q

)(
pn− n+ q

n

)(
pn

pn− n+ q

)

=
(pn)!

q!× (n− q)!× (pn− 2n+ q)!× (n− q)!

=

(
pn

n

)
n!× (pn− n)!

q!× (n− q)!× (pn− 2n+ q)!× (n− q)!

=

(
pn

n

)(
n

q

)(
pn− n

n− q

)
.

Thus it remains to show that

n∑
q=0

(
n

q

)(
pn− n

n− q

)
=

(
pn

n

)
.

This can be done combinatorially or using the integral

1

2πi

∫
|v|=ϵ

(1 + v)pn−n

vn+1

n∑
q=0

(
n

q

)
vq dv

=
1

2πi

∫
|v|=ϵ

(1 + v)pn−n

vn+1
(v + 1)n dv

=
1

2πi

∫
|v|=ϵ

(1 + v)pn

vn+1
=

(
pn

n

)
.

This was math.stackexchange.com problem 656116.

39 Factoring a triple hypergeometric sum III
(B1)

Suppose we seek to verify that

min{m,n,p}∑
r=0

(
m

r

)(
n

r

)(
p+m+ n− r

m+ n

)
=

(
p+m

m

)(
p+ n

n

)
.

Introduce (
n

r

)
=

(
n

n− r

)
=

1

2πi

∫
|z|=ϵ

1

zn−r+1
(1 + z)n dz
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and (
p+m+ n− r

m+ n

)
=

(
p+m+ n− r

p− r

)
=

1

2πi

∫
|w|=ϵ

1

wp−r+1
(1 + w)p+m+n−r dw.

Observe carefully that the first of these is zero when r > n and the second
one when r > p so we may extend the range of r to infinity.

This yields for the sum

1

2πi

∫
|z|=ϵ

(1 + z)n

zn+1

1

2πi

∫
|w|=ϵ

(1 + w)p+m+n

wp+1

∑
r≥0

(
m

r

)
zr

wr

(1 + w)r
dw dz

=
1

2πi

∫
|z|=ϵ

(1 + z)n

zn+1

1

2πi

∫
|w|=ϵ

(1 + w)p+m+n

wp+1

(
1 +

zw

1 + w

)m

dw dz

=
1

2πi

∫
|z|=ϵ

(1 + z)n

zn+1

1

2πi

∫
|w|=ϵ

(1 + w)p+n

wp+1
(1 + w + zw)m dw dz.

The inner integral is

1

2πi

∫
|w|=ϵ

(1 + w)p+n

wp+1

m∑
q=0

(
m

q

)
(1 + z)qwq dw

with residue
min(m,p)∑

q=0

(
m

q

)(
p+ n

p− q

)
(1 + z)q

which in combination with the outer integral yields

min(m,p)∑
q=0

(
m

q

)(
p+ n

n+ q

)(
n+ q

n

)
.

Now note that(
p+ n

n+ q

)(
n+ q

n

)
=

(p+ n)!

(p− q)!(n+ q)!

(n+ q)!

q!n!

=
(p+ n)!

(p− q)!p!

p!

q!n!
=

(
p+ n

n

)(
p

q

)
.

Therefore we just need to verify that

min(m,p)∑
q=0

(
m

q

)(
p

p− q

)
=

(
p+m

m

)
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which follows by inspection.
It can also be done with the integral(

p

p− q

)
=

1

2πi

∫
|w|=ϵ

(1 + w)p

wp−q+1
dw

which is zero when q > p so we can extend q to infinity to get for the sum

1

2πi

∫
|w|=ϵ

(1 + w)p

wp+1

∑
q≥0

(
m

q

)
wq dw

=
1

2πi

∫
|w|=ϵ

(1 + w)p+m

wp+1
dw

=

(
p+m

m

)
.

This was math.stackexchange.com problem 1460712.

40 A triple hypergeometric sum IV (B1)

Suppose we seek to verify that

l∑
p=0

p∑
q=0

(−1)q
(
m− p

m− l

)(
n

q

)(
m− n

p− q

)
= 2l

(
m− n

l

)
where m ≥ n and m− n ≥ l.
This is

l∑
p=0

(
m− p

m− l

) p∑
q=0

(−1)q
(
n

q

)(
m− n

p− q

)
.

Now introduce the integral(
m− n

p− q

)
=

1

2πi

∫
|z|=ϵ

1

zp−q+1
(1 + z)m−n dz.

Note that this vanishes when q > p so we may extend the range of q to
infinity, getting for the sum

l∑
p=0

(
m− p

m− l

)
1

2πi

∫
|z|=ϵ

1

zp+1
(1 + z)m−n

∑
q≥0

(−1)q
(
n

q

)
zq dz

=

l∑
p=0

(
m− p

l − p

)
1

2πi

∫
|z|=ϵ

1

zp+1
(1 + z)m−n(1− z)n dz.

Introduce furthermore
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(
m− p

l − p

)
=

1

2πi

∫
|w|=γ

1

wl−p+1
(1 + w)m−p dw.

This too vanishes when p > l so we may extend p to infinity, getting

1

2πi

∫
|w|=γ

1

wl+1
(1 + w)m

× 1

2πi

∫
|z|=ϵ

1

z
(1 + z)m−n(1− z)n

∑
p≥0

wp

zp
1

(1 + w)p
dz dw.

The geometric series converges when |w/z/(1 + w)| < 1. We get

1

2πi

∫
|w|=γ

1

wl+1
(1 + w)m

× 1

2πi

∫
|z|=ϵ

1

z
(1 + z)m−n(1− z)n

1

1− w/z/(1 + w)
dz dw

=
1

2πi

∫
|w|=γ

1

wl+1
(1 + w)m

× 1

2πi

∫
|z|=ϵ

(1 + z)m−n(1− z)n
1

z − w/(1 + w)
dz dw.

Now from the convergence we have |w/(1 + w)| < |z| which means the pole
at z = w/(1+w) is inside the contour |z| = ϵ. Extracting the residue yields (the
pole at zero has disappeared)

1

2πi

∫
|w|=γ

1

wl+1
(1 + w)m

(
1 +

w

1 + w

)m−n(
1− w

1 + w

)n

dw

=
1

2πi

∫
|w|=γ

1

wl+1
(1 + 2w)m−n dw

= 2l
(
m− n

l

)
.

This was math.stackexchange.com problem 1767709.

41 Basic usage of exponentiation integral to ob-
tain Stirling number formulae (E)

Suppose we seek to evaluate

n∑
q=0

(n− 2q)k
(

n

2q + 1

)
.
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We observe that

(n− 2q)k =
k!

2πi

∫
|z|=ϵ

1

zk+1
exp((n− 2q)z) dz.

This yields for the sum

k!

2πi

∫
|z|=ϵ

1

zk+1

n∑
q=0

(
n

2q + 1

)
exp((n− 2q)z) dz

=
k!

2πi

∫
|z|=ϵ

exp((n+ 1)z)

zk+1

n∑
q=0

(
n

2q + 1

)
exp((−2q − 1)z) dz

which is
1

2

k!

2πi

∫
|z|=ϵ

exp((n+ 1)z)

zk+1

×

(
n∑

q=0

(
n

q

)
exp(−qz)−

n∑
q=0

(
n

q

)
(−1)q exp(−qz)

)
dz.

This yields two pieces, call them A1 and A2. Piece A1 is

1

2

k!

2πi

∫
|z|=ϵ

exp((n+ 1)z)

zk+1
(1 + exp(−z))n dz

=
1

2

k!

2πi

∫
|z|=ϵ

exp(z)

zk+1
(exp(z) + 1)n dz

and piece A2 is

1

2

k!

2πi

∫
|z|=ϵ

exp((n+ 1)z)

zk+1
(1− exp(−z))n dz

=
1

2

k!

2πi

∫
|z|=ϵ

exp(z)

zk+1
(exp(z)− 1)n dz.

Recall the species equation for labelled set partitions:

P(UP≥1(Z))

which yields the bivariate generating function of the Stirling numbers of the
second kind

exp(u(exp(z)− 1)).

This implies that ∑
n≥q

{
n

q

}
zn

n!
=

(exp(z)− 1)q

q!
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and ∑
n≥q

{
n

q

}
zn−1

(n− 1)!
=

(exp(z)− 1)q−1

(q − 1)!
exp(z).

Now to evaluate A1 proceed as follows:

1

2

k!

2πi

∫
|z|=ϵ

exp(z)

zk+1
(2 + exp(z)− 1)n dz

=
1

2

k!

2πi

∫
|z|=ϵ

exp(z)

zk+1

n∑
q=0

(
n

q

)
2n−q(exp(z)− 1)q dz

=

n∑
q=0

(
n

q

)
2n−q × q!× 1

2

k!

2πi

∫
|z|=ϵ

exp(z)

zk+1

(exp(z)− 1)q

q!
dz.

Recognizing the differentiated Stirling number generating function this be-
comes

n∑
q=0

(
n

q

)
2n−q−1 × q!×

{
k + 1

q + 1

}
.

Now observe that when n > k + 1 the Stirling number for k + 1 < q ≤ n
is zero, so we may replace n by k + 1. Similarly, when n < k + 1 the binomial
coefficient for n < q ≤ k + 1 is zero so we may again replace n by k + 1. This
gives the following result for A1 :

k+1∑
q=0

(
n

q

)
2n−q−1 × q!×

{
k + 1

q + 1

}
.

Moving on to A2 we observe that when k < n the contribution is zero because
the series for exp(z)− 1 starts at z. This integral is simple and we have

1

2

k!× n!

2πi

∫
|z|=ϵ

exp(z)

zk+1

(exp(z)− 1)n

n!
dz.

Recognizing the Stirling number this yields

1

2
× n!×

{
k + 1

n+ 1

}
.

which correctly represents the fact that we have a zero contribution when
k < n.

This finally yields the closed form formula

k+1∑
q=0

(
n

q

)
2n−q−1 × q!×

{
k + 1

q + 1

}
− 1

2
× n!×

{
k + 1

n+ 1

}
.

confirming the previous results.
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This was math.stackexchange.com problem 1353963

42 Three phase application including Leibniz’
rule (B1B2R)

Suppose we seek to verify that

n∑
q=0

q

(
2n

n+ q

)(
m+ q − 1

2m− 1

)
= m× 4n−m ×

(
n

m

)
where n ≥ m.

We use the integrals(
2n

n+ q

)
=

1

2πi

∫
|z|=ϵ

1

zn−q+1

1

(1− z)n+q+1
dz.

and (
m+ q − 1

2m− 1

)
=

1

2πi

∫
|w|=ϵ

(1 + w)m+q−1

w2m
dw.

Observe that the first integral is zero when q > n so we may extend q to
infinity.

This yields for the sum

1

2πi

∫
|z|=ϵ

1

zn+1

1

(1− z)n+1

1

2πi

∫
|w|=ϵ

(1 + w)m−1

w2m

∑
q≥0

q
zq(1 + w)q

(1− z)q
dw dz

=
1

2πi

∫
|z|=ϵ

1

zn+1

1

(1− z)n+1

× 1

2πi

∫
|w|=ϵ

(1 + w)m−1

w2m

z(1 + w)/(1− z)

(1− z(1 + w)/(1− z))2
dw dz

=
1

2πi

∫
|z|=ϵ

1

zn+1

1

(1− z)n+1

× 1

2πi

∫
|w|=ϵ

(1 + w)m−1

w2m

z(1 + w)(1− z)

(1− z − z(1 + w))2
dw dz

=
1

2πi

∫
|z|=ϵ

1

zn
1

(1− z)n

× 1

2πi

∫
|w|=ϵ

(1 + w)m

w2m

1

(1− 2z − zw)2
dw dz.

We evaluate the inner integral using the negative of the residue at the pole
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at w = (1− 2z)/z, starting from

1

2πi

∫
|z|=ϵ

1

zn+2

1

(1− z)n
1

2πi

∫
|w|=ϵ

(1 + w)m

w2m

1

(w − (1− 2z)/z)2
dw dz.

Differentiating we have

m
(1 + w)m−1

w2m
− 2m

(1 + w)m

w2m+1
= (w − 2(1 + w))m

(1 + w)m−1

w2m+1

= (−w − 2)m
(1 + w)m−1

w2m+1
.

The negative of this evaluated at w = (1− 2z)/z is

1

z
×m× (1− z)m−1

zm−1
× z2m+1

(1− 2z)2m+1

which finally yields

m

2πi

∫
|z|=ϵ

1

zn−m+1

1

(1− z)n−m+1

1

(1− 2z)2m+1
dz.

We have that the residues at zero, one and one half sum to zero with the
first one being the sum we are trying to compute. Therefore we evaluate these
in turn. We will restore the front factor of m at the end.

For the residue at zero we have using the Cauchy product that

n−m∑
q=0

(
n−m+ q

q

)
2n−m−q

(
2m+ n−m− q

n−m− q

)

=

n−m∑
q=0

(
n−m+ q

q

)
2n−m−q

(
m+ n− q

2m

)
.

For the residue at one we have that

(−1)n−m+1

(n−m)!

(
1

zn−m+1

1

(1− 2z)2m+1

)(n−m)

=
(−1)n−m+1

(n−m)!

n−m∑
q=0

(
n−m

q

)
(−1)q

(n−m+ q)!

(n−m)!× zn−m+1+q

×2n−m−q (2m+ n−m− q)!

(2m)!× (1− 2z)2m+1+n−m−q

=
(−1)n−m+12n−m

(n−m)!

n−m∑
q=0

(
n−m

q

)
(−1)q

(n−m+ q)!

(n−m)!× zn−m+1+q
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×2−q (m+ n− q)!

(2m)!× (1− 2z)m+1+n−q
.

Evaluate this at one to get

2n−m
n−m∑
q=0

(
n−m+ q

q

)
2−q

(
m+ n− q

2m

)
.

The residue at one evaluates to the sum we seek just like the residue at zero.
This leaves the residue at one half, where we find

(−1)2m+1

(2m)!× 22m+1

(
1

zn−m+1

1

(1− z)n−m+1

)(2m)

=
(−1)2m+1

(2m)!× 22m+1

2m∑
q=0

(
2m

q

)
(−1)q

(n−m+ q)!

(n−m)!× zn−m+1+q

× (n−m+ 2m− q)!

(n−m)!× (1− z)n−m+1+2m−q

=
(−1)2m+1

(2m)!× 22m+1

2m∑
q=0

(
2m

q

)
(−1)q

(n−m+ q)!

(n−m)!× zn−m+1+q

× (n+m− q)!

(n−m)!× (1− z)n+m+1−q
.

Evaluate this at one half to get

− 1

22m+1

2m∑
q=0

(
n−m+ q

q

)
(−1)q2n−m+1+q

(
n+m− q

2m− q

)
2n+m+1−q

= −22n−2m+1
2m∑
q=0

(
n−m+ q

q

)
(−1)q

(
n+m− q

2m− q

)
.

For this last sum use the integral(
n+m− q

2m− q

)
=

(
n+m− q

n−m

)
=

1

2πi

∫
|v|=ϵ

1

v2m−q+1

1

(1− v)n−m+1
dv.

This controls the range so we can let q go to infinity in the sum to get

1

2πi

∫
|v|=ϵ

1

v2m+1

1

(1− v)n−m+1

∑
q≥0

(
n−m+ q

q

)
(−1)qvq dv

=
1

2πi

∫
|v|=ϵ

1

v2m+1

1

(1− v)n−m+1

1

(1 + v)n−m+1
dv
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=
1

2πi

∫
|v|=ϵ

1

v2m+1

1

(1− v2)n−m+1
dv =

(
n−m+m

m

)
=

(
n

m

)
.

We have shown that

2S −m× 2× 22n−2m ×
(
n

m

)
= 0

and hence may conclude that

S = m× 4n−m ×
(
n

m

)
.

Remark. If we want to do this properly we also need to verify that the
residue at infinity of the integral in w is zero. Recall the formula for the residue
at infinity

Resz=∞h(z) = Resz=0

[
− 1

z2
h

(
1

z

)]
In the present case this becomes

−Resw=0
1

w2

(1 + 1/w)m

1/w2m

1

(1− 2z − z/w)2

= −Resw=0
(1 + 1/w)m

1/w2m

1

(w(1− 2z)− z)2

= −Resw=0(1 + w)mwm 1

(w(1− 2z)− z)2

which is zero by inspection.
The same procedure applied to the main integral yields

−Resz=0
1

z2
zn−m+1 1

(1− 1/z)n−m+1

1

(1− 2/z)2m+1

= −Resz=0
1

z2
zn−m+1 zn−m+1

(z − 1)n−m+1

z2m+1

(z − 2)2m+1

= −Resz=0z
2n+1 1

(z − 1)n−m+1

1

(z − 2)2m+1

which is zero as well.
This was math.stackexchange.com problem 1247818.
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43 Same problem, streamlined proof (B1B2R)

Suppose we seek to verify that

S =

n∑
q=0

q

(
2n

n+ q

)(
m+ q − 1

2m− 1

)
= m× 4n−m ×

(
n

m

)
where n ≥ m.

This is

n∑
q=0

(n− q)

(
2n

q

)(
m+ n− q − 1

2m− 1

)
which has two pieces. We use the integral

(
m+ n− q − 1

2m− 1

)
=

(
m+ n− q − 1

n−m− q

)
=

1

2πi

∫
|w|=ϵ

1

wn−m−q+1
(1+w)m+n−q−1 dw.

Observe that this integral vanishes when q > n − m and we may extend q
to 2n. We get for the first piece

n

2πi

∫
|w|=ϵ

1

wn−m+1
(1 + w)m+n−1

2n∑
q=0

(
2n

q

)
wq

(1 + w)q
dw

=
n

2πi

∫
|w|=ϵ

1

wn−m+1

1

(1 + w)n+1−m
(1 + 2w)2n dw.

The second piece is the negative of

n∑
q=0

q

(
2n

q

)(
m+ n− q − 1

2m− 1

)
=

n∑
q=1

q

(
2n

q

)(
m+ n− q − 1

2m− 1

)

= 2n

n∑
q=1

(
2n− 1

q − 1

)(
m+ n− q − 1

2m− 1

)
= 2n

n−1∑
q=0

(
2n− 1

q

)(
m+ n− q − 2

2m− 1

)

= 2n

n−1∑
q=0

(
2n− 1

q

)(
m+ n− q − 2

n−m− q − 1

)
.

This vanishes through its integral representation when q > n − m − 1 and
we obtain

2n

2πi

∫
|w|=ϵ

1

wn−m

1

(1 + w)n+1−m
(1 + 2w)2n−1 dw.

Joining the two pieces we arrive at the single integral
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n

2πi

∫
|w|=ϵ

1

wn−m+1

1

(1 + w)n+1−m
(1 + 2w)2n−1 dw.

We know the residues at zero, minus one and infinity sum to zero, where the
first represents the queried sum. For the residue at minus one it is given by

n

2πi

∫
|w+1|=γ

1

wn−m+1

1

(1 + w)n+1−m
(1 + 2w)2n−1 dw

=
n

2πi

∫
|v|=γ

1

(v − 1)n−m+1

1

vn+1−m
(2v − 1)2n−1 dv

= − n

2πi

∫
|v|=γ

1

(−v − 1)n−m+1

1

(−v)n+1−m
(−1− 2v)2n−1 dv

=
n

2πi

∫
|v|=γ

1

(1 + v)n−m+1

1

vn+1−m
(1 + 2v)2n−1 dv.

We see that this residue also represents the queried sum. This leaves the
residue at infinity which is

Resw=∞
1

wn−m+1

1

(1 + w)n+1−m
(1 + 2w)2n−1

= −Resw=0
1

w2
wn−m+1 1

(1 + 1/w)n+1−m
(1 + 2/w)2n−1

= −Resw=0w
n−m−1 wn+1−m

(1 + w)n+1−m

(2 + w)2n−1

w2n−1

= −Resw=0
1

w2m−1

(2 + w)2n−1

(1 + w)n+1−m
.

Extracting coefficients we find

−n

2m−2∑
q=0

(
2n− 1

2m− 2− q

)
22n−2m+1+q(−1)q

(
n−m+ q

q

)
.

Introduce (this vanishes when q > 2m− 2)(
2n− 1

2m− 2− q

)
=

(
2n− 1

2n+ 1− 2m+ q

)
=

1

2πi

∫
|z|=ϵ

1

z2m−1−q

1

(1− z)2n−2m+2+q
dz

to get for the sum
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−n22n−2m+1

2πi

∫
|z|=ϵ

1

z2m−1

1

(1− z)2n−2m+2

∑
q≥0

(
n−m+ q

q

)
2q(−1)q

zq

(1− z)q
dz

= −n22n−2m+1

2πi

∫
|z|=ϵ

1

z2m−1

1

(1− z)2n−2m+2

1

(1 + 2z/(1− z))n−m+1
dz

= −n22n−2m+1

2πi

∫
|z|=ϵ

1

z2m−1

1

(1− z)n−m+1

1

(1 + z)n−m+1
dz

= −n22n−2m+1

2πi

∫
|z|=ϵ

1

z2m−1

1

(1− z2)n−m+1
dz

= −n22n−2m+1[z2m−2]
1

(1− z2)n−m+1
= −n22n−2m+1[zm−1]

1

(1− z)n−m+1

= −n22n−2m+1

(
n−m+m− 1

m− 1

)
.

It follows that

2S − n22n−2m+1

(
n− 1

m− 1

)
= 0 or S = n4n−mm

n

(
n

m

)
which yields

S = m× 4n−m ×
(
n

m

)
as claimed.

44 Symmetry of the Euler-Frobenius coefficient
(B1EIR)

Suppose we have the coefficient of the Euler-Frobenius polynomial

bnk =

k∑
l=1

(−1)k−lln
(
n+ 1

k − l

)
and we seek to show that bnk = bnn+1−k where 0 ≤ k ≤ n+ 1.

First re-write this as

k∑
l=0

(−1)l(k − l)n
(
n+ 1

l

)
.
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Introduce the Iverson bracket

[[0 ≤ l ≤ k]] =
1

2πi

∫
|z|=ϵ

zl

zk+1

1

1− z
dz

and the exponentiation integral

(k − l)n =
n!

2πi

∫
|w|=ϵ

1

wn+1
exp((k − l)w) dw.

to get for the sum (extend the summation to n+1 since the Iverson bracket
controls the range)

n!

2πi

∫
|w|=ϵ

1

wn+1
exp(kw)

1

2πi

∫
|z|=ϵ

1

zk+1

1

1− z

n+1∑
l=0

(
n+ 1

l

)
(−1)lzl exp(−lw) dz dw

=
n!

2πi

∫
|w|=ϵ

1

wn+1
exp(kw)

1

2πi

∫
|z|=ϵ

1

zk+1

1

1− z
(1− z exp(−w))n+1 dz dw.

Evaluate this using the residues at the poles at z = 1 and at infinity. We
obtain for z = 1

− n!

2πi

∫
|w|=ϵ

1

wn+1
exp(kw)(1− exp(−w))n+1 dw,

note however that 1 − exp(−w) starts at w so the power starts at wn+1

making for a zero contribution.
We get for the residue at infinity

−Resz=0
1

z2
zk+1 1

1− 1/z
(1− exp(−w)/z)n+1

= −Resz=0z
k 1

z − 1
(1− exp(−w)/z)n+1

= Resz=0
zk

zn+1

1

1− z
(z − exp(−w))n+1.

We need to flip the sign on this one more time since we are exploiting the
fact that the residues at the three poles sum to zero. Actually extracting the
coefficient we get

−
n−k∑
q=0

(
n+ 1

q

)
(−1)n+1−q exp(−(n+ 1− q)w).
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Substitute this into the integral in w to get

−
n−k∑
q=0

(
n+ 1

q

)
n!

2πi

∫
|w|=ϵ

1

wn+1
exp(kw)(−1)n+1−q exp(−(n+ 1− q)w) dw

= −
n−k∑
q=0

(
n+ 1

q

)
(−1)n+1−q(−1)n(n+ 1− k − q)n

=

n−k∑
q=0

(
n+ 1

q

)
(−1)q(n+ 1− k − q)n.

Using the fact that n+ 1− k − q is zero at q = n+ 1− k we finally obtain

n+1−k∑
q=0

(
n+ 1

q

)
(−1)q(n+ 1− k − q)n

which is precisely bnn+1−k by definition, QED.
Addendum. An alternate proof (variation on the theme from above) starts

from the unmodified definition and introduces(
n+ 1

k − l

)
=

1

2πi

∫
|z|=ϵ

1

zk−l+1
(1 + z)n+1 dz.

This controls the range so we may extend l to infinity. Introduce furthermore

ln =
n!

2πi

∫
|w|=ϵ

1

wn+1
exp(lw) dw.

These two yield for the sum

n!

2πi

∫
|w|=ϵ

1

wn+1

1

2πi

∫
|z|=ϵ

(−1)k

zk+1
(1 + z)n+1

∑
l≥0

(−1)lzl exp(lw) dz dw

=
n!

2πi

∫
|w|=ϵ

1

wn+1

1

2πi

∫
|z|=ϵ

(−1)k

zk+1
(1 + z)n+1 1

1 + z exp(w)
dz dw

=
n!

2πi

∫
|w|=ϵ

exp(−w)

wn+1

1

2πi

∫
|z|=ϵ

(−1)k

zk+1
(1 + z)n+1 1

z + exp(−w)
dz dw.

We evaluate this using the negatives of the residues at z = − exp(−w) and
at infinity. We get for z = − exp(−w)

n!

2πi

∫
|w|=ϵ

exp(−w)

wn+1

(−1)k

(−1)k+1 exp(−(k + 1)w)
(1− exp(−w))n+1 dw

105



= − n!

2πi

∫
|w|=ϵ

exp(kw)

wn+1
(1− exp(−w))n+1 dw.

As before the exponentiated term starts at wn+1 so there is no coefficient
on wn for a contribution of zero.

We get for the residue at infinity (starting from the next-to-last version of
the integral)

−Resz=0
1

z2
(−1)kzk+1 (1 + z)n+1

zn+1

1

1 + exp(w)/z

= −Resz=0
1

z2
(−1)kzk+1 (1 + z)n+1

zn+1

z/ exp(w)

1 + z/ exp(w)

= −Resz=0(−1)kzk
(1 + z)n+1

zn+1

exp(−w)

1 + z/ exp(w)
.

Doing the sign flip and simplifying we obtain

exp(−w)(−1)k × Resz=0
(1 + z)n+1

zn−k+1

1

1 + z/ exp(w)
.

Extract the residue to get

exp(−w)(−1)k
n−k∑
q=0

(
n+ 1

q

)
(−1)n−k−q exp(−(n− k − q)w)

Substitute into the integral in w to obtain

n−k∑
q=0

(
n+ 1

q

)
n!

2πi

∫
|w|=ϵ

1

wn+1
(−1)n−q exp(−(n+ 1− k − q)w) dw

=

n−k∑
q=0

(
n+ 1

q

)
(−1)n−q(−1)n(n+ 1− k − q)n

=

n−k∑
q=0

(
n+ 1

q

)
(−1)q(n+ 1− k − q)n.

We have obtained bnn+1−k as before.
This was math.stackexchange.com problem 1435648.

45 A probability distribution with two parame-
ters (B1B2)

A sum of binomial coefficients CLXVII
Suppose we have a random variable X where
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P[X = k] =

(
N

2n+ 1

)−1(
N − k

n

)(
k − 1

n

)
for k = n+ 1, . . . , N − n and zero otherwise.
We seek to show that these probabilities sum to one and compute the the

mean and the variance.
Sum of probabilities. This is given by(

N

2n+ 1

)−1 N−n∑
k=n+1

(
N − k

n

)(
k − 1

n

)
.

Introduce (
N − k

n

)
=

1

2πi

∫
|z|=ϵ

1

zN−n−k+1

1

(1− z)n+1
dz

and (
k − 1

n

)
=

1

2πi

∫
|w|=ϵ

(1 + w)k−1

wn+1
dw.

Observe carefully that the first integral is zero when k > N − n and the
second one when 1 ≤ k ≤ n so we may extend the range of the sum to 1 ≤ k.

This gives for the sum (without the scalar)

1

2πi

∫
|z|=ϵ

1

zN−n

1

(1− z)n+1

1

2πi

∫
|w|=ϵ

1

wn+1

∑
k≥1

zk−1(1 + w)k−1 dw dz

=
1

2πi

∫
|z|=ϵ

1

zN−n

1

(1− z)n+1

1

2πi

∫
|w|=ϵ

1

wn+1

1

1− z(1 + w)
dw dz.

The integral in w is

1

1− z

1

2πi

∫
|w|=ϵ

1

wn+1

1

1− wz/(1− z)
dw

which yields for the integral in z

1

2πi

∫
|z|=ϵ

1

zN−n

1

(1− z)n+1

zn

(1− z)n+1
dz

which is (
N − 2n− 1 + 2n+ 1

2n+ 1

)
=

(
N

2n+ 1

)
.

This confirms that the probabilities sum to one.
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Expectation. This is given by

E[X] =

(
N

2n+ 1

)−1 N−n∑
k=n+1

k

(
N − k

n

)(
k − 1

n

)
.

Introduce

k

(
k − 1

n

)
=

k!

n!× (k − 1− n)!
= (n+ 1)

(
k

n+ 1

)
= (n+ 1)

1

2πi

∫
|w|=ϵ

(1 + w)k

wn+2
dw.

The range control from this integral produces zero when 0 ≤ k ≤ n so we
may extend the sum to zero, getting

(n+ 1)
1

2πi

∫
|z|=ϵ

1

zN−n+1

1

(1− z)n+1

1

2πi

∫
|w|=ϵ

1

wn+2

∑
k≥0

zk(1 + w)k dw dz.

The integral in w is

1

2πi

∫
|w|=ϵ

1

wn+2

1

1− z(1 + w)
dw

=
1

1− z

1

2πi

∫
|w|=ϵ

1

wn+2

1

1− wz/(1− z)
dw

which yields for the integral in z including the factor in front

(n+ 1)
1

2πi

∫
|z|=ϵ

1

zN−n+1

1

(1− z)n+1

zn+1

(1− z)n+2
dz

which is

(n+ 1)

(
N − 2n− 1 + 2n+ 2

2n+ 2

)
= (n+ 1)

(
N + 1

2n+ 2

)
.

We will scale this at the end, same as the variance.
Variance. Start by computing

E[(X + 1)X] =

(
N

2n+ 1

)−1 N−n∑
k=n+1

(k + 1)k

(
N − k

n

)(
k − 1

n

)
.

Introduce

(k + 1)k

(
k − 1

n

)
=

(k + 1)!

n!× (k − 1− n)!
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= (n+ 2)(n+ 1)

(
k + 1

n+ 2

)
= (n+ 2)(n+ 1)

1

2πi

∫
|w|=ϵ

(1 + w)k+1

wn+3
dw.

The range control from this integral produces zero when 0 ≤ k ≤ n as before
so we may extend the sum to zero, getting

(n+ 2)(n+ 1)
1

2πi

∫
|z|=ϵ

1

zN−n+1

1

(1− z)n+1

× 1

2πi

∫
|w|=ϵ

1 + w

wn+3

∑
k≥0

zk(1 + w)k dw dz.

The integral in w is

1

2πi

∫
|w|=ϵ

1 + w

wn+3

1

1− z(1 + w)
dw

=
1

1− z

1

2πi

∫
|w|=ϵ

1 + w

wn+3

1

1− wz/(1− z)
dw

which yields for the integral in z including the factor in front

(n+ 2)(n+ 1)
1

2πi

∫
|z|=ϵ

1

zN−n+1

1

(1− z)n+1

(
zn+2

(1− z)n+3
+

zn+1

(1− z)n+2

)
dz

which is

(n+ 2)(n+ 1)

((
N − 2n− 2 + 2n+ 3

2n+ 3

)
+

(
N − 2n− 1 + 2n+ 2

2n+ 2

))

= (n+ 2)(n+ 1)

((
N + 1

2n+ 3

)
+

(
N + 1

2n+ 2

))
.

Simplification for ease of interpretation.
We get for the expectation

E[X] = (n+ 1)
(N + 1)!

(N − 2n− 1)!(2n+ 2)!

(N − 2n− 1)!(2n+ 1)!

N !

=
1

2
(N + 1).

We obtain furthermore

E[(X + 1)X] = (n+ 2)(n+ 1)

×
(

(N + 1)!

(N − 2n− 2)!(2n+ 3)!
+

(N + 1)!

(N − 2n− 1)!(2n+ 2)!

)
(N − 2n− 1)!(2n+ 1)!

N !

=
1

2
(N + 1)(n+ 2)

(
N − 2n− 1

2n+ 3
+ 1

)
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=
1

2
(N + 2)(N + 1)

n+ 2

2n+ 3
.

This yields for the variance

Var[X] = E[X2]− E[X]2

=
1

2
(N + 2)(N + 1)

n+ 2

2n+ 3
− 1

2
(N + 1)− 1

4
(N + 1)2.

which simplifies to

Var[X] =
1

4
(N + 1)

N − 2n− 1

2n+ 3
.

This was math.stackexchange.com problem 1257644.

46 An identity involving Narayana numbers (B1)

Suppose we have the Narayana number

N(n,m) =
1

n

(
n

m

)(
n

m− 1

)
and let

A(n, k, l) =
∑

i0+i1+···+ik=n
j0+j1+···+jk=l

k∏
t=0

N(it, jt + 1)

where the compositions for n are regular and the ones for l are weak and we
seek to verify that

A(n, k, l) =
k + 1

n

(
n

l

)(
n

l + k + 1

)
.

Introducing

G(z, u) =
∑
p≥1

zp
∑
q≥0

uq 1

p

(
p

q + 1

)(
p

q

)

=
∑
p≥1

1

p
zp
∑
q≥0

uq

(
p

q + 1

)(
p

q

)
we have by inspection that

A(n, k, l) = [zn][ul]G(z, u)k+1.

To evaluate this introduce for the inner sum term(
p

q + 1

)
=

(
p

p− q − 1

)
=

1

2πi

∫
|w|=ϵ

1

wp−q
(1 + w)p dw.
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We get for the inner sum

1

2πi

∫
|w|=ϵ

1

wp
(1 + w)p

∑
q≥0

(
p

q

)
uqwq dw

=
1

2πi

∫
|w|=ϵ

1

wp
(1 + w)p(1 + uw)p dw

=
1

2πi

∫
|w|=ϵ

1

wp
(1 + w(1 + u+ uw)))p dw.

Extracting the coefficient from this we get

[wp−1]

p∑
q=0

(
p

q

)
wq(1 + u+ uw)q

=

p−1∑
q=0

(
p

q

)
[wp−1−q](1 + u+ uw)q

=

p−1∑
q=0

(
p

q

)(
q

p− 1− q

)
up−1−q(1 + u)2q+1−p.

This is
p−1∑
q=0

(
p

q + 1

)(
p− 1− q

q

)
uq(1 + u)p−1−2q.

Now observe that with the factor 1/p from the definition,

1

p

(
p

q + 1

)(
p− 1− q

q

)
=

1

q + 1

(
p− 1

q

)(
p− 1− q

q

)
=

1

q + 1

(
p− 1

p− 1− q

)(
p− 1− q

q

)
=

1

q + 1

(
p− 1

2q

)(
2q

q

)
.

where

Cq =
1

q + 1

(
2q

q

)
is a Catalan number.

We thus get for the sum

∑
p≥1

zp
p−1∑
q=0

(
p− 1

2q

)
Cqu

q(1 + u)p−1−2q

= z
∑
p≥0

zp
p∑

q=0

(
p

2q

)
Cqu

q(1 + u)p−2q
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= z
∑
q≥0

Cqu
q(1 + u)−2q

∑
p≥q

(
p

2q

)
zp(1 + u)p

= z
∑
q≥0

Cqu
q(1 + u)−2q

∑
p≥2q

(
p

2q

)
zp(1 + u)p

= z
∑
q≥0

Cqu
q(1 + u)−2q(1 + u)2qz2q

∑
p≥0

(
p+ 2q

2q

)
zp(1 + u)p

= z
∑
q≥0

Cqu
qz2q

1

(1− z(1 + u))2q+1
.

Using the generating function of the Catalan numbers

Q(w) =
∑
q≥0

Cqw
q =

1−
√
1− 4w

2w

which has functional equation

Q(w) = 1 + wQ(w)2

we obtain

Q

(
uz2

(1− z(1 + u))2

)
= 1 +

uz2

(1− z(1 + u))2
Q

(
uz2

(1− z(1 + u))2

)2

which is

G(z, u)
1− z(1 + u)

z
= 1 + uG(z, u)2.

Extract the coefficient in z first. We get from the functional equation

z =
G(z, u)

uG(z, u)2 + (1 + u)G(z, u) + 1
.

The coefficient extractor integral is

[zn]G(z, u)k+1 =
k + 1

n
[zn−1]G(z, u)kG′(z, u)

=
k + 1

n

1

2πi

∫
|z|=ϵ

1

zn
G(z, u)kG′(z, u) dz.

which becomes with G(z, u) = v

k + 1

n

1

2πi

∫
|v|=γ

(uv2 + (1 + u)v + 1)n

vn
vk dv.

Here we have used from the definition of G(z, u) that G(0, u) = 0 so the
substitution maps zero to zero. Moreover [z1]G(z, u) ̸= 0 so when z makes one
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turn so does v.
This is

k + 1

n

1

2πi

∫
|v|=γ

(uv(v + 1) + (v + 1))n

vn−k
dv.

Extracting the coefficient on [ul] we get

k + 1

n

(
n

l

)
1

2πi

∫
|v|=γ

vl(v + 1)l(v + 1)n−l

vn−k
dv

=
k + 1

n

(
n

l

)(
n

n− 1− k − l

)
=

k + 1

n

(
n

l

)(
n

k + l + 1

)
.

This is the claim, QED.
Remark. The closed form of G(z, u) can be computed as follows:

z

1− z(1 + u)

1−
√
1− 4uz2/(1− z(1 + u))2

2uz2/(1− z(1 + u))2

=
z

(1− z(1 + u))2
1− z(1 + u)−

√
1− 2z(1 + u) + z2(1 + u)2 − 4uz2

2uz2/(1− z(1 + u))2

=
1− z(1 + u)−

√
1− 2z(1 + u) + z2(1 + u)2 − 4uz2

2uz
.

The above material incorporates data from OEIS A055151 and from OEIS
A001263 on Narayana numbers.

This was math.stackechange.com problem 1498014.

47 Convolution of Narayana polynomials (B1)

This is basically a re-write of the previous entry with a more general conclusion.
Suppose we define

C
(1)
0 (t) = 1 and C(1)

n (t) =

n−1∑
k=0

(
n− 1

k

)(
n+ 1

k + 1

)
1

n+ 1
tk

and let for m ≥ 2

C(m)
n (t) =

n∑
q=0

C(m−1)
q (t)C

(1)
n−q(t).

This definition is equivalent to introducing

G(w) =
∑
n≥1

C(1)
n (t)wn

and letting
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C(m)
n (t) = [wn](1 +G(w))m = [wn]

m∑
p=0

(
m

p

)
G(w)p.

We seek to show that

C
(m)
0 (t) = 1 and C(m)

n (t) =

n−1∑
k=0

(
n− 1

k

)(
n+m

k +m

)
m

n+m
tk.

The case n zero follows by inspection. Furthermore we have from the previ-
ous section that

[wn]G(w)p+1 =
p

n

1

2πi

∫
|v|=γ

(tv(v + 1) + (v + 1))n

vn−p
dv.

Summing with the binomial coefficient,

[wn]

m∑
p=0

(
m

p

)
G(w)p =

1

n

1

2πi

∫
|v|=γ

m∑
p=0

p

(
m

p

)
(tv(v + 1) + (v + 1))n

vn+1−p
dv

=
m

n

1

2πi

∫
|v|=γ

m∑
p=1

(
m− 1

p− 1

)
(tv(v + 1) + (v + 1))n

vn+1−p
dv

=
m

n

1

2πi

∫
|v|=γ

m−1∑
p=0

(
m− 1

p

)
(tv + 1)n(1 + v)n

vn−p
dv

=
m

n

1

2πi

∫
|v|=γ

(tv + 1)n(1 + v)n+m−1

vn
dv.

Extracting the coefficient on [tk],

m

n

(
n

k

)
1

2πi

∫
|v|=γ

vk(1 + v)n+m−1

vn
dv =

m

n

(
n

k

)(
n+m− 1

n− 1− k

)
.

With some binomial coefficient manipulation we get

m

n

(
n− 1

k

)
n

n− k

(
n+m− 1

m+ k

)
= m

(
n− 1

k

)
1

n− k

(
n+m

m+ k

)
1

n+m
(n− k)

=
m

n+m

(
n− 1

k

)(
n+m

k +m

)
.

This is the claim.
This was math.stackexchange.com problem 1997791.
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48 A property of Legendre polynomials (B1)

Suppose we seek to determine the constant Q in the equality

Qn,m

(
d

dz

)n−m

(1− z2)n = (1− z2)m
(

d

dz

)n+m

(1− z2)n

where n ≥ m. We will compute the coefficients on [zq] on the LHS and the
RHS. Writing 1− z2 = (1 + z)(1− z) we get for the LHS

n−m∑
p=0

(
n−m

p

)(
n

p

)
p!(1 + z)n−p

×
(

n

n−m− p

)
(n−m− p)!(−1)n−m−p(1− z)m+p

= (n−m)!(−1)n−m
n−m∑
p=0

(
n

p

)(
n

n−m− p

)
(1 + z)n−p(−1)p(1− z)m+p.

Extracting the coefficient we get

(n−m)!(−1)n−m
n−m∑
p=0

(
n

p

)(
n

n−m− p

)
(−1)p

×
n−p∑
k=0

(
n− p

k

)
(−1)q−k

(
m+ p

q − k

)
.

We use the same procedure on the RHS and merge in the (1− z2)m term to
get

(n+m)!(−1)n+m
n+m∑
p=0

(
n

p

)(
n

n+m− p

)
(−1)p

×
n+m−p∑

k=0

(
n+m− p

k

)
(−1)q−k

(
p

q − k

)
.

Working in parallel with LHS and RHS we treat the inner sum of the LHS
first, putting (

m+ p

q − k

)
=

1

2πi

∫
|z|=ϵ

1

zq−k+1
(1 + z)m+p dz

to get

1

2πi

∫
|z|=ϵ

1

zq+1
(1 + z)m+p

n−p∑
k=0

(
n− p

k

)
(−1)q−kzk dz
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=
(−1)q

2πi

∫
|z|=ϵ

1

zq+1
(1 + z)m+p(1− z)n−p dz.

Adapt and repeat to obtain for the inner sum of the RHS

(−1)q

2πi

∫
|z|=ϵ

1

zq+1
(1 + z)p(1− z)n+m−p dz.

Moving on to the two outer sums we introduce(
n

n−m− p

)
=

1

2πi

∫
|w|=γ

1

wn−m−p+1
(1 + w)n dw

to obtain for the LHS

1

2πi

∫
|w|=γ

1

wn−m+1
(1 + w)n

× (−1)q

2πi

∫
|z|=ϵ

1

zq+1
(1 + z)m(1− z)n

n−m∑
p=0

(
n

p

)
(−1)pwp (1 + z)p

(1− z)p
dz dw

=
1

2πi

∫
|w|=γ

1

wn−m+1
(1 + w)n

× (−1)q

2πi

∫
|z|=ϵ

1

zq+1
(1 + z)m(1− z)n

(
1− w

1 + z

1− z

)n

dz dw

=
1

2πi

∫
|w|=γ

1

wn−m+1
(1 + w)n

× (−1)q

2πi

∫
|z|=ϵ

1

zq+1
(1 + z)m(1− z − w − wz)n dz dw.

Repeat for the RHS to get

1

2πi

∫
|w|=γ

1

wn+m+1
(1 + w)n

× (−1)q

2πi

∫
|z|=ϵ

1

zq+1
(1− z)m(1− z − w − wz)n dz dw.

Extracting coefficients from the first integral (LHS) we write

(1− z − w − wz)n = (2− (1 + z)(1 + w))n

=

n∑
k=0

(
n

k

)
(−1)k(1 + z)k(1 + w)k2n−k

and the inner integral yields
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(−1)q
n∑

k=0

(
n

k

)
(−1)k

(
m+ k

q

)
(1 + w)k2n−k

followed by the outer one which gives

(−1)q
n∑

k=0

(
n

k

)
(−1)k

(
m+ k

q

)(
n+ k

n−m

)
2n−k.

For the second integral (RHS) we write

(1− z − w − wz)n = ((1− z)(1 + w)− 2w)n

=
n∑

k=0

(
n

k

)
(1− z)k(1 + w)k(−1)n−k2n−kwn−k

and the inner integral yields

(−1)q
n∑

k=0

(
n

k

)(
m+ k

q

)
(−1)q(1 + w)k(−1)n−k2n−kwn−k

followed by the outer one which produces

n∑
k=0

(
n

k

)(
m+ k

q

)(
n+ k

k +m

)
(−1)n−k2n−k.

The two sums are equal up to a sign and the RHS for the coefficient on [zq]
is obtained from the LHS by multiplying by

(n+m)!

(n−m)!
(−1)n−q.

Observe that powers of z that are present in the LHS and the RHS always
have the same parity, the coefficients being zero otherwise (either all even powers
or all odd). Therefore (−1)n−q is in fact a constant not dependent on q, the
question is which. The leading term has degree 2n − (n − m) = n + m =
(2n − (n + m)) + 2m on both sides and the sign on the LHS is (−1)n and on
the RHS it is (−1)n+m. The conclusion is that the queried factor is given by

Qn,m = (−1)m
(n+m)!

(n−m)!
.

This was math.stackexchange.com problem 2066340.

49 A sum of factorials, OGF and EGF of the
Stirling numbers of the second kind (B1)

We are given that
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rk(r + n)! =

k∑
m=0

λm(r + n+m)!

and seek to determine the λm independent of r. We claim and prove that

λm = (−1)k+m
k−m∑
p=0

(
k

p

){
k + 1− p

m+ 1

}
np.

With this in mind we re-write the initial condition as

rk =

k∑
m=0

λmm!

(
r + n+m

m

)
.

We evaluate the RHS starting with λm using the EGF of the Stirling numbers
of the second kind which in the present case says that{

k + 1− p

m+ 1

}
=

(k + 1− p)!

2πi

∫
|z|=ϵ

1

zk+2−p

(exp(z)− 1)m+1

(m+ 1)!
dz.

We obtain for λm

(−1)k+m
k−m∑
p=0

np

(
k

p

)
(k + 1− p)!

2πi

∫
|z|=ϵ

1

zk+2−p

(exp(z)− 1)m+1

(m+ 1)!
dz.

The inner term vanishes when p ≥ k+2 but in fact even better it also vanishes
when p > k−m which implies m+1 > k+1−p because (exp(z)−1)m+1 starts
at [zm+1] and we are extracting the term on [zk+1−p].

Hence we may extend p to infinity without picking up any extra contributions
to get

(−1)k+m k!

2πi

∫
|z|=ϵ

1

zk+2

(exp(z)− 1)m+1

(m+ 1)!

∑
p≥0

(k + 1− p)
npzp

p!
dz.

This is

(−1)k+m k!

2πi

∫
|z|=ϵ

1

zk+2

(exp(z)− 1)m+1

(m+ 1)!
((k + 1)− nz) exp(nz) dz.

Substitute this into the outer sum to get

(−1)k
k!

2πi

∫
|z|=ϵ

1

zk+2
((k + 1)− nz) exp(nz)
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×
k∑

m=0

(
r + n+m

m

)
(−1)m

(exp(z)− 1)m+1

m+ 1
dz.

We have (
r + n+m

m

)
1

m+ 1
=

(
r + n+m

m+ 1

)
1

r + n

and hence obtain

(−1)k

r + n

k!

2πi

∫
|z|=ϵ

1

zk+2
((k + 1)− nz) exp(nz)

×
k∑

m=0

(
r + n+m

m+ 1

)
(−1)m(exp(z)− 1)m+1 dz.

We may extendm tom > k in the remaining sum because the term (exp(z)−
1)m+1 as before starts at [zm+1] which would then be > k + 1 but we are
extracting the coefficient on [zk+1], which makes for a zero contribution.

Continuing we find

−
∑
m≥0

(
r + n+m

r + n− 1

)
(−1)m+1(exp(z)− 1)m+1

= 1− 1

(1− (1− exp(z)))r+n
= 1− exp(−(r + n)z).

We get two pieces on substituting this back into the main integral, the first
is

(−1)k

r + n

k!

2πi

∫
|z|=ϵ

1

zk+2
((k + 1)− nz) exp(nz) dz

=
(−1)k

r + n
(k + 1)!

nk+1

(k + 1)!
− (−1)k

r + n
k!n

nk

k!
= 0.

and the second is

(−1)k+1

r + n

k!

2πi

∫
|z|=ϵ

1

zk+2
((k + 1)− nz) exp(nz) exp(−(r + n)z) dz

=
(−1)k+1

r + n

k!

2πi

∫
|z|=ϵ

1

zk+2
((k + 1)− nz) exp(−rz) dz

=
(−1)k+1

r + n
(k + 1)!

(−r)k+1

(k + 1)!
− (−1)k+1

r + n
k!n

(−r)k

k!

=
1

r + n
(k + 1)!

rk+1

(k + 1)!
+

1

r + n
k!n

rk

k!
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=
1

r + n
rk+1 +

1

r + n
nrk = rk.

This concludes the argument.
Addendum Nov 27 2016. Markus Scheuer proposes the identity

λm = (−1)m+k
k∑

p=m

{
p

m

}(
k

p

)
(n+ 1)k−p.

To see that this is the same as what I presented we extract the coefficient
on [nq] to get

(−1)m+k
k∑

p=m

{
p

m

}(
k

p

)(
k − p

q

)
.

Now we have(
k

p

)(
k − p

q

)
=

k!

p!q!(k − p− q)!
=

(
k

q

)(
k − q

p

)
.

We get

(−1)m+k

(
k

q

) k∑
p=m

{
p

m

}(
k − q

p

)
.

We now introduce(
k − q

p

)
=

(
k − q

k − q − p

)
=

1

2πi

∫
|z|=ϵ

1

zk−q−p+1
(1 + z)k−q dz.

This certainly vanishes when p > k−q so we may extend p to infinity, getting
for the sum

(−1)m+k

(
k

q

)
1

2πi

∫
|z|=ϵ

1

zk−q+1
(1 + z)k−q

∑
p≥m

{
p

m

}
zp dz.

Using the OGF of the Stirling numbers of the second kind this becomes

(−1)m+k

(
k

q

)
1

2πi

∫
|z|=ϵ

1

zk−q+1
(1 + z)k−q

m∏
l=1

z

1− lz
dz.

Now put z/(1+ z) = w to get z = w/(1−w) and dz = 1/(1−w)2 dw to get

(−1)m+k

(
k

q

)
1

2πi

∫
|w|=γ

1

wk−q

1− w

w

1

(1− w)2

m∏
l=1

w/(1− w)

1− lw/(1− w)
dw
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= (−1)m+k

(
k

q

)
1

2πi

∫
|w|=γ

1

wk−q+1

1

1− w

m∏
l=1

w

1− w − lw
dw

= (−1)m+k

(
k

q

)
1

2πi

∫
|w|=γ

1

wk−q+1

1

1− w

m∏
l=1

w

1− (l + 1)w
dw

= (−1)m+k

(
k

q

)
1

2πi

∫
|w|=γ

1

wk−q+2

w

1− w

m+1∏
l=2

w

1− lw
dw

= (−1)m+k

(
k

q

)
1

2πi

∫
|w|=γ

1

wk−q+2

m+1∏
l=1

w

1− lw
dw

= (−1)m+k

(
k

q

){
k − q + 1

m+ 1

}
.

This is the claim and we are done.
This was math.stackexchange.com problem 2028293.

50 Fibonacci, Tribonacci, Tetranacci (B1)

Suppose we seek to evaluate the following sum (with a condition on the binomial
coefficient)

G(n,m) =

n∑
k=0

k∑
q=0

(−1)q
(
k

q

)(
n− 1− qm

k − 1

)
.

Now when n− 1− qm < 0 we usually get a non-zero value for the binomial
coefficient but this is not wanted here. Therefore we have

G(n,m) =

n∑
k=0

⌊(n−k)/m⌋∑
q=0

(−1)q
(
k

q

)(
n− 1− qm

k − 1

)
.

If we have lost any values for q above ⌊(n − k)/m⌋ these would render the
second binomial coefficient zero. If we have added in any values for q above k
the first binomial coefficient is zero there.

Now with the integral

(
n− 1− qm

k − 1

)
=

(
n− 1− qm

n− k − qm

)
=

1

2πi

∫
|z|=ϵ

(1 + z)n−1−qm

zn−k−qm+1
dz

we get range control because the pole vanishes when q > (n− k)/m and we
may extend q to infinity. We thus obtain for the inner sum
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1

2πi

∫
|z|=ϵ

(1 + z)n−1

zn−k+1

∑
q≥0

(−1)q
(
k

q

)
zqm

(1 + z)qm
dz

=
1

2πi

∫
|z|=ϵ

(1 + z)n−1

zn−k+1

(
1− zm

(1 + z)m

)k

dz

This yields for the outer sum

1

2πi

∫
|z|=ϵ

(1 + z)n−1

zn+1

(
1− z

(
1− zm

(1 + z)m

))−1

×

(
1− zn+1

(
1− zm

(1 + z)m

)n+1
)

dz

which is

1

2πi

∫
|z|=ϵ

(1 + z)n+m−1

zn+1

(
(1− z)(1 + z)m + zm+1

)−1

×

(
1− zn+1

(
1− zm

(1 + z)m

)n+1
)

dz

Extracting the second component from the difference we get

− 1

2πi

∫
|z|=ϵ

(1 + z)n+m−1
(
(1− z)(1 + z)m + zm+1

)−1
(
1− zm

(1 + z)m

)n+1

dz

The pole at zero has vanished. We now have non-zero poles at z = −1 and
from the inverted term. These depend on m and we can certainly choose ϵ small
enough so that none of them are inside the contour. Therefore this term does
not contribute, leaving only

1

2πi

∫
|z|=ϵ

(1 + z)n+m−1

zn+1

1

(1− z)(1 + z)m + zm+1
dz.

The generating function f(w) of these numbers is thus given by

f(w) =
∑
n≥0

wn
n∑

q=0

(
n+m− 1

n− q

)
[zq]

1

(1− z)(1 + z)m + zm+1
.

This is ∑
q≥0

[zq]
1

(1− z)(1 + z)m + zm+1

∑
n≥q

wn

(
n+m− 1

n− q

)
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=
∑
q≥0

wq[zq]
1

(1− z)(1 + z)m + zm+1

∑
n≥0

wn

(
n+m− 1 + q

n

)

=
1

(1− w)m

∑
q≥0

wq

(1− w)q
[zq]

1

(1− z)(1 + z)m + zm+1
.

What we have here is an annihilated coefficient extractor that simplifies to

f(w) =
1

(1− w)m
1

(1− w/(1− w))(1 + w/(1− w))m + (w/(1− w))m+1

=
1

(1− w)m
1

(1− 2w)/(1− w)/(1− w)m + wm+1/(1− w)m+1

=
1− w

1− 2w + wm+1
.

Now observe that

1− 2w + wm+1 = (1− w)(1− w − w2 − · · · − wm−1 − wm)

so we finally have

f(w) =

(
1−

m∑
q=1

wq

)−1

=
1

1− w − w2 − · · · − wm
.

We see that by the basic theory of linear recurrences what we have here is
a Fibonacci, Tribonacci, Tetranacci etc. recurrence. The question is what are
the initial values.

Observe however that [w0]f(w) = 1 and for 1 ≤ q ≤ m we have

[wq]
1− w

1− 2w + wm+1
= [wq]

1

1− 2w + wm+1
− [wq−1]

1

1− 2w + wm+1
.

But

1

1− 2w + wm+1
=

1

1− 2w(1− wm/2)
=
∑
n≥0

2nwn(1− wm/2)n

With the condition on q and n ≥ 1 only the constant term from the term
(1− wm/2)n contributes because the degree would be more than m otherwise.
This produces just one matching term with coefficient 2q.

This yields for f(w)

[wq]f(w) = 2q − 2q−1 = 2q−1.
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Therefore we get for the intial terms starting at q = 0

1, 1, 2, 4, 8, 16, . . . , 2m−1 with recurrence fn =

m∑
q=1

fn−q.

This recurrence also shows (by subtraction) that the sequence may be pro-
duced starting from m− 1 zero terms followed by one.

The OEIS has the Fibonacci numbers, OEIS A000045

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

and the Tribonacci numbers, OEIS A000073

1, 2, 4, 7, 13, 24, 44, 81, 149, 274, . . .

and the Tetranacci numbers, OEIS A000078

1, 2, 4, 8, 15, 29, 56, 108, 208, 401, . . .

and more.
This was math.stackexcange.com problem 1626949.

51 Stirling numbers of two kinds, binomial co-
efficients

Suppose we seek to verify that{
n

m

}
= (−1)n

n∑
k=m

(
k

m

)
(−1)k

k∑
q=0

{
n+ q −m

k

}[
k

q

](
n

m− q

)
where presumably n ≥ m. We need for the second binomial coefficient that

m ≥ q so this is

{
n

m

}
= (−1)n

n∑
k=m

(
k

m

)
(−1)k

m∑
q=0

{
n+ q −m

k

}[
k

q

](
n

m− q

)
.

Observe that the Stirling number of the second kind vanishes when k > n
so we may extend the summation to infinity, getting

{
n

m

}
= (−1)n

∑
k≥m

(
k

m

)
(−1)k

m∑
q=0

{
n+ q −m

k

}[
k

q

](
n

m− q

)
.

Recall that
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[
k

q

]
= [wq]k!×

(
w + k − 1

k

)
.

Starting with the inner sum we obtain

n!

m∑
q=0

1

(m− q)!
[zn+q−m](exp(z)− 1)k[wq]

(
w + k − 1

k

)

= n!

m∑
q=0

1

q!
[zn−q](exp(z)− 1)k[wm−q]

(
w + k − 1

k

)
.

Now when q > m the coefficient extractor in w yields zero, hence we may
extend the sum in q to infinity:

n!
∑
q≥0

1

q!
[zn−q](exp(z)− 1)k[wm−q]

(
w + k − 1

k

)
.

We thus obtain

n!

2πi

∫
|z|=ϵ

1

zn+1
(exp(z)− 1)k

1

2πi

∫
|w|=γ

1

wm+1

(
w + k − 1

k

)∑
q≥0

1

q!
zqwq dw dz

=
n!

2πi

∫
|z|=ϵ

1

zn+1
(exp(z)− 1)k

1

2πi

∫
|w|=γ

1

wm+1

(
w + k − 1

k

)
exp(zw) dw dz.

Preparing the outer sum we obtain∑
k≥m

(
k

m

)
(−1)k(exp(z)− 1)k

(
w + k − 1

k

)

=
∑
k≥m

(
k

m

)
(−1)k(exp(z)− 1)k[vk]

1

(1− v)w
.

Note that for a formal power series Q(v) we have∑
k≥m

(
k

m

)
(−1)k−muk−m[vk]Q(v) =

1

m!
(Q(v))(m)

∣∣∣
v=−u

.

We get for the derivative in v(
1

(1− v)w

)(m)

= m!

(
w +m− 1

m

)
1

(1− v)w+m
.

Substituting u = exp(z)− 1 yields

m!

(
w +m− 1

m

)
exp(−(w +m)z).

125



Returning to the double integral we find

(−1)n × n!

2πi

∫
|z|=ϵ

1

zn+1
(exp(z)− 1)m(−1)m

× 1

2πi

∫
|w|=γ

1

wm+1
exp(zw)

(
w +m− 1

m

)
exp(−(w +m)z) dw dz

=
(−1)n × n!

2πi

∫
|z|=ϵ

1

zn+1
(exp(z)− 1)m(−1)m exp(−mz)

× 1

2πi

∫
|w|=γ

1

wm+1

(
w +m− 1

m

)
dw dz

=
(−1)n × n!

2πi×m!

∫
|z|=ϵ

1

zn+1
(exp(z)− 1)m(−1)m exp(−mz) dz

=
(−1)n × n!

2πi×m!

∫
|z|=ϵ

1

zn+1
(1− exp(−z))m(−1)m dz

=
(−1)n × n!

2πi×m!

∫
|z|=ϵ

1

zn+1
(exp(−z)− 1)m dz.

Finally put z = −v to get

− (−1)n × n!

2πi×m!

∫
|v|=ϵ

(−1)n+1

vn+1
(exp(v)− 1)m dv

=
n!

2πi×m!

∫
|v|=ϵ

1

vn+1
(exp(v)− 1)m dv.

This is

n![vn]
(exp(v)− 1)m

m!
=

{
n

m

}
and we have the claim.
This was math.stackexchange.com problem 1926107.

52 An identity involving two binomial coefficients
and a fractional term (B1)

Suppose we seek to verify that

m∑
k=0

q

pk + q

(
pk + q

k

)(
pm− pk

m− k

)
=

(
mp+ q

m

)
.

Observe that
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(
pk + q

k

)
=

pk + q

k

(
pk + q − 1

k − 1

)
so that(

pk + q

k

)
− p

(
pk + q − 1

k − 1

)
=

q

k

(
pk + q − 1

k − 1

)
=

q

pk + q

(
pk + q

k

)
.

This yields two pieces for the sum, call them S1

m∑
k=0

(
pk + q

k

)(
pm− pk

m− k

)
and S2

−p

m∑
k=0

(
pk + q − 1

k − 1

)(
pm− pk

m− k

)
.

For S1 introduce the integrals(
pk + q

k

)
=

1

2πi

∫
|z|=γ

(1 + z)pk+q

zk+1
dz

and (
pm− pk

m− k

)
=

1

2πi

∫
|w|=ε

(1 + w)pm−pk

wm−k+1
dw.

The second one controls the range of the sum because the pole at zero
vanishes when k > m so we may extend k to infinity, getting for the sum

1

2πi

∫
|w|=ε

(1 + w)pm

wm+1

1

2πi

∫
|z|=γ

(1 + z)q

z

∑
k≥0

wk

zk
(1 + z)pk

(1 + w)pk
dz dw

=
1

2πi

∫
|w|=ε

(1 + w)pm

wm+1

1

2πi

∫
|z|=γ

(1 + z)q

z

1

1− w(1 + z)p/z/(1 + w)p
dz dw

=
1

2πi

∫
|w|=ε

(1 + w)pm+p

wm+1

1

2πi

∫
|z|=γ

(1 + z)q
1

z(1 + w)p − w(1 + z)p
dz dw.

We require convergence of the geometric series i.e. |w(1+ z)p| < |z(1+w)p|.
This says that ε/γ < |(1+w)p/(1+z)p|.We also have |(1+w)p/(1+z)p| > (3/5)p

supposing that ε, γ < 1
4 . Hence we may take ε = 1/Q and γ = 2p/Q with

Q ≥ 2p+3, Q large. Now z = w is the only pole inside the contour and it
is simple. The latter follows from the fact that when setting z = w in the
derivative
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(1 + w)p − pw(1 + z)p−1
∣∣
z=w

= (1 + w)p − pw(1 + w)p−1 = (1 + w)p−1(1 + w − pw).

we can choose ε small enough such that |1+w−wp| > 0 so the pole is order
one which yields

1

2πi

∫
|w|=ε

(1 + w)pm+p

wm+1
(1 + w)q

1

(1 + w)p−1

1

1 + w − pw
dw

=
1

2πi

∫
|w|=ε

(1 + w)pm+q+1

wm+1

1

1 + w − pw
dw.

Following exactly the same procedure we obtain for S2

−p
1

2πi

∫
|w|=ε

(1 + w)pm+q

wm

1

1 + w − pw
dw.

Adding these two pieces now yields

1

2πi

∫
|w|=ε

(1 + w)pm+q

wm

(
1 + w

w
− p

)
1

1 + w − pw
dw

=
1

2πi

∫
|w|=ε

(1 + w)pm+q

wm+1
dw =

(
pm+ q

m

)
.

Concerning the p− 1 other poles we can factor

z(1+w)p−w(1+z)p =

p∑
q=0

(
p

q

)
(zwq−wzq) = (z−w)+zw

p∑
q=2

(
p

q

)
(wq−1−zq−1)

= (z − w) + zw(w − z)

p∑
q=2

(
p

q

) q−2∑
r=0

zrwq−2−r.

Hence we need to show that

1− zw

p∑
q=2

(
p

q

) q−2∑
r=0

zrwq−2−r.

does not have any roots inside |z| = γ. Exchangeing summations and re-
writing,

p−2∑
r=0

zr
p∑

q=r+2

(
p

q

)
wq−2−r =

1

zw
.

Choosing Q large and using that ε, γ ≪ 1 we can make the RHS as large as
we want in modulus yet the LHS is a finite sum bounded above by a constant

128



in p and hence equality does not occur in this domain.
Remark Mon Jan 25 2016.
An alternate proof from the integral

1

2πi

∫
|w|=ε

(1 + w)pm

wm+1

∑
k≥0

wk

(1 + w)pk
1

2πi

∫
|z|=γ

(1 + z)q

zk+1
(1 + z)pk dz dw

Now put

u =
z

(1 + z)p
and introduce g(u) = z.

Note that the origin in z gets mapped to the origin in u.
We then have

du =

(
1

(1 + z)p
− p

z

(1 + z)p+1

)
dz =

(
u

g(u)
− pu

1 + g(u)

)
dz

and

dz =
1

u

g(u)(1 + g(u))

1 + g(u)− pg(u)
du.

This yields

1

2πi

∫
|w|=ε

(1 + w)pm

wm+1

∑
k≥0

wk

(1 + w)pk

× 1

2πi

∫
|u|=γ

1

g(u)uk
(1 + g(u))q

1

u

g(u)(1 + g(u))

1 + g(u)− pg(u)
du dw

or

1

2πi

∫
|w|=ε

(1 + w)pm

wm+1
(1 + g(u))q

1 + g(u)

1 + g(u)− pg(u)

∣∣∣∣
u=w/(1+w)p

dw.

Now observe that g(w/(1 + w)p) = w by definition so we get

1

2πi

∫
|w|=ε

(1 + w)pm

wm+1
(1 + w)q

1 + w

1 + w − pw
dw

=
1

2πi

∫
|w|=ε

(1 + w)pm+q+1

wm+1

1

1 + w − pw
dw.

This is exactly the same as before and the rest of the proof continues un-
changed. Concerning g(u) it is analytic in a neighborhood of the origin and has
a Taylor series there whose coefficients can be calculated for n ≥ 1 (the value
for n = 0 must be set to zero):
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1

n

1

2πi

∫
|u|=γ

1

un
g′(u) du =

1

n

1

2πi

∫
|z|=γ

(1 + z)pn

zn
dz

=
1

n

(
np

n− 1

)
=

1

n(p− 1) + 1

(
np

n

)
.

The radius of convergence of the series can be shown to equal (p− 1)p−1/pp

which was done at the following link which is MSE 4983957. For the ratio
between consecutive terms we find

n(p− 1) + p

n(p− 1) + 1

(pn)!

n!× (pn− n)!

(n+ 1)!× (pn+ p− n− 1)!

(pn+ p)!
.

Now we have

(pn)!

(pn+ p)!
=

p∏
q=1

1

pn+ q
=

1

(pn)p

p∏
q=1

1

1 + q/p/n

=
1

(pn)p
exp

[
p∑

q=1

log
1

1 + q/p/n

]
.

With n large we may replace the logarithm with the first term of its Taylor
series to get

1

(pn)p
exp

[
− 1

pn

p∑
q=1

q

]
=

1

(pn)p
exp

[
−1

2

p+ 1

n

]
.

We also have

(pn+ p− n− 1)!

(pn− n)!
=

p−1∏
q=1

(pn− n+ q) = (pn− n)p−1

p−1∏
q=1

(1 + q/(p− 1)/n)

= (pn− n)p−1 exp

[
p−1∑
q=1

log(1 + q/(p− 1)/n)

]

∼ (pn− n)p−1 exp

[
1

(p− 1)n

p−1∑
q=1

q

]
= (pn− n)p−1 exp

[
1

2

p

n

]
.

Collecting everything,

(n(p− 1) + p)(n+ 1)

n(p− 1) + 1
np−1(p− 1)p−1 1

nppp
exp

[
− 1

2n

]
=

n(p− 1) + p

n(p− 1) + 1

n+ 1

n

(p− 1)p−1

pp
exp

[
− 1

2n

]
∼ (p− 1)p−1

pp
.
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This will do it for the radius of convergence. Here we assumed that g(u)
is analytic in a neighborhood of the origin and we then computed the radius
of convergence of that branch. Note also that there is a potential pole in the
last integral involving g(u) when 1 + g(u)− pg(u) = 0 or g(u) = 1/(p− 1) but
this gives u = 1/(p − 1)/(p/(p − 1))p = (p − 1)p−1/pp and we take γ less than
the radius of convergence, so this pole is not inside the contour, making for a
zero contribution. Note furthermore that our choice of Q excludes the pole at
w = 1/(p− 1) from inside the contour.

This was math.stackexchange.com problem 1620083.

53 Double chain of a total of three integrals
(B1B2)

Suppose we seek to verify that

n−1∑
k=q

q

k

(
2n− 2k − 2

n− k − 1

)(
2k − q − 1

k − 1

)
=

(
2n− q − 2

n− 1

)
.

This is the same as

n∑
k=q

q

k

(
2n− 2k

n− k

)(
2k − q − 1

k − 1

)
=

(
2n− q

n

)
.

which is equivalent to

n∑
k=q

q − k

k

(
2n− 2k

n− k

)(
2k − q − 1

k − 1

)
+

n∑
k=q

(
2n− 2k

n− k

)(
2k − q − 1

k − 1

)

=

(
2n− q

n

)
.

Now
q − k

k

(
2k − q − 1

k − 1

)
=

q − k

k

(2k − q − 1)!

(k − 1)!(k − q)!

= − (2k − q − 1)!

k!(k − q − 1)!
= −

(
2k − q − 1

k

)
.

It follows that what we have is in fact

n∑
k=q

(
2n− 2k

n− k

)((
2k − q − 1

k − 1

)
−
(
2k − q − 1

k

))
=

(
2n− q

n

)
or alternatively
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n∑
k=q

(
2n− 2k

n− k

)((
2k − q − 1

k − q

)
−
(
2k − q − 1

k − q − 1

))
=

(
2n− q

n

)
.

There are two pieces here, call them A and B. We use the integral repre-
sentation (

2n− 2k

n− k

)
=

1

2πi

∫
|z|=ϵ

(1 + z)2n−2k

zn−k+1
dz

which is zero when k > n (pole vanishes) so we may extend k to infinity. We
also use the integral(

2k − q − 1

k − q

)
=

1

2πi

∫
|w|=γ

(1 + w)2k−q−1

wk−q+1
dw

which is zero when k < q so we may extend k back to zero. We obtain for
piece A

1

2πi

∫
|w|=γ

wq−1

(1 + w)q+1

1

2πi

∫
|z|=ϵ

(1 + z)2n

zn+1

∑
k≥0

zk

(1 + z)2k
(1 + w)2k

wk
dz dw

=
1

2πi

∫
|w|=γ

wq−1

(1 + w)q+1

1

2πi

∫
|z|=ϵ

(1 + z)2n

zn+1

1

1− z(1 + w)2/w/(1 + z)2
dz dw

=
1

2πi

∫
|w|=γ

wq

(1 + w)q+1

1

2πi

∫
|z|=ϵ

(1 + z)2n+2

zn+1

1

w(1 + z)2 − z(1 + w)2
dz dw

=
1

2πi

∫
|w|=γ

wq−1

(1 + w)q+1

1

2πi

∫
|z|=ϵ

(1 + z)2n+2

zn+1

1

(z − w)(z − 1/w)
dz dw.

The derivation for piece B is the same and yields

1

2πi

∫
|w|=γ

wq

(1 + w)q+1

1

2πi

∫
|z|=ϵ

(1 + z)2n+2

zn+1

1

(z − w)(z − 1/w)
dz dw.

The difference of these two is

1

2πi

∫
|w|=γ

wq−1

(1 + w)q+1

1

2πi

∫
|z|=ϵ

(1 + z)2n+2

zn+1

1− w

(z − w)(z − 1/w)
dz dw.

Using partial fractions by residues we get

1− w

(z − w)(z − 1/w)
=

1− w

w − 1/w

1

z − w
+

1− w

1/w − w

1

z − 1/w
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=
w(1− w)

w2 − 1

1

z − w
+

w(1− w)

1− w2

1

z − 1/w
= − w

1 + w

1

z − w
+

w

1 + w

1

z − 1/w

=
1

1 + w

1

1− z/w
− w2

1 + w

1

1− wz
.

At this point we can see that there will be no contribution from the second
term but this needs to be verified. We get for the residue in z

− w2

1 + w

n∑
p=0

(
2n+ 2

p

)
wn−p

There is no pole at zero in the outer integral for a contribution of zero.
Continuing with the first term we get

1

1 + w

n∑
p=0

(
2n+ 2

p

)
1

wn−p

which yields

n∑
p=0

(
2n+ 2

p

)
1

2πi

∫
|w|=γ

wq−1

(1 + w)q+2

1

wn−p
dw

=

n∑
p=0

(
2n+ 2

p

)
1

2πi

∫
|w|=γ

1

(1 + w)q+2

1

wn−q−p+1
dw

=

n∑
p=0

(
2n+ 2

p

)
(−1)n−q−p

(
n− p+ 1

q + 1

)
.

This is

n∑
p=0

(
2n+ 2

p

)
(−1)n−q−p

(
n− p+ 1

n− p− q

)
.

The last integral we will be using is(
n− p+ 1

n− p− q

)
=

1

2πi

∫
|v|=γ

(1 + v)n−p+1

vn−p−q+1
dv.

Observe that this is zero when p ≥ n so we may extend p to infinity, getting

1

2πi

∫
|v|=γ

(1 + v)n+1

vn−q+1

∑
p≥0

(
2n+ 2

p

)
(−1)n−q−p vp

(1 + v)p
dv

= (−1)n−q 1

2πi

∫
|v|=γ

(1 + v)n+1

vn−q+1

(
1− v

1 + v

)2n+2

dv
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= (−1)n−q 1

2πi

∫
|v|=γ

1

vn−q+1

1

(1 + v)n+1
dv

= (−1)n−q(−1)n−q

(
n− q + n

n

)
=

(
2n− q

n

)
.

This is the claim. QED.
This was math.stackexchange.com problem 1708435.

54 A summation identity with four poles (B2)

We seek to show that

n∑
m=0

(−1)m
(
2n+ 2m

n+m

)(
n+m

n−m

)
= (−1)n22n.

The LHS is

[zn](1 + z)n
n∑

m=0

(−1)m
(
2n+ 2m

n+m

)
(1 + z)mzm.

The coefficient extractor enforces the upper limit of the sum and we may
continue with

1

2πi

∫
|z|=ϵ

(1 + z)n

zn+1

∑
m≥0

(−1)m
(
2n+ 2m

n+m

)
(1 + z)mzm dz

=
1

2πi

∫
|z|=ϵ

(1 + z)n

zn+1

1

2πi

∫
|w|=γ

1

wn+1

1

(1− w)n+1

×
∑
m≥0

(−1)m
1

wm

1

(1− w)m
(1 + z)mzm dw dz

=
1

2πi

∫
|z|=ϵ

(1 + z)n

zn+1

1

2πi

∫
|w|=γ

1

wn+1

1

(1− w)n+1

1

1 + z(1 + z)/w/(1− w)
dw dz

=
1

2πi

∫
|z|=ϵ

(1 + z)n

zn+1

1

2πi

∫
|w|=γ

1

wn

1

(1− w)n
1

w(1− w) + z(1 + z)
dw dz

= − 1

2πi

∫
|z|=ϵ

(1 + z)n

zn+1

1

2πi

∫
|w|=γ

1

wn

1

(1− w)n
1

(w + z)(w − (1 + z))
dw dz.

The contribution from the pole at w = −z is

1

2πi

∫
|z|=ϵ

(1 + z)n

zn+1

(−1)n

zn
1

(1 + z)n
1

1 + 2z
dz

=
(−1)n

2πi

∫
|z|=ϵ

1

z2n+1

1

1 + 2z
dz = (−1)n[z2n]

1

1 + 2z
= (−1)n(−1)2n22n
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= (−1)n22n.

This is the claim. We will document a choice of γ and ϵ so that w = 0 and
w = −z are the only poles inside the contour (pole at w = 1 not included, nor
the pole at w = 1 + z.)

Now we have for the pole at w = 0

− 1

(w + z)(w − (1 + z))
=

1

1 + 2z

1

w + z
− 1

1 + 2z

1

w − (1 + z)

=
1

z

1

1 + 2z

1

1 + w/z
+

1

1 + z

1

1 + 2z

1

1− w/(1 + z)
.

We get from the first piece

− 1

2πi

∫
|z|=ϵ

(1 + z)n

zn+2

1

1 + 2z

n−1∑
q=0

(
q + n− 1

n− 1

)
(−1)n−1−q 1

zn−1−q
dz

= −
n−1∑
q=0

(
q + n− 1

n− 1

)
(−1)n−1−q 1

2πi

∫
|z|=ϵ

(1 + z)n

z2n+1−q

1

1 + 2z
dz

= −
n−1∑
q=0

(
q + n− 1

n− 1

)
(−1)n−1−q

n∑
p=0

(
n

p

)
(−1)2n−q−p22n−q−p

=

n−1∑
q=0

(
q + n− 1

n− 1

)
2n−q

n∑
p=0

(
n

p

)
(−1)n−p2n−p

= (−1)n
n−1∑
q=0

(
q + n− 1

n− 1

)
2n−q.

The second piece yields

− 1

2πi

∫
|z|=ϵ

(1 + z)n−1

zn+1

1

1 + 2z

n−1∑
q=0

(
q + n− 1

n− 1

)
1

(1 + z)n−1−q
dz

= −
n−1∑
q=0

(
q + n− 1

n− 1

)
1

2πi

∫
|z|=ϵ

(1 + z)q

zn+1

1

1 + 2z
dz

= −
n−1∑
q=0

(
q + n− 1

n− 1

) q∑
p=0

(
q

p

)
(−1)n−p2n−p

= −
n−1∑
q=0

(
q + n− 1

n− 1

)
(−1)n−q2n−q

q∑
p=0

(
q

p

)
(−1)q−p2q−p
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= −(−1)n
n−1∑
q=0

(
q + n− 1

n− 1

)
2n−q.

We see that the two pieces from w = 0 cancel so that the contribution is
zero. This almost completes the proof, we only need to choose the contour so
that w = 1 and w = 1 + z are not included. For the initial geometric series to
converge we need |1 + z|ϵ < |1 − w|γ. With ϵ and γ in a neigborhood of zero
we have |1 + z|ϵ ≤ (1 + ϵ)ϵ and (1 − γ)γ ≤ |1 − w|γ. The series converges if
(1 + ϵ)ϵ < (1 − γ)γ. Therefore a good choice is ϵ = 1/10 and γ = 1/5. The
contour in γ clearly includes w = 0 and w = −z and definitely does not include
w = 1 and w = 1 + z with leftmost value 9/10. This concludes the proof.

We are not required to simplify the sum that appears in w = 0, but we may
do so. We get

Sn =

n−1∑
q=0

(
q + n− 1

n− 1

)
2n−q = 2n[zn−1]

1

1− z

1

(1− z/2)n

= (−1)n+122nResz=0
1

zn
1

z − 1

1

(z − 2)n
.

Residues sum to zero and the residue at infinity is zero by inspection. The
residue at z = 1 contributes −22n. The residue at z = 2 requires

1

(2 + (z − 2))n
1

1 + (z − 2)
=

1

2n
1

(1 + (z − 2)/2)n
1

1 + (z − 2)
.

and we get the contribution

(−1)n+12n
n−1∑
q=0

(
q + n− 1

n− 1

)
(−1)q2−q(−1)n−1−q = Sn.

This shows that 2Sn − 22n = 0 or Sn = 22n−1.
This was math.stackexchange.com problem 3729998.

55 A summation identity over odd indices with
a branch cut (B2)

In trying to evaluate

m∑
k=0
k odd

(
2n

2n− k

)(
2m− 2n

m− k

)
we require
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m∑
k=0

(
2n

2n− k

)(
2m− 2n

m− k

)
and

m∑
k=0

(
2n

2n− k

)
(−1)k

(
2m− 2n

m− k

)
.

For the first one we find

m∑
k=0

(
2n

k

)(
2m− 2n

m− k

)
= [zm](1 + z)2m−2n

m∑
k=0

(
2n

k

)
zk.

Here the coefficient extractor enforces the range and we get

[zm](1 + z)2m−2n
∑
k≥0

(
2n

k

)
zk = [zm](1 + z)2m−2n(1 + z)2n

= [zm](1 + z)2m =

(
2m

m

)
.

This also follows from Chu-Vandermonde.
Continuing with the second piece we obtain

m∑
k=0

(
2n

k

)
(−1)k

(
2m− 2n

m− k

)
= (−1)m

m∑
k=0

(
2n

m− k

)
(−1)k

(
2m− 2n

k

)

= (−1)m
m∑

k=0

(−1)k
(
2m− 2n

k

)
[z2n+k−m]

1

(1− z)m−k+1
.

Now when k > m we have [z2n+k−m](1 − z)k−m−1 = 0 so the coefficient
extractor again enforces the range and we find

(−1)m

2πi

∫
|z|=ϵ

1

z2n−m+1

1

(1− z)m+1

∑
k≥0

(−1)k
(
2m− 2n

k

)
(1− z)k

zk
dz

=
(−1)m

2πi

∫
|z|=ϵ

1

z2n−m+1

1

(1− z)m+1

(
1− 1− z

z

)2m−2n

dz

=
(−1)m

2πi

∫
|z|=ϵ

1

zm+1

(1− 2z)2m−2n

(1− z)m+1
dz

=
(−1)m

2πi

∫
|z|=ϵ

1

zm+1

(1− 2z)2(m+1)

(1− z)m+1

1

(1− 2z)2n+2
dz.

Now put z(1− z)/(1− 2z)2 = w so that

z =
1

2
± 1

2

1√
1 + 4w

.
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We have that w = z + 3z2 + 8z3 + · · · so z = 0 should be mapped to w = 0
and in fact we work with

z =
1

2
− 1

2

1√
1 + 4w

.

We also see from the series expansion that the small circle around the origin
|z| = ϵ is mapped to a contour that encircles w = 0 once and may in turn be
deformed to a small circle |w| = γ. We choose the branch cut on (−∞,−1/4]
so that we get analyticity in a neighborhood of the origin. We also have

dz =
1

(1 + 4w)3/2
dw.

At last making the substitution we obtain

(−1)m

2πi

∫
|w|=γ

1

wm+1

1

(1/
√
1 + 4w)2n+2

1

(1 + 4w)3/2
dw

=
(−1)m

2πi

∫
|w|=γ

1

wm+1
(1 + 4w)n−1/2 dw = (−1)m4m

(
n− 1/2

m

)
.

Collecting the two pieces we find

1

2

(
2m

m

)
+ (−1)m+122m−1

(
n− 1/2

m

)
.

This was math.stackexchange.com problem 3782050.

56 A stirling number identity

We seek to evaluate (note that this is zero by inspection when k > n+m):

n∑
j=0

(−1)n+j

[
n

j

]{
m+ j

k

}
where k ≤ n. It is claimed that it is zero for k < n and nm for k = n. Using

standard EGFs this becomes

n![zn]

n∑
j=0

(−1)n+j 1

j!

(
log

1

1− z

)j

(m+ j)![wm+j ]
(exp(w)− 1)k

k!

= (−1)nn!m![zn]

n∑
j=0

(−1)j
(
m+ j

j

)(
log

1

1− z

)j

× 1

2πi

∫
|w|=γ

1

wm+j+1

(exp(w)− 1)k

k!
dw
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= (−1)nn!m![zn]
1

2πi

∫
|w|=γ

1

wm+1

(exp(w)− 1)k

k!

×
n∑

j=0

(−1)j
(
m+ j

j

)(
log

1

1− z

)j
1

wj
dw.

Now
(
log 1

1−z

)j
= zj+· · · so the coefficient extractor [zn] enforces the upper

limit of the sum:

(−1)nn!m![zn]
1

2πi

∫
|w|=γ

1

wm+1

(exp(w)− 1)k

k!

×
∑
j≥0

(−1)j
(
m+ j

j

)(
log

1

1− z

)j
1

wj
dw

= (−1)nn!m!
1

2πi

∫
|z|=ϵ

1

zn+1

1

2πi

∫
|w|=γ

1

wm+1

(exp(w)− 1)k

k!

×
∑
j≥0

(−1)j
(
m+ j

j

)(
log

1

1− z

)j
1

wj
dw dz

= (−1)nn!m!
1

2πi

∫
|z|=ϵ

1

zn+1

× 1

2πi

∫
|w|=γ

1

wm+1

(exp(w)− 1)k

k!

1

(1 + 1
w log 1

1−z )
m+1

dw dz

= (−1)nn!m!
1

2πi

∫
|z|=ϵ

1

zn+1

× 1

2πi

∫
|w|=γ

(exp(w)− 1)k

k!

1

(w + log 1
1−z )

m+1
dw dz.

Now observe that for the geometric series in j to converge we must have
| log 1

1−z | < |w|. Note that with log 1
1−z = z + · · · the image of |z| = ϵ makes

one turn around the origin, a circle of radius ϵ plus additional lower order
fluctuations. We therefore choose ϵ to shrink this pseudo-circle to be entirely
contained in |w| = γ. With this choice the pole at − log 1

1−z is inside the contour
in w. We thus require

1

k!×m!

(
k∑

q=0

(
k

q

)
(−1)k−q exp(qw)

)(m)

=
1

k!×m!

k∑
q=0

(
k

q

)
(−1)k−qqm exp(qw).

Evaluating the integral in w we find
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(−1)n
n!

k!

1

2πi

∫
|z|=ϵ

1

zn+1

k∑
q=0

(
k

q

)
(−1)k−qqm(1− z)q dz

which is

n!

k!

k∑
q=0

(
k

q

)(
q

n

)
(−1)k−qqm.

Now when k < n we have
(
q
n

)
= 0 so the entire sum vanishes as claimed. We

get just one term when k = n namely

n!

n!

(
n

n

)(
n

n

)
(−1)n−nnm = nm

also as claimed. This concludes the argument.
This was math.stackexchange.com problem 3852633.

57 A Catalan-Central Binomial Coefficient Con-
volution

We seek to show that with

Q(z) =
1√

1− 4z

(
1−

√
1− 4z

2z

)n

we have

[zk]Q(z) =

(
n+ 2k

k

)
.

Now with the branch cut on [1/4,∞) for
√
1− 4z we have analyticity of

Q(z) in a neighborhood of the origin (note that the exponentiated term does
not in fact have a pole at z = 0) and the Cauchy Coefficient Formula applies.
We obtain

[zk]Q(z) =
1

2πi

∫
|z|=ε

1

zk+1

1√
1− 4z

(
1−

√
1− 4z

2z

)n

dz.

We put
√
1− 4z = w so that 1√

1−4z
dz = − 1

2 dw and z = (1− w2)/4. With

w = 1 − 2z − · · · we get as the image of |z| = ε a contour that winds around
w = 1 counterclockwise once and may be deformed to a circle, so that we obtain

[zk]Q(z) = −1

2

1

2πi

∫
|w−1|=γ

4k+1

(1− w2)k+1
(1− w)n

1

2n
4n

(1− w2)n
dw
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=
(−1)k × 2n+2k+1

2πi

∫
|w−1|=γ

(w − 1)n

(w2 − 1)n+k+1
dw

=
(−1)k × 2n+2k+1

2πi

∫
|w−1|=γ

1

(w − 1)k+1

1

(w + 1)n+k+1
dw

=
(−1)k × 2k

2πi

∫
|w−1|=γ

1

(w − 1)k+1

1

(1 + (w − 1)/2)n+k+1
dw

Apply the Cauchy Residue Theorem to get

(−1)k × 2k × (−1)k
1

2k

(
n+ 2k

n+ k

)
=

(
n+ 2k

k

)
as claimed.
This was math.stackexchange.com problem 4025969.

58 Post Scriptum additions

58.1 A trigonometric sum

Suppose we seek to evaluate

S =

m−1∑
k=1

sin2q(kπ/m) =

m−1∑
k=0

sin2q(2πk/2/m).

Introducing ζk = exp(2πik/2/m) (root of unity) we get

S =

m−1∑
k=0

1

(2i)2q
(ζk − 1/ζk)

2q.

We also have

2m−1∑
k=m

1

(2i)2q
(ζk − 1/ζk)

2q

=

m−1∑
k=0

1

(2i)2q
(ζk exp(2πim/2/m)− 1/ζk/ exp(2πim/2/m))2q

=

m−1∑
k=0

1

(2i)2q
(−ζk + 1/ζk)

2q

=

m−1∑
k=0

1

(2i)2q
(ζk − 1/ζk)

2q = S.

We conclude that
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S =
1

2

2m−1∑
k=0

1

(2i)2q
(ζk − 1/ζk)

2q.

Introducing

f(z) =
(−1)q

22q+1

(
z − 1

z

)2q
2mz2m−1

z2m − 1

=
(−1)q

22q+1

(z2 − 1)2q

z2q
2mz2m−1

z2m − 1

we then have

S =

2m−1∑
k=0

Resz=ζkf(z).

Observe that the term (z2−1)2q cancels the poles at ±1 produced by z2m−1
which however is perfectly acceptable as they correspond to ζ0 = 1 and ζm = −1
where ζk − 1/ζk is zero as well.

Residues sum to zero so we obtain

S +Resz=0f(z) + Resz=∞f(z) = 0.

Now for the residue at zero we see that when 2q − 1 < 2m− 1 or q < m the
residue is zero. Otherwise we get

(−1)q

22q+1
[z2q−2m](z2 − 1)2q

2m

z2m − 1

=
(−1)q

22q+1
[z2q](z2 − 1)2q

2mz2m

z2m − 1

= −2m
(−1)q

22q+1

q∑
p=0

(
2q

p

)
(−1)2q−p[z2q−2p]

z2m

1− z2m
.

We must have p = q − lm where l ≥ 1. This yields

−2m
1

22q+1

⌊q/m⌋∑
l=1

(
2q

q − lm

)
(−1)lm.

This is correct even when q < m.
Continuing with the residue at infinity we find

Resz=∞f(z) = −Resz=0
1

z2
f(1/z)

= −Resz=0
1

z2
(−1)q

22q+1

(1/z2 − 1)2q

1/z2q
2m/z2m−1

1/z2m − 1

142



= −Resz=0
1

z2
(−1)q

22q+1

(1− z2)2q

z2q
2mz

1− z2m

= −Resz=0
(−1)q

22q+1

(z2 − 1)2q

z2q+1

2m

1− z2m
.

This is the same as the first residue at zero except now l starts at l = 0 and
we obtain

−2m
1

22q+1

⌊q/m⌋∑
l=0

(
2q

q − lm

)
(−1)lm.

Joining the two pieces we finally have

m
1

22q

(
2q

q

)
+m

1

22q−1

⌊q/m⌋∑
l=1

(
2q

q − lm

)
(−1)lm.

This was math.stackexchange.com problem 2051454.

58.2 A class of polynomials similar to Fibonacci and Lucas
Polynomials (B1)

Suppose we seek to collect information concerning

⌊n/p⌋∑
j=−⌊n/p⌋

(−1)j
(

2n

n− pj

)
.

We will construct a generating function in n with p ≥ 1 fixed. We introduce(
2n

n− pj

)
=

1

2πi

∫
|z|=ϵ

1

zn−pj+1
(1 + z)2n dz.

Now as we examine this integral we see immediately that it vanishes if j >
⌊n/p⌋ (pole at zero disappears). Moreover when j < −⌊n/p⌋ we have that
[zn−pj ](1 + z)2n = 0 so this vanishes as well. Hence with this integral in place
we may let j range from −n to infinity and get

1

2πi

∫
|z|=ϵ

1

zn+1
(1 + z)2n

∞∑
j=−n

(−1)jzpj dz

=
1

2πi

∫
|z|=ϵ

1

zn+1
(1 + z)2n

∞∑
j=0

(−1)j−nzpj−pn dz

=
(−1)n

2πi

∫
|z|=ϵ

1

z(p+1)n+1
(1 + z)2n

1

1 + zp
dz.

We get zero for the residue at infinity, as can be seen from
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Resz=∞
1

z(p+1)n+1
(1 + z)2n

1

1 + zp

= −Resz=0
1

z2
z(p+1)n+1 (1 + z)2n

z2n
zp

1 + zp

= −Resz=0z
(p−1)(n+1)(1 + z)2n

1

1 + zp
= 0.

With residues adding to zero and introducing ρk = exp(πi/p + 2πik/p) we
thus obtain

−
p−1∑
k=0

(−1)n
1

ρ
(p+1)n+1
k

(1 + ρk)
2n 1

pρp−1
k

=
1

p

p−1∑
k=0

(−1)n
1

ρpn+n
k

(1 + ρk)
2n

=
1

p

p−1∑
k=0

(
1

ρk
+ 2 + ρk

)n

.

At this point we can compute a generating function using the fact that∑
q≥0

ρqzq =
1

1− ρz
= −1

ρ

1

z − 1/ρ

and we obtain as a first attempt

Gp(z) =
1

p

p−1∑
k=0

1

1− 2(1 + cos(π/p+ 2πk/p))z
.

Observe that this correctly represents the cancelation of the pole at z = −1
when p is odd, contributing zero when n ≥ 1 and 1/p otherwise. Furthermore
note that with ρk = exp((2k + 1)πi/p) we have

1

ρp−1−k
= exp(−(2(p− 1− k) + 1)πi/p) = exp((2(k + 1− p)− 1)πi/p)

= exp((2(k + 1)− 1)πi/p− 2πi) = exp((2k + 1)πi/p) = ρk

so the poles come in pairs with no pole at −1 when p is odd. Therefore the
set of poles generated by this sum corresponds to the first (p− 1)/2 poles when
p is odd and the first p/2 when p is even. Joining these two we get the degree
of the denominator once the sum is computed being ⌊p/2⌋.

This first formula enables us to compute a few of these, like for p = 8 we get
(no complex number algebra required, basic trigonometry only)

G8(z) =
1− 6z + 10z2 − 4z3

1− 8z + 20z2 − 16z3 + 2z4
.
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Looking up the coefficients we find for the denominator OEIS A034807 and
for the numerator OEIS A011973 which point us to three types of polynomi-
als, Fibonacci polynomials, Dickson polynomials and Lucas polynomials. With
these data we are able to state a conjecture for the closed form of the generating
function, which is

Gp(z) =

⌊p/2⌋∑
q=0

p

p− q

(
p− q

q

)
(−1)qzq

−1 ⌊(p−1)/2⌋∑
q=0

(
p− 1− q

q

)
(−1)qzq.

To verify this we must show that the poles are at(
1

ρk
+ 2 + ρk

)−1

with residue − 2

p

(
1

ρk
+ 2 + ρk

)−1

where the factor two appears because the poles have been paired.
We therefore require the generating functions of the polynomials that ap-

pear in Gp(z). Call the numerator Ap(z) and the denominator Bp(z). We first
compute the auxiliary generating function

Q1(t, z) =
∑
p≥0

tp
⌊p/2⌋∑
q=0

(
p− q

q

)
(−1)qzq =

∑
q≥0

(−1)qzq
∑
p≥2q

(
p− q

q

)
tp

=
∑
q≥0

(−1)qzqt2q
∑
p≥0

(
p+ q

q

)
tp =

∑
q≥0

(−1)qzqt2q
1

(1− t)q+1

=
1

1− t

1

1 + zt2/(1− t)
=

1

1− t+ zt2
.

We then have A(t, z) = tQ1(t, z). With p/(p− q) = 1+ q/(p− q) we get two
pieces for B(t, z), the first is Q1(t, z) and the second is

Q2(t, z) =
∑
p≥0

tp
⌊p/2⌋∑
q=1

(
p− 1− q

q − 1

)
(−1)qzq =

∑
q≥1

(−1)qzq
∑
p≥2q

(
p− 1− q

q − 1

)
tp

=
∑
q≥1

(−1)qzqt2q
∑
p≥0

(
p+ q − 1

q − 1

)
tp =

∑
q≥1

(−1)qzqt2q
1

(1− t)q

= − zt2/(1− t)

1 + zt2/(1− t)
= − zt2

1− t+ zt2

and hence we have B(t, z) = Q1(t, z) +Q2(t, z). This yields the closed form
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Gp(z) =
[tp] t

1−t+zt2

[tp] 1−zt2

1−t+zt2

.

Now introducing (we meet a shifted generating function of the Catalan num-
bers)

α(z) =
1 +

√
1− 4z

2
and β(z) =

1−
√
1− 4z

2

we have a relationship that is analogous to that between Fibonacci and Lucas
polynomials, namely,

Ap(z) =
1

α(z)− β(z)
(α(z)p − β(z)p) and Bp(z) = α(z)p + β(z)p.

We now verify that Bp(z) = 0 for z a value from the claimed poles. Using
1/(1/ρk + 2 + ρk) = ρk/(1 + ρk)

2 (ρk = −1 is not included here) we find

α(z) =
1 +

√
1− 4ρk/(1 + ρk)2

2
=

1 + (1− ρk)/(1 + ρk)

2
=

1

1 + ρk

and similarly

β(z) =
ρk

1 + ρk
.

Raising to the power p we find

α(z)p + β(z)p =
1p + ρpk
(1 + ρk)p

=
1− 1

(1 + ρk)p
= 0.

We have located ⌊p/2⌋ distinct zeros here which means given the degree of
Bp(z) the poles are all simple. This means we may evaluate the residue by
setting z = ρk/(1 + ρk)

2 in (differentiate the denominator)

1

p

⌊p/2⌋∑
q=0

1

p− q

(
p− q

q

)
(−1)qqzq−1

−1 ⌊(p−1)/2⌋∑
q=0

(
p− 1− q

q

)
(−1)qzq

which is

z

p

⌊p/2⌋∑
q=1

(
p− 1− q

q − 1

)
(−1)qzq

−1 ⌊(p−1)/2⌋∑
q=0

(
p− 1− q

q

)
(−1)qzq

The numerator is Ap(z) and we get
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1 + ρk
1− ρk

2

(1 + ρk)p
=

2

(1− ρk)(1 + ρk)p−1
.

The denominator is [tp]Q2(t, z) which is

[tp]
−zt2

1− t+ zt2
= [tp]

1− zt2

1− t+ zt2
− [tp]

1

1− t+ zt2

= [tp]
1− zt2

1− t+ zt2
− [tp+1]

t

1− t+ zt2
= Bp(z)−Ap+1(z) = −Ap+1(z).

We get

−1 + ρk
1− ρk

1p+1 − ρp+1
k

(1 + ρk)p+1
= − (1 + ρk)

2

(1− ρk)(1 + ρk)p+1
= − 1

(1− ρk)(1 + ρk)p−1
.

Joining numerator and denominator and multiplying by z/p finally produces

1

p

(
1

ρk
+ 2 + ρk

)−1
2/(1− ρk)/(1 + ρk)

p−1

−1/(1− ρk)/(1 + ρk)p−1
= −2

p

(
1

ρk
+ 2 + ρk

)−1

as claimed. We have proved that the formula from the Egorychev method
matches the conjectured form in terms of a certain class of polynomials that are
related to Fibonacci and Lucas polynomials as well as Catalan numbers.

This was math.stackexchange.com problem 2237745.

58.3 Partial row sums of Pascal’s triangle (B1)

Here we seek to prove that

n∑
k=0

(
2k + 1

k

)(
m− (2k + 1)

n− k

)
=

n∑
k=0

(
m+ 1

k

)
.

This is

[zn]

n∑
k=0

(
2k + 1

k

)
zk(1 + z)m−(2k+1)

= [zn](1 + z)m−1
n∑

k=0

(
2k + 1

k

)
zk(1 + z)−2k.

Here [zn] enforces the range of the sum and we find

1

2πi

∫
|z|=ϵ

(1 + z)m−1

zn+1

∑
k≥0

(
2k + 1

k

)
zk(1 + z)−2k dz
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=
1

2πi

∫
|z|=ϵ

(1 + z)m−1

zn+1

1

2πi

∫
|w|=γ

1 + w

w

∑
k≥0

(1 + w)2k

wk
zk(1 + z)−2k dw dz

=
1

2πi

∫
|z|=ϵ

(1 + z)m−1

zn+1

1

2πi

∫
|w|=γ

1 + w

w

1

1− z(1 + w)2/w/(1 + z)2
dw dz

=
1

2πi

∫
|z|=ϵ

(1 + z)m+1

zn+1

1

2πi

∫
|w|=γ

1 + w

w(1 + z)2 − z(1 + w)2
dw dz

=
1

2πi

∫
|z|=ϵ

(1 + z)m+1

zn+1

1

2πi

∫
|w|=γ

1 + w

(1− wz)(w − z)
dw dz.

There is no pole at w = 0 here. Note however that for the geometric series
to converge we must have |z(1 + w)2| < |w(1 + z)2|. We can achieve this by
taking γ = 2ϵ so that

|z(1 + w)2| ≤ ϵ(1 + 2ϵ)2 = 4ϵ3 + 4ϵ2 + ϵ
∣∣
ϵ=1/20

=
242

4000

and

|w(1 + z)2| ≥ 2ϵ(1− ϵ)2 = 2ϵ3 − 4ϵ2 + 2ϵ
∣∣
ϵ=1/20

=
361

4000
.

With these values the pole at w = z is inside the contour and we get as the
residue

1 + z

1− z2
=

1

1− z
.

This yields on substitution into the outer integral

1

2πi

∫
|z|=ϵ

(1 + z)m+1

zn+1

1

1− z
dz = [zn]

(1 + z)m+1

1− z

=

n∑
k=0

[zk](1 + z)m+1[zn−k]
1

1− z
=

n∑
k=0

(
m+ 1

k

)
.

This is the claim.
Remark. For the pole at w = 1/z to be inside the contour we would need

1/ϵ < 2ϵ or 1 < 2ϵ2 which does not hold here so this pole does not contribute.
This was math.stackexchange.com problem 3640984.

58.4 The Tree function and Eulerian numbers of the sec-
ond order

We seek to show that the following identity holds:

2n+1
n∑

k=0

〈〈n
k

〉〉 1

2k
= n![xn]

1

1 +W (− exp((x− 1)/2)/2)
.
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We will be using data from Wikipedia on Lambert W and work with the
combinatorial branch which is W0(z).

Recall that

W ′(z)
z

W (z)
=

1

1 +W (z)
.

We obtain

[zm]
1

1 +W (z)
=

1

2πi

∫
|z|=ε

1

zm
1

W (z)
W ′(z) dz.

Putting W (z) = v we find

1

2πi

∫
|v|=γ

1

vm exp(mv)

1

v
dv =

1

2πi

∫
|v|=γ

1

vm+1
exp(−mv) dv =

(−1)mmm

m!
.

so that

1

1 +W (z)
=
∑
m≥0

(−1)mmm zm

m!
.

We get for the original RHS

n![xn]
∑
m≥0

mm

m!
exp(m(x− 1)/2)

1

2m

= n![xn]
∑
m≥0

mm

m!

exp(−m/2)

2m
exp(mx/2)

=
∑
m≥0

mm+n

m!

exp(−m/2)

2m+n
.

First part. Introduce the tree function T (z) from combinatorics where
T (z) = z expT (z) and T (z) = −W0(−z).Note that we have by Cayley’s theorem
that T (z) =

∑
m≥1 m

m−1 zm

m! . We claim that with n ≥ 1

Qn(z) =
∑
m≥0

mm+n z
m

m!
=

1

(1− T (z))2n+1

n∑
k=1

〈〈n
k

〉〉
T (z)k.

This means the RHS is 1
2nQn(exp(−1/2)/2). To verify this last identity note

that Qn+1(z) = z d
dzQn(z) so we may prove it by induction.

We get for the RHS of the series identity on differentiating and multiplying
by z
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(2n+ 1)zT ′(z)

(1− T (z))2n+2

n∑
k=1

〈〈n
k

〉〉
T (z)k +

z

(1− T (z))2n+1

n∑
k=1

〈〈n
k

〉〉
kT (z)k−1T ′(z)

Extracting the term zT ′(z)/(1− T (z))2n+2 in front leaves us with

(2n+ 1)

n∑
k=1

〈〈n
k

〉〉
T (z)k + (1− T (z))

n∑
k=1

〈〈n
k

〉〉
kT (z)k−1

= (2n+ 1)

n∑
k=1

〈〈n
k

〉〉
T (z)k +

n−1∑
k=0

〈〈
n

k + 1

〉〉
(k + 1)T (z)k −

n∑
k=1

〈〈n
k

〉〉
kT (z)k

=

n∑
k=1

〈〈n
k

〉〉
(2n+ 2− (k + 1))T (z)k +

n−1∑
k=0

〈〈
n

k + 1

〉〉
(k + 1)T (z)k.

We may include k = 0 in the first sum and k = n in the second. Now the
Eulerian number recurrence (second order) according to OEIS A349556 is〈〈n

k

〉〉
=

〈〈
n− 1

k

〉〉
k +

〈〈
n− 1

k − 1

〉〉
(2n− k)

We have shown that

Qn+1(z) =
zT ′(z)

(1− T (z))2n+2

n∑
k=0

〈〈
n+ 1

k + 1

〉〉
T (z)k

=
zT ′(z)

T (z)(1− T (z))2n+2

n+1∑
k=1

〈〈
n+ 1

k

〉〉
T (z)k.

Now we just have to verify that

zT ′(z)

T (z)(1− T (z))2n+2
=

1

(1− T (z))2n+3
or zT ′(z)(1− T (z)) = T (z).

The functional equation tells us that T ′(z) = expT (z) + z expT (z)T ′(z)
so that T ′(z)(1 − T (z)) = expT (z) = T (z)/z which is just what we need. It
remains to verify the base case so the induction starts properly. We seek

Q1(z) =
∑
m≥0

mm+1 z
m

m!
=

T (z)

(1− T (z))3
.

We verify this by coefficient extraction. We get

m![zm]Q1(z) =
m!

2πi

∫
|z|=ε

1

zm+1

T (z)

(1− T (z))3
dz.
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With T (z) = z + · · · this integral will produce the correct value zero for
m = 0. For m ≥ 1, we put T (z) = w so that z = w exp(−w) and dz =
exp(−w)(1− w) dw and obtain

m!

2πi

∫
|w|=γ

exp((m+ 1)w)

wm+1

w

(1− w)3
exp(−w)(1− w) dw

=
m!

2πi

∫
|w|=γ

exp(mw)

wm

1

(1− w)2
dw.

This is

m!

m−1∑
q=0

mq

q!
(m− q) = m!

m−1∑
q=0

mq+1

q!
−m!

m−1∑
q=1

mq

(q − 1)!

= m!

m−1∑
q=0

mq+1

q!
−m!

m−2∑
q=0

mq+1

q!
= m!

mm

(m− 1)!
= mm+1

as desired.
Sequel. Note that in the identity for Qn(z) we have by the definition of the

Eulerian numbers that
〈〈

n
0

〉〉
is zero when n ≥ 1. Therefore we may extend k to

include zero (with n ≥ 1 for the moment) which yields

Qn(z) =
∑
m≥0

mm+n z
m

m!
=

1

(1− T (z))2n+1

n∑
k=0

〈〈n
k

〉〉
T (z)k.

Now observe that this will produce Q0(z) =
∑

m≥0 m
m zm

m! = 1
1−T (z) due to〈〈

0
0

〉〉
= 1 which is in fact correct because unlike Qn(z) with n ≥ 1, Q0(z) has

a constant term, which is one (this is because mm+n = 0 for m = 0 and n ≥ 1
and mm+n = 1 for m = 0 and n = 0). Therefore

Q0(z) = 1 + zT ′(z) = 1 +
T (z)

1− T (z)
=

1

1− T (z)

as obtained from the boxed version of the main identity, which is seen to hold
for all n ≥ 0.

Conclusion. We are now ready to answer the original question. We have
shown that the RHS is 1

2nQn(exp(−1/2)/2). By our formula for Qn(z) in terms
of the tree function we obtain with T (exp(−1/2)/2) = 1

2 at last the closed form

1

2n
1

(1− 1/2)2n+1

n∑
k=0

〈〈n
k

〉〉 1

2k
= 2n+1

n∑
k=0

〈〈n
k

〉〉 1

2k

which is the LHS and hence the claim.
This was math.stackexchange.com problem 4040942.
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58.5 A Stirling set number generating function and Eule-
rian numbers of the second order

Supposing that
{
n
k

}
is the Stirling number of the second kind giving the count

of partitions of a set of n distinguishable objects into k non-empty subsets we
seek to show that {

n+ r

n

}
is a polynomial of degree 2r in n. We start with the following claim for r ≥ 0:

Qr(z) =
∑
n≥0

{
n+ r

n

}
zn =

1

(1− z)2r+1

r∑
k=0

〈〈 r
k

〉〉
zk.

We will prove this by induction. Note that depending on whether ball n+r+1
joins an existing set or becomes a singleton we have{

n+ r + 1

n

}
= n

{
n+ r

n

}
+

{
n+ r

n− 1

}
.

Multiply by zn and sum over n ≥ 0 to get

Qr+1(z) = zQ′
r(z) +

∑
n≥1

{
n+ r

n− 1

}
zn = zQ′

r(z) + z
∑
n≥0

{
n+ r + 1

n

}
zn

= zQ′
r(z) + zQr+1(z).

This means we have

Qr+1(z) =
z

1− z
Q′

r(z).

Now to prove the claim it certainly holds for r = 0 by inspection. It also
holds for r = 1 since

∑
n≥1

(
n+ 1

2

)
zn = z

∑
n≥1

(
n+ 1

2

)
zn−1 = z

∑
n≥0

(
n+ 2

2

)
zn =

z

(1− z)3
.

For the induction step supposing it holds for r ≥ 1 we differentiate and
multiply by z/(1− z) to get for Qr+1(z)

z

1− z

2r + 1

(1− z)2r+2

r∑
k=0

〈〈 r
k

〉〉
zk +

z

1− z

1

(1− z)2r+1

r∑
k=1

〈〈 r
k

〉〉
kzk−1.

Factoring out 1/(1− z)2r+3 for the moment we are left with
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(2r + 1)

r∑
k=0

〈〈 r
k

〉〉
zk+1 + (1− z)

r∑
k=1

〈〈 r
k

〉〉
kzk

= (2r + 1)

r+1∑
k=1

〈〈
r

k − 1

〉〉
zk +

r∑
k=0

〈〈 r
k

〉〉
kzk −

r∑
k=0

〈〈 r
k

〉〉
kzk+1

= (2r + 1)

r+1∑
k=1

〈〈
r

k − 1

〉〉
zk +

r∑
k=0

〈〈 r
k

〉〉
kzk −

r+1∑
k=1

〈〈
r

k − 1

〉〉
(k − 1)zk

Now with r ≥ 1 we may extend the first and the third sum to include k = 0
and the second to include k = r + 1 to obtain

r+1∑
k=0

[
(2r + 2− k)

〈〈
r

k − 1

〉〉
+ k

〈〈 r
k

〉〉]
zk.

The Eulerian number recurrence (second order) according to OEIS A349556
is 〈〈n

k

〉〉
= k

〈〈
n− 1

k

〉〉
+ (2n− k)

〈〈
n− 1

k − 1

〉〉
so this is with the factor in front

1

(1− z)2r+3

r+1∑
k=0

〈〈
r + 1

k

〉〉
zk

and the induction goes through.
Now to see that

{
n+r
n

}
is a polynomial in n of degree 2r we extract the

coefficient on [zn] of Qr(z) to get

r∑
k=0

〈〈 r
k

〉〉(2r + n− k

2r

)
=

1

(2r)!

r∑
k=0

〈〈 r
k

〉〉
(n+ 2r − k)2r.

The sum terms are products of 2r linear terms in n times a coefficient that
does not depend on n (Eulerian number) and neither does the range of the sum
(finite, r + 1 terms) and we have the claim. The coefficient on n2r is

1

(2r)!

r∑
k=0

〈〈 r
k

〉〉
=

1

(2r)!
(2r − 1)!! =

1

(2r)!

(2r)!

2rr!
=

1

2rr!
̸= 0.

This was math.stackexchange.com problem 4121168.

58.5.1 A Stirling cycle number generating function and Eulerian
numbers of the second order (II)

We start with the following claim
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Qr(z) =
∑
n≥0

[
n+ r + 1

n+ 1

]
zn =

1

(1− z)2r+1

r∑
k=0

〈〈
r

r − k

〉〉
zk.

We will prove this by induction. Introduce Pr(z) = zrQr(z). Note that
depending on whether ball n+ r+2 joins an existing cycle or turns into a fixed
point we have[

n+ r + 2

n+ 2

]
= (n+ r + 1)

[
n+ r + 1

n+ 2

]
+

[
n+ r + 1

n+ 1

]
.

Multiply by zn+r and sum over n ≥ 0 to get∑
n≥0

[
n+ r + 2

n+ 2

]
zn+r =

∑
n≥0

(n+ r + 1)

[
n+ r + 1

n+ 2

]
zn+r + Pr(z).

The first term is

1

z
(Pr(z)− r!zr)

and the second onez
∑
n≥0

[
n+ 2 + (r − 1)

n+ 2

]
zn+1+r−1

′

= (−(r − 1)!zr + zPr−1(z))
′ = −r!zr−1 + Pr−1(z) + zP ′

r−1(z).

This gives the recurrence

Pr(z)− r!zr = −r!zr + zPr−1(z) + z2P ′
r−1(z) + zPr(z).

We obtain

Pr(z) =
z

1− z
(Pr−1(z) + zP ′

r−1(z)) =
z

1− z
(zPr−1(z))

′.

We now prove by induction that

Pr(z) =
1

(1− z)2r+1

r∑
k=0

〈〈
r

r − k

〉〉
zr+k.

It certainly holds for r = 0 where the infinite series gives 1/(1 − z) and it
also holds at r = 1 as well where the sum gives∑

n≥1

(
n+ 1

2

)
zn = z

∑
n≥0

(
n+ 2

2

)
zn =

z

(1− z)3

and the Eulerian numbers produce
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1

(1− z)3

[〈〈
1

1

〉〉
z +

〈〈
1

0

〉〉
z2
]
=

z

(1− z)3
.

Now supposing it holds with r ≥ 1 we must show that it holds for r + 1.
Doing the differentiation and multiplication we obtain

z

1− z

2r + 1

(1− z)2r+2

r∑
k=0

〈〈
r

r − k

〉〉
zr+1+k

+
z

1− z

1

(1− z)2r+1

r∑
k=0

〈〈
r

r − k

〉〉
(r + 1 + k)zr+k.

Factoring out 1/(1− z)2r+3 for the moment this becomes

z(2r + 1)

r∑
k=0

〈〈
r

r − k

〉〉
zr+1+k + (z − z2)

r∑
k=0

〈〈
r

r − k

〉〉
(r + 1 + k)zr+k.

or

(2r + 1)

r∑
k=−1

〈〈
r

r − k

〉〉
zr+2+k +

r+1∑
k=0

〈〈
r

r − k

〉〉
(r + 1 + k)zr+1+k

−
r∑

k=−1

〈〈
r

r − k

〉〉
(r + 1 + k)zr+2+k.

Here we have included three zero terms, one in every sum. Continuing,

(2r + 1)

r+1∑
k=0

〈〈
r

r + 1− k

〉〉
zr+1+k +

r+1∑
k=0

〈〈
r

r − k

〉〉
(r + 1 + k)zr+1+k

−
r+1∑
k=0

〈〈
r

r + 1− k

〉〉
(r + k)zr+1+k.

We obtain

r+1∑
k=0

[
(r + 1− k)

〈〈
r

r + 1− k

〉〉
+ (r + 1 + k)

〈〈
r

r − k

〉〉]
zr+1+k.

The Eulerian number recurrence (second order) according to OEIS A349556
is
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〈〈n
k

〉〉
= k

〈〈
n− 1

k

〉〉
+ (2n− k)

〈〈
n− 1

k − 1

〉〉
Putting n := r + 1 and k := r + 1− k and restoring the factor in front now

yields

1

(1− z)2r+3

r+1∑
k=0

〈〈
r + 1

r + 1− k

〉〉
zr+1+k

thus concluding the induction.
Addendum. The reader might well wonder how the conjecture from the

beginning was obtained i.e. how we find the closed form for small r for lookup
in the OEIS, which then points us to Eulerian numbers, enabling the whole
computation.

Recall e.g. from Concrete Mathematics chapter 6.2. [GKP89] that[
n

m

]
=

(n− 1)!

(m− 1)!
[wn−m]

(
w exp(w)

exp(w)− 1

)n

.

We get for our series

Qr(z) = [wr]
∑
n≥0

zn
(n+ r)!

n!

(
w

1− exp(−w)

)n+r+1

= r![wr]

(
w

1− exp(−w)

)r+1∑
n≥0

zn
(
n+ r

r

)(
w

1− exp(−w)

)n

= r![wr]

(
w

1− exp(−w)

)r+1
1

(1− zw/(1− exp(−w)))r+1

= r![wr]
wr+1

(1− exp(−w)− zw)r+1
.

Note that the fraction is a formal power series in w with no pole at zero.
Continuing,

r! res
w

1

(1− exp(−w)− zw)r+1
.

A CAS like Maple for example can recognize the pole of order r + 1 at zero
which has now appeared and quickly compute the residue by differentiation.
This will produce e.g.

Q5(z) =
z4 + 52 z3 + 328 z2 + 444 z + 120

(1− z)
11

which is enough to spot the pattern.
This was math.stackexchange.com problem 4480877.
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58.6 Another case of factorization

In seeking to evaluate

⌊k/2⌋∑
ℓ=0

(
q/2 + ℓ

2ℓ

)((
q/2− j + k − ℓ

k − 2ℓ

)
+

(
q/2− j + k − ℓ− 1

k − 2ℓ

))
We get for the first piece of the sum

⌊k/2⌋∑
ℓ=0

(
q/2 + ℓ

2ℓ

)(
q/2− j + k − ℓ

k − 2ℓ

)

=
1

2πi

∫
|z|=ε

1

zk+1
(1 + z)q/2−j+k

⌊k/2⌋∑
ℓ=0

(
q/2 + ℓ

2ℓ

)
z2ℓ

(1 + z)ℓ
dz.

Now here the residue vanishes when 2ℓ > k so it enforces the upper limit of
the sum and we obtain

1

2πi

∫
|z|=ε

(1 + z)q/2−j+k

zk+1

× 1

2πi

∫
|w|=γ

(1 + w)q/2

w

∑
ℓ≥0

z2ℓ

(1 + z)ℓ
(1 + w)ℓ

w2ℓ
dw dz

=
1

2πi

∫
|z|=ε

(1 + z)q/2−j+k

zk+1

× 1

2πi

∫
|w|=γ

(1 + w)q/2

w

1

1− z2(1 + w)/(1 + z)/w2
dw dz

=
1

2πi

∫
|z|=ε

(1 + z)q/2−j+k+1

zk+1

× 1

2πi

∫
|w|=γ

(1 + w)q/2
w

(w − z)(w(1 + z) + z)
dw dz.

The pole at w = 0 has been canceled. Now observe that for the geometric
series to converge we must have

|z2(1 + w)/w2/(1 + z)| < 1.

We will choose a contour that includes both simple poles. The first pole is at
−z/(1+ z). We thus require |z/(1+ z)| < γ. With |z/(1+ z)| ≤ ε/(1− ε) we get
ε/(1− ε) < γ and we furthermore need |z2/(1 + z)| < |w2/(1 + w)|. The latter
holds if ε2/(1− ε) < γ2/(1 + γ). Both hold if εγ < γ2/(1 + γ) or ε < γ/(1 + γ).
So ε = γ2/(1 + γ) will work. Observe that this contour also includes the pole
at w = z.

First pole. Now to extract the residue at w = −z/(1 + z) we write
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1

2πi

∫
|z|=ε

(1 + z)q/2−j+k

zk+1

× 1

2πi

∫
|w|=γ

(1 + w)q/2
w

(w − z)(w + z/(1 + z))
dw dz

and obtain

1

2πi

∫
|z|=ε

(1 + z)q/2−j+k

zk+1
(1 + z)−q/2 −z/(1 + z)

−z/(1 + z)− z
dz

=
1

2πi

∫
|z|=ε

(1 + z)k−j

zk+1

1

z + 2
dz.

Repeating for the second sum we get

1

2πi

∫
|z|=ε

(1 + z)k−j−1

zk+1

1

z + 2
dz.

Adding the two we find

1

2πi

∫
|z|=ε

(1 + z)k−j−1(1 + (1 + z))

zk+1

1

z + 2
dz =

(
k − j − 1

k

)
.

Second pole. For the residue at w = z we obtain for the first sum

1

2πi

∫
|z|=ε

(1 + z)q/2−j+k+1

zk+1
(1 + z)q/2

z

(z(1 + z) + z)
dz

=
1

2πi

∫
|z|=ε

(1 + z)q−j+k+1

zk+1

1

z + 2
dz.

Repeating for the second sum we get

1

2πi

∫
|z|=ε

(1 + z)q−j+k

zk+1

1

z + 2
dz.

Adding the two we find

1

2πi

∫
|z|=ε

(1 + z)q−j+k(1 + (1 + z))

zk+1

1

z + 2
dz =

(
q − j + k

k

)
.

Conclusion. Collecting everything we obtain(
q − j + k

k

)
+

(
k − j − 1

k

)
.

The second term is (k − j − 1)k/k!. Now if 0 ≤ j < k this is indeed zero
because the falling factorial hits the zero value. If j ≥ k all k terms are negative

and we get (−j)k/k!.
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We have at last (
q − j + k

k

)
+ (−1)k

(
j

k

)
.

as claimed.
Remark. The potential square roots that appeared in the above all use

the principal branch of the logarithm with branch cut (−∞,−1] which means
everything is analytic in a neighborhood of zero as required.

This was math.stackexchange.com problem 4155443.

58.7 An additional case of factorization

Supposing we seek to simplify

k∑
j=0

(
2j

j + q

)(
2k − 2j

k − j

)
.

where 0 ≤ q ≤ k. This is

[zk](1 + z)2k
k∑

j=0

(
2j

j + q

)
zj

(1 + z)2j
.

Here the coefficient extractor enforces the upper limit of the sum and we
find

[zk](1 + z)2k
∑
j≥0

(
2j

j + q

)
zj

(1 + z)2j
.

At this point we see that we will require residues and complex integration
and continue with

1

2πi

∫
|z|=ε

(1 + z)2k

zk+1

1

2πi

∫
|w|=γ

1

wq+1

∑
j≥0

(1 + w)2j

wj

zj

(1 + z)2j
dw dz

=
1

2πi

∫
|z|=ε

(1 + z)2k

zk+1

1

2πi

∫
|w|=γ

1

wq+1

1

1− z(1 + w)2/w/(1 + z)2
dw dz

=
1

2πi

∫
|z|=ε

(1 + z)2k+2

zk+1

1

2πi

∫
|w|=γ

1

wq

1

w(1 + z)2 − z(1 + w)2
dw dz

=
1

2πi

∫
|z|=ε

(1 + z)2k+2

zk+1

1

2πi

∫
|w|=γ

1

wq

1

(w − z)(1− wz)
dw dz.

For the geometric series to converge we must have |z(1+w)2/w/(1+z)2| < 1
or |z/(1+z)2| < |w/(1+w)2|. This requires ε/(1−ε)2 < γ/(1+γ)2. We will also
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require w = z to be inside the contour for w so we need ε < γ. With ε ≪ 1 and
γ ≪ 1 we may take ε = γ2 for the latter inquality. We then get for the inquality
from the geometric series γ2/(1− γ2)2 < γ/(1 + γ)2 or γ < (1− γ2)2/(1 + γ)2

or γ < (1− γ)2. This holds for γ < 1− 1/φ with φ the golden mean.
Now we have the pole at zero and the one at w = z inside the contour in

w. This means we can evaluate the integral by using the fact that residues sum
to zero, taking minus the residue at w = 1/z and minus the residue at infinity,
which is zero by inspection, however. (The pole at w = 1/z has modulus 1/ε
and is outside the contour.) Computing minus the residue at w = 1/z we write

− 1

2πi

∫
|z|=ε

(1 + z)2k+2

zk+2

1

2πi

∫
|w|=γ

1

wq

1

(w − z)(w − 1/z)
dw dz.

With the sign change we obtain

1

2πi

∫
|z|=ε

(1 + z)2k+2

zk+2
zq

1

1/z − z
dz =

1

2πi

∫
|z|=ε

(1 + z)2k+2

zk−q+1

1

1− z2
dz

=
1

2πi

∫
|z|=ε

(1 + z)2k+1

zk−q+1

1

1− z
dz.

This is zero when q > k and otherwise

k−q∑
j=0

(
2k + 1

j

)
=

k∑
j=0

(
2k + 1

j

)
−

k∑
j=k−q+1

(
2k + 1

j

)
or alternatively

4k −
k∑

j=k−q+1

(
2k + 1

j

)
which is a closed form term plus a sum of q terms. E.g. with q = 0 we

obtain 4k and with q = 1, 4k −
(
2k+1

k

)
. For q = 2 we have 4k −

(
2k+1
k−1

)
−
(
2k+1

k

)
and so on.

This was math.stackexchange.com problem 4174584.

58.8 Contours and a binomial square root

Suppose we seek to prove that

n∑
k=0

(
2n+ 1

2k + 1

)(
m+ k

2n

)
=

(
2m

2n

)
.
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Introduce the integral representation(
m+ k

2n

)
=

1

2πi

∫
|z|=ε

1

z2n+1
(1 + z)m+k dz.

This gives the following integral

1

2πi

∫
|z|=ε

n∑
k=0

(
2n+ 1

2k + 1

)
1

z2n+1
(1 + z)m+k dz

=
1

2πi

∫
|z|=ε

(1 + z)m

z2n+1

n∑
k=0

(
2n+ 1

2k + 1

)
(1 + z)k dz

=
1

2πi

∫
|z|=ε

(1 + z)m−1/2

z2n+1

n∑
k=0

(
2n+ 1

2k + 1

)√
1 + z

2k+1
dz.

The sum is

2n+1∑
k=0

(
2n+ 1

k

)√
1 + z

k 1

2
(1− (−1)k)

=
1

2
((1 +

√
1 + z)2n+1 − (1−

√
1 + z)2n+1)

and we get for the integral

1

2πi

∫
|z|=ε

(1 + z)m−1/2

2z2n+1

(
(1 +

√
1 + z)2n+1 − (1−

√
1 + z)2n+1)

)
dz.

By way of ensuring analyticity we observe that we must have ε < 1 owing
to the branch cut (−∞,−1] of the square root. Now put 1 + z = w2 so that
dz = 2w dw and the integral becomes

1

2πi

∫
|w−1|=γ

w2m−1

(w2 − 1)2n+1

(
(1 + w)2n+1 − (1− w)2n+1)

)
w dw.

This is

1

2πi

∫
|w−1|=γ

w2m

(
1

(w − 1)2n+1
+

1

(w + 1)2n+1

)
dw.

Treat the two terms in the parentheses in turn. The first contributes

[(w − 1)2n]w2m = [(w − 1)2n]

2m∑
q=0

(
2m

q

)
(w − 1)q =

(
2m

2n

)
.
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The second term is analytic on and inside the circle that w traces round
the value 1 with no poles (pole is at w = −1) and hence does not contribute
anything. This concludes the argument.

Remark. We must document the choice of γ so that |w− 1| = γ is entirely
contained in the image of |z| = ε, which since w = 1 + 1

2z + · · · makes one
turn around w = 1 and may then be continuously deformed to the circle |w −
1| = γ. We need a bound on where this image comes closest to one. We have
w = 1 + 1

2z +
∑

q≥2(−1)q+1 1
4q

1
2q−1

(
2q
q

)
zq. The modulus of the series term is

bounded by
∑

q≥2
1
4q

1
2q−1

(
2q
q

)
|z|q = 1 − 1

2 |z| −
√
1− |z|. Therefore choosing

γ = 1
2ε − 1 + 1

2ε +
√
1− ϵ =

√
1− ε + ε − 1 will fit the bill. For example with

ε = 1/2 we get γ = (
√
2− 1)/2. It is a matter of arithmetic to verify that with

the formula we have γ < 1.
This was math.stackexchange.com problem 601940.

58.9 Careful examination of a contour

We seek to show that

n∑
q=0

(
q

n− q

)
(−1)n−q

(
2q + 1

q + 1

)
= 2n+1 − 1.

The LHS is

(−1)n

2πi

∫
|z|=ε

1

zn+1

1

2πi

∫
|w|=γ

n∑
q=0

(−1)qzq(1 + z)q
(1 + w)2q+1

wq+2
dw dz.

There is no contribution when q > n and we may extend q to infinity:

(−1)n

2πi

∫
|z|=ε

1

zn+1

1

2πi

∫
|w|=γ

1 + w

w2

1

1 + z(1 + z)(1 + w)2/w
dw dz

=
(−1)n

2πi

∫
|z|=ε

1

zn+1

1

2πi

∫
|w|=γ

1 + w

w

1

(1 + z + wz)(z + (1 + z)w)
dw dz.

Now we determine ε and γ so that the geometric series converges and the
pole at w = −z/(1+z) is inside |w| = γ while the pole at w = −(1+z)/z is not.
For the series we require |z(1 + z)(1 + w)2/w| < 1. With |z(1 + z)| ≤ ε(1 + ε)
and |w/(1 + w)2| ≥ γ/(1 + γ)2 we need ε(1 + ε) < γ/(1 + γ)2. Observe that on
[0, 1] we have γ/(1+ γ)2 ≥ γ/4 since 4 ≥ (1+ γ)2. For γ/4 > ε(1+ ε) we choose
γ = 8ε with ε ≪ 1 and we have our pair. Now for the pole at −z/(1 + z) we
need for the maximum norm ε/(1−ε) < γ = 8ε which holds with ε < 7/8 which
we will enforce. The second pole under consideration is −(1+ z)/z = −1− 1/z.
The closest this comes to the origin is −1 + ε = −1 + γ/8. To see that this is
outside |w| = γ we need −1 + γ/8 < −γ or γ < 8/9. This means we instantiate
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ε to ε < 1/9, which completes the discussion of the contour.
Now residues sum to zero and the residue at infinity in w is zero by inspection

which means that the inner integral is minus the residue at w = −(1 + z)/z, as
it is equal to the sum of the residues at zero and at w = −z/(1 + z). We write

−1

z

1

2πi

∫
|w|=γ

1 + w

w

1

((1 + z)/z + w)(z + (1 + z)w)
dw.

We get from this being a simple pole the contribution (here $(1+w)/w =
1/(1+z) $)

−1

z

1

1 + z

1

z − (1 + z)2/z
=

1

1 + z

1

1 + 2z

which combined with the integral in z gives

(−1)n[zn]
1

1 + z

1

1 + 2z
= (−1)n

n∑
q=0

(−1)q2q(−1)n−q =

n∑
q=0

2q.

This is indeed

2n+1 − 1

as claimed.
This was math.stackexchange.com problem 4196412.

58.10 Stirling numbers, Bernoulli numbers and Catalan
numbers

Suppose we seek to prove that

n∑
k=0

{
n+ k

k

}(
2n

n+ k

)
(−1)k

k + 1
= Bn

(
2n

n

)
1

n+ 1

a unique identity that connects three types of significant combinatorial num-
bers. We get for the LHS

n∑
k=0

{
n+ k

k

}(
2n

n− k

)
(−1)k

k + 1
= [zn](1 + z)2n

n∑
k=0

{
n+ k

k

}
(−1)kzk

k + 1
.

The coefficient extractor [zn] combined with the factor zk enforces the upper
limit of the sum so we may let k range to infinity:

[zn](1 + z)2n
∑
k≥0

(n+ k)![wn+k]
(exp(w)− 1)k

k!

(−1)kzk

k + 1
.

Here we see that we will require complex methods and switch to
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(n− 1)!

2πi

∫
|w|=γ

1

wn+1

1

2πi

∫
|z|=ε

(1 + z)2n

zn+1

×
∑
k≥0

(
n+ k

n− 1

)
(−1)kzk

(exp(w)− 1)k

wk
dz dw.

Computing the sum we find

−1

z

w

exp(w)− 1

∑
k≥1

(
n− 1 + k

n− 1

)
(−1)kzk

(exp(w)− 1)k

wk

=
1

z

w

exp(w)− 1
− 1

z

w

exp(w)− 1

1

(1 + z(exp(w)− 1)/w)n
.

The first component yields by inspection

(n− 1)!×
(

2n

n+ 1

)
×Bn

1

n!
= Bn

1

n

(
2n

n+ 1

)
= Bn

(
2n

n

)
1

n+ 1
.

We have the claim if we can show the second component yields zero. We get

− (n− 1)!

2πi

∫
|w|=γ

1

(exp(w)− 1)n+1

× 1

2πi

∫
|z|=ε

(1 + z)2n

zn+2

1

(z + w/(exp(w)− 1))n
dz dw.

At this time we must instantiate our contours. We need for the binomial
series to converge that |z(exp(w)−1)/w| < 1 or |z| < |w/(exp(w)−1)|. Observe
that this means the pole at z = −w/(exp(w) − 1) is outside the circle |z| = ε.
To get a lower bound on the norm of the image of |w| = γ we first take γ ≪ 1
and observe that by expanding the series and bounding |

∑
m≥1 w

m−1/m!| by∑
m≥1 γ

m−1/m! we have |(exp(w)− 1)/w| ≤ (exp(γ)− 1)/γ. Since the term in
w is non-zero on and inside |w| = γ (there is no pole at zero and the value there
is one and the nearest zero is at ±2πi) we may invert to get |w/(exp(w)− 1)| ≥
γ/(exp(γ) − 1). Now we also have γ/(exp(γ) − 1) > 1 − 1

2γ as can be seen by
comparing

∑
m≥1

1
2m−1 γ

m to
∑

m≥1
1
m!γ

m, certainly both convergent for γ ≪ 1.

Hence ε = 1− 1
2γ is an admissible choice and we have determined the contour.

The pair γ = 1/3 and ε = 5/6 will work.
We thus must verify that the pole at z = −w/(exp(w)−1) makes a zero con-

tribution (residues sum to zero and the residue at infinity is zero by inspection).
This requires (Leibniz rule)

1

(n− 1)!

(
1

zn+2
(1 + z)2n

)(n−1)
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=
1

(n− 1)!

n−1∑
q=0

(
n− 1

q

)
(−1)q

(n+ 1 + q)!

(n+ 1)!

1

zn+2+q

× (2n)!

(2n− (n− 1− q))!
(1 + z)2n−(n−1−q)

=

n−1∑
q=0

(−1)q
(
n+ 1 + q

q

)
1

zn+2+q

(
2n

n+ 1 + q

)
(1 + z)n+1+q.

Observe that

(
n+ 1 + q

q

)(
2n

n+ 1 + q

)
=

(2n)!

q!× (n+ 1)!× (n− 1− q)!
=

(
2n

n+ 1

)(
n− 1

q

)
so the sum becomes(

2n

n+ 1

)
(1 + z)n+1

zn+2

n−1∑
q=0

(
n− 1

q

)
(−1)q

(1 + z)q

zq

=

(
2n

n+ 1

)
(1 + z)n+1

zn+2

(
1− 1 + z

z

)n−1

=

(
2n

n+ 1

)
(−1)n−1 (1 + z)n+1

z2n+1
.

Making the substitution we are left with the integral(
2n

n+ 1

)
(−1)n

(n− 1)!

2πi

∫
|w|=γ

1

(exp(w)− 1)n+1

× (1− w/(exp(w)− 1))n+1

(−w/(exp(w)− 1))2n+1
dw.

The inner term is

−(exp(w)− 1)n
1

w2n+1
(1− w/(exp(w)− 1))n+1

= − 1

w2n+1

1

exp(w)− 1
(exp(w)− 1− w)n+1.

We get for the integral

(
2n

n+ 1

)
(−1)n+1 (n− 1)!

2πi

∫
|w|=γ

1

w2n+2

w

exp(w)− 1
(exp(w)− 1− w)n+1 dw.

Now this is
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[w2n+1]
w

exp(w)− 1
(exp(w)− 1− w)n+1 = 0

because (exp(w)− 1− w)n+1 = 1
2n+1w

2n+2 + · · · which concludes the argu-
ment. (The poles at ±2πik, k ≥ 1 are not inside the contour.)

This problem has not yet appeared at math.stackexchange.com. The source
is exercise 6.74 from Concrete Mathematics by Graham, Knuth and Patashnik,
[GKP89] credited to B.F.Logan.

58.11 Computing an EGF from an OGF

We seek to compute the EGF of a sequence from its OGF. There may be some
cases where complex variables, the residue theorem and the residue at infinity
are helpful. Suppose your OGF is f(z) and the desired EGF is g(w). Then we
have

g(w) =
∑
n≥0

wn

n!

1

2πi

∫
|z|=ϵ

1

zn+1
f(z) dz.

This will simplify together with some conditions on convergence to give

g(w) =
1

2πi

∫
|z|=ϵ

f(z)

z

∑
n≥0

1

n!

wn

zn
dz

=
1

2πi

∫
|z|=ϵ

f(z)

z
exp(w/z) dz.

Example I. Suppose

f(z) =
1

1− z
,

which yields
1

2πi

∫
|z|=ϵ

1

1− z

1

z
exp(w/z) dz.

Now for z = R exp(iθ) with R going to infinity we have

2πR× 1

R2
× exp(|w|/R) → 0

as R → ∞ so this integral is

−Resz=1
1

1− z

1

z
exp(w/z)

and we get
g(w) = exp(w)

which is the correct answer.
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Example II. This time suppose that

f(z) =
z

(1− z)2

so that we should get

g(w) =
∑
n≥1

n
wn

n!
= w

∑
n≥1

wn−1

(n− 1)!
= w exp(w).

The integral formula yields

1

2πi

∫
|z|=ϵ

z

(1− z)2
1

z
exp(w/z) dz

=
1

2πi

∫
|z|=ϵ

1

(1− z)2
exp(w/z) dz.

The residue at infinity is zero as before and we have

exp(w/z) =
∑
n≥0

(exp(w/z))(n)
∣∣∣
z=1

(z − 1)n

n!

The coefficient on (z − 1) is

− 1

z2
w exp(w/z)

∣∣∣∣
z=1

= −w exp(w)

which is the correct answer taking into account the sign flip due to z = 1
not being inside the contour.

Remark. Good news. The sum in the integral converges everywhere.
Addendum: somewhat more involved example. The OGF of Stirling num-

bers of the second kind for set partitions into k non-empty sets is

∑
n≥0

{
n

k

}
zn =

k∏
q=1

z

1− qz
.

We thus have that

g(w) =
1

2πi

∫
|z|=ϵ

1

z
exp(w/z)

k∏
q=1

z

1− qz
dz

=
(−1)k

2πi

∫
|z|=ϵ

1

z
exp(w/z)

k∏
q=1

z

qz − 1
dz
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=
(−1)k

k!× 2πi

∫
|z|=ϵ

1

z
exp(w/z)

k∏
q=1

z

z − 1/q
dz.

Computing the sum of the residues at the finite poles not including zero we
get

(−1)k

k!

k∑
q=1

q exp(qw)× 1

q

q−1∏
m=1

1/q

1/q − 1/m

k∏
m=q+1

1/q

1/q − 1/m

=
(−1)k

k!

k∑
q=1

exp(qw)

q−1∏
m=1

m

m− q

k∏
m=q+1

m

m− q

=
(−1)k

k!

k∑
q=1

exp(qw)
k!

q

q−1∏
m=1

1

m− q

k∏
m=q+1

1

m− q

=
(−1)k

k!

k∑
q=1

exp(qw)
k!

q

(−1)q−1

(q − 1)!

1

(k − q)!

= − 1

k!

k∑
q=1

exp(qw)(−1)k−q

(
k

q

)

= −
(
(exp(w)− 1)k

k!
− (−1)k

k!

)
.

This is a case where the residue at infinity is not zero. We have the formula
for the residue at infinity

Resz=∞h(z) = Resz=0

[
− 1

z2
h

(
1

z

)]
This yields for the present case

−Resz=0
1

z2
z exp(wz)

k∏
q=1

1/z

1− q/z
= −Resz=0

1

z
exp(wz)

k∏
q=1

1

z − q

= − 1

k!
Resz=0

1

z
exp(wz)

k∏
q=1

1

z/q − 1

= − (−1)k

k!
Resz=0

1

z
exp(wz)

k∏
q=1

1

1− z/q
= − (−1)k

k!
.

Adding the residue at infinity to the residues from the poles at z = 1/q we
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finally obtain

−
(
(exp(w)− 1)k

k!
− (−1)k

k!

)
− (−1)k

k!
= − (exp(w)− 1)k

k!
.

Taking into account the sign flip we have indeed computed the EGF of the
Stirling numbers of the second kind∑

n≥0

{
n

k

}
zn

n!

as can be seen from the combinatorial class equation

SET(U × SET≥1(Z))

which gives the bivariate generating function

G(z, u) = exp(u(exp(z)− 1)).

This was math.stackexchange.com problem 1289377.

58.12 Stirling numbers of the first and second kind

We seek an alternate closed form of

r∑
q=0

(−1)q+r

[
r

q

]{
n+ q − 1

k

}
.

With the usual EGFs this becomes

r∑
q=0

(−1)q+r r!

2πi

∫
|z|=ε

1

zr+1

1

q!

(
log

1

1− z

)q

× (n+ q − 1)!

2πi

∫
|w|=γ

1

wn+q

1

k!
(exp(w)− 1)k dw dz.

Now we may extend q beyond r because
(
log 1

1−z

)q
= zq+ · · · and hence q >

r produces no pole in a neighborhood of zero (the branch cut of the logarithmic
term is [1,∞)). We find

(−1)r × r!× (n− 1)!

2πi

∫
|z|=ε

1

zr+1

1

2πi

∫
|w|=γ

1

wn

1

k!
(exp(w)− 1)k

×
∑
q≥0

(
n+ q − 1

n− 1

)
(−1)q

wq

(
log

1

1− z

)q

dw dz.
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Next we will sum the binomial series which requires | log 1
1−z | < |w|. Observe

that for the image of |z| = ε we have | log 1
1−z | <

ε
1−ε . Therefore choosing γ so

that ε
1−ε ≤ γ will work e.g. for ε = 1/Q we take γ = 1/(Q− 1). This yields

(−1)r × r!× (n− 1)!

2πi

∫
|z|=ε

1

zr+1

× 1

2πi

∫
|w|=γ

1

wn

1

k!
(exp(w)− 1)k

1

(1 + 1
w log 1

1−z )
n
dw dz

=
(−1)r × r!× (n− 1)!

2πi

∫
|z|=ε

1

zr+1

× 1

2πi

∫
|w|=γ

1

k!
(exp(w)− 1)k

1

(w + log 1
1−z )

n
dw dz.

The pole at zero for w has been canceled but the pole at w = − log 1
1−z now

lies inside the contour. Therefore we require

1

(n− 1)!

(
1

k!
(exp(w)− 1)k

)(n−1)

=
1

(n− 1)!× k!

(
k∑

p=0

(
k

p

)
(−1)k−p exp(pw)

)(n−1)

=
1

(n− 1)!× k!

k∑
p=0

(
k

p

)
(−1)k−ppn−1 exp(pw)

Evaluate at w = − log 1
1−z and substitute into the integral in z to obtain

(−1)r × r!

k!× 2πi

∫
|z|=ε

1

zr+1

k∑
p=0

(
k

p

)
(−1)k−ppn−1(1− z)p dz

= (−1)r
r!

k!

k∑
p=r

(
k

p

)
(−1)k−ppn−1(−1)r

(
p

r

)
.

We have established that the sum vanishes when k < r. Note that(
k

p

)(
p

r

)
=

k!

(k − p)!× r!× (p− r)!
=

(
k

r

)(
k − r

p− r

)
so this simplifies to

1

(k − r)!

k∑
p=r

(
k − r

p− r

)
(−1)k−ppn−1.

We have proved that the alternate closed form is
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(−1)k−r

(k − r)!

k−r∑
p=0

(
k − r

p

)
(−1)p(p+ r)n−1.

An interesting special case is that this evaluates to rn−1 when k = r.
This problem has not appeared at math.stackexchange.com. It is from page

172 eqn. 12.22 of H.W.Gould’s Combinatorial Identities for Stirling Numbers
[Gou16] where it is attributed to Frank Olson.

58.13 An identity by Carlitz

We seek to show that where m ≥ 1

n∑
k=0

(
n

k

)(
k/2

m

)
=

n

m

(
n−m− 1

m− 1

)
2n−2m.

We get for the LHS

[zm]

n∑
k=0

(
n

k

)√
1 + z

k
= [zm](1 +

√
1 + z)n.

This is

1

2πi

∫
|z|=ε

1

zm+1
(1 +

√
1 + z)n dz.

Now put 1+
√
1 + z = w so that z = w(w− 2) and dz = 2(w− 1) dw to get

1

2πi

∫
|w−2|=γ

1

wm+1(w − 2)m+1
wn2(w − 1) dw.

Now we have (series need not be finite)

wn−m = (2 + (w − 2))n−m = 2n−m(1 + (w − 2)/2)n−m

= 2n−m
∑
q≥0

(
n−m

q

)
(w − 2)q/2q

so we get for the integral

2n−m+1

(
n−m

m

)
2−m − 2n−m

(
n−m− 1

m

)
2−m

= 2n−2m

(
n−m− 1

m− 1

)[
2
n−m

m
− n− 2m

m

]
= 2n−2m

(
n−m− 1

m− 1

)
n

m
.
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This is the claim.
Remark. We need to document the choice of γ in terms of ε ≪ 1. (The

square root has the branch cut on (−∞,−1].) The image of |z| = ε is contained
in an annulus centered at two of radius

√
1 + ε − 1 and 1 −

√
1− ε. We may

deform the image to a circle |w− 2| = γ where γ = ϵ/2. This means the pole at
w = 0 is definitely not inside the contour.

Using the residue operator

We get

res
z

1

zm+1
(1 +

√
1 + z)n

= res
z

1

zm+1
(−1)nzn

1

(1−
√
1 + z)n

.

Now we put 1−
√
1 + z = w so that z = w(w − 2) and dz = 2(w − 1) dw so

that we obtain

res
w

1

wm+1(w − 2)m+1
(−1)nwn(w − 2)n

1

wn
2(w − 1)

= res
w

1

wm+1(w − 2)m−n+1
(−1)n2(w − 1)

= 2n−m res
w

1

wm+1(w/2− 1)m−n+1
(−1)n(w − 1)

= 2n−m(−1)m+1 res
w

1

wm+1(1− w/2)m−n+1
(w − 1).

Extracting the residue yields

2n−m(−1)m+1

((
2m− n− 1

m− 1

)
1

2m−1
−
(
2m− n

m

)
1

2m

)
= 2n−m(−1)m+1

(
(−1)m−1

(
n−m− 1

m− 1

)
1

2m−1
− (−1)m

(
n−m− 1

m

)
1

2m

)
= 2n−2m

(
2

(
n−m− 1

m− 1

)
+

(
n−m− 1

m

))
= 2n−2m

(
2

(
n−m− 1

m− 1

)
+

n− 2m

m

(
n−m− 1

m− 1

))
.

Merge the two binomial coefficients to obtain the same answer as before.
This problem is from page 43 eqn. 3.163 of H.W.Gould’s Combinatorial

Identities [Gou72].
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58.14 Logarithm squared of the Catalan number OGF

Suppose we seek to find

[zn] log

(
2

1 +
√
1− 4z

)
.

This is given by

1

2πi

∫
|z|=ϵ

1

zn+1
log

(
2

1 +
√
1− 4z

)
dz.

Now put 1− 4z = w2 so that z = 1/4(1− w2) and −2 dz = w dw to get

1

2πi

∫
|w−1|=γ

4n+1

(1− w2)n+1
log

(
2

1 + w

)(
−1

2

)
w dw.

This is

−1

2

4n+1

2πi

∫
|w−1|=γ

1

(1− w)n+1

1

(1 + w)n+1
log

(
1

1 + (w − 1)/2

)
× w dw

or

1

2

(−1)n × 4n+1

2πi

∫
|w−1|=γ

1

(w − 1)n+1

1

(1 + w)n+1
log

(
1

1 + (w − 1)/2

)
× w dw.

This has two parts, part A1 is

1

2

(−1)n × 4n+1

2πi

∫
|w−1|=γ

1

(w − 1)n
1

(1 + w)n+1
log

(
1

1 + (w − 1)/2

)
dw

and part A2 is

1

2

(−1)n × 4n+1

2πi

∫
|w−1|=γ

1

(w − 1)n+1

1

(1 + w)n+1
log

(
1

1 + (w − 1)/2

)
dw

Part A1 is

1

2

(−1)n × 4n+1

2πi

∫
|w−1|=γ

1

(w − 1)n
1

(2 + (w − 1))n+1
log

(
1

1 + (w − 1)/2

)
dw

=
(−1)n × 2n

2πi

∫
|w−1|=γ

1

(w − 1)n
1

(1 + (w − 1)/2)n+1
log

(
1

1 + (w − 1)/2

)
dw.

Extracting coefficients we get

(−1)n2n
n−2∑
q=0

(
q + n

n

)
(−1)q

2q
(−1)n−1−q

2n−1−q × (n− 1− q)
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which is

−2

n−2∑
q=0

(
q + n

n

)
1

n− 1− q
.

Part A2 is

(−1)n2n
n−1∑
q=0

(
q + n

n

)
(−1)q

2q
(−1)n−q

2n−q × (n− q)

which is
n−1∑
q=0

(
q + n

n

)
1

n− q
.

Re-index A1 to match A2, getting

−2

n−1∑
q=1

(
q − 1 + n

n

)
1

n− q
.

Collecting the two contributions we obtain

1

n
+

n−1∑
q=1

((
q + n

n

)
− 2

(
q − 1 + n

n

))
1

n− q

which is

1

n
+

n−1∑
q=1

(
q + n

q

(
q − 1 + n

n

)
− 2

(
q − 1 + n

n

))
1

n− q

=
1

n
+

n−1∑
q=1

n− q

q

(
q − 1 + n

n

)
1

n− q

=
1

n
+

n−1∑
q=1

1

q

(
q − 1 + n

n

)

=
1

n
+

n−1∑
q=1

(q − 1 + n)!

q!× n!

=
1

n
+

1

n

n−1∑
q=1

(q − 1 + n)!

q!× (n− 1)!

=
1

n
+

1

n

n−1∑
q=1

(
q − 1 + n

n− 1

)
=

1

n

n−1∑
q=0

(
q − 1 + n

n− 1

)
.
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To evaluate this last sum we use the integral(
n− 1 + q

n− 1

)
=

1

2πi

∫
|z|=ϵ

(1 + z)n−1+q

zn
dz

which gives for the sum

1

2πi

∫
|z|=ϵ

(1 + z)n−1

zn

n−1∑
q=0

(1 + z)q dz

=
1

2πi

∫
|z|=ϵ

(1 + z)n−1

zn
(1 + z)n − 1

1 + z − 1
dz

=
1

2πi

∫
|z|=ϵ

(1 + z)n−1

zn+1
((1 + z)n − 1) dz.

This also has two components, the second is zero and given by

− 1

2πi

∫
|z|=ϵ

(1 + z)n−1

zn+1
dz

leaving
1

2πi

∫
|z|=ϵ

(1 + z)2n−1

zn+1
dz

which evaluates to (
2n− 1

n

)
.

We have shown that

[zn] log

(
2

1 +
√
1− 4z

)
=

1

n

(
2n− 1

n

)
.

Addendum Feb 27 2022. It appears from the comments that OP wanted
to prove

[zn] log2
2

1 +
√
1− 4z

=

(
2n

n

)
(H2n−1 −Hn)

1

n
.

Using the result from the previous section the LHS becomes

n−1∑
k=1

1

k

(
2k − 1

k

)
1

n− k

(
2n− 2k − 1

n− k

)
.

Using

1

k

1

n− k
=

1

n

1

k
+

1

n

1

n− k
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this becomes

2

n

n−1∑
k=1

1

n− k

(
2k − 1

k

)(
2n− 2k − 1

n− k

)

=
1

2n

n−1∑
k=1

1

n− k

(
2k

k

)(
2n− 2k

n− k

)

= − 1

2n2

(
2n

n

)
+

1

2n
[wn] log

1

1− w

∑
k≥0

wk

(
2k

k

)(
2n− 2k

n− k

)
.

Here we have extended to infinity due to the coefficient extractor in w (note
that log 1

1−w = w + · · ·) and canceled the value for k = 0 that was included in
the sum. Continuing with the inner sum term

[zn]
1√

1− 4wz

1√
1− 4z

= [zn]
1√

(1− 4z)2 − 4z(1− 4z)(w − 1)

= [zn]
1

1− 4z

1√
1− 4z(w − 1)/(1− 4z)

= [zn]

n∑
k=0

(
2k

k

)
zk(w − 1)k

1

(1− 4z)k+1
.

This is

1

2n
[wn] log

1

1− w

n∑
k=0

(
2k

k

)
(w − 1)k

(
n

k

)
4n−k.

Recall from section ?? that with 1 ≤ k ≤ n

1

k
=

(
n

k

)
[wn] log

1

1− w
(w − 1)n−k.

Hence we get two pieces, the first is

1

2n

n−1∑
k=0

(
2k

k

)
1

n− k
4n−k.

and

1

2n
[wn] log

1

1− w

(
2n

n

)
(w − 1)n.

We get for the second
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(
2n

n

)
1

2n
res
w

1

wn+1
log

1

1− w
(−1)n(1− w)n.

We put w/(1−w) = v so that w = v/(1 + v) and dw = 1/(1 + v)2 dv to get
(without the scalar in front)

res
v

1

vn+1
(1 + v) log

1

1− v/(1 + v)
(−1)n

1

(1 + v)2

= res
v

1

vn+1
(−1)n

1

1 + v
log(1 + v) = −(−1)n[vn]

1

1 + v
log

1

1 + v

= −[vn]
1

1− v
log

1

1− v
.

With the scalar we get

−
(
2n

n

)
1

2n
Hn.

We have the result if we can show that the first piece is(
2n

n

)(
H2n−1 +

1

2n
− 1

2
Hn

)
1

n
=

(
2n

n

)(
H2n − 1

2
Hn

)
1

n

i.e.

Fn =

n−1∑
k=0

(
2k

k

)
1

n− k
4n−k =

(
2n

n

)
(2H2n −Hn).

We have for the LHS

4n[wn] log
1

1− w

n−1∑
k=0

(
2k

k

)
wk4−k.

The coefficient extractor enforces the upper limit, we may extend to infinity
and we find

4n[wn] log
1

1− w

1√
1− w

= [wn] log
1

1− 4w

1√
1− 4w

.

Call the OGF F (w). We get

F ′(w) =
4

√
1− 4w

3 +
2

1− 4w
F (w).

Extracting the coefficient on [wn] we get

(n+ 1)Fn+1 = 4n+1(−1)n
(
−3/2

n

)
+ 2

n∑
q=0

Fq4
n−q
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= 4n+1(−1)n
n+ 1

(−1/2)

(
−1/2

n+ 1

)
+ 2

n∑
q=0

Fq4
n−q

= 2(n+ 1)

(
2n+ 2

n+ 1

)
+ 2

n∑
q=0

Fq4
n−q

which also yields

1

4
(n+ 2)Fn+2 =

1

2
(n+ 2)

(
2n+ 4

n+ 2

)
+ 2

n+1∑
q=0

Fq4
n−q.

Subtract to get

1

4
(n+ 2)Fn+2

= (n+ 1)Fn+1 +
1

2
(n+ 2)

(
2n+ 4

n+ 2

)
− 2(n+ 1)

(
2n+ 2

n+ 1

)
+

1

2
Fn+1.

Introducing Gn = Fn

(
2n
n

)−1
and dividing by

(
2n+2
n+1

)
we get

1

2
(2n+ 3)Gn+2 = (n+ 3/2)Gn+1 + 1 or Gn = Gn−1 +

1

n− 1/2
.

so that

Gn =

n∑
q=1

1

q − 1/2
= 2

n∑
q=1

1

2q − 1
= 2H2n−1 −Hn−1 = 2H2n −Hn.

This is the claim (we have F0 = G0 = 0 from the generating function) and
it completes the entire argument.

This was math.stackexchange.com problem 1148203.

58.15 Bernoulli / Stirling number identity

We seek to show that

n∑
k=0

[
n+ 1

k + 1

]
Bk =

n!

n+ 1
.

The LHS is

n∑
k=0

[
n+ 1

n− k + 1

]
Bn−k

178

https://math.stackexchange.com/questions/1148203/


=

n∑
k=0

[
n+ 1

n− k + 1

]
(n− k)![zn−k]

z

exp(z)− 1

= [zn]
z

exp(z)− 1

n∑
k=0

(n− k)!zk(n+ 1)![wn+1]
1

(n− k + 1)!

(
log

1

1− w

)n−k+1

= (n+ 1)![zn][wn+1]
z

exp(z)− 1

n∑
k=0

zk

n− k + 1

(
log

1

1− w

)n−k+1

= n![zn][wn]
z

exp(z)− 1

1

1− w

n∑
k=0

zk
(
log

1

1− w

)n−k

.

We can certainly extend the sum to infinity because of the coefficient ex-
tractor in z and we find

n![zn][wn]
z

exp(z)− 1

1

1− w

(
log

1

1− w

)n
1

1− z/ log 1
1−w

.

At this point we recognize that we need complex variables and write

1

2πi

∫
|w|=γ

1

wn+1

1

1− w

(
log

1

1− w

)n

× 1

2πi

∫
|z|=ε

1

zn+1

z

exp(z)− 1

1

1− z/ log 1
1−w

dz dw.

Now when we summed the geometric series we introduced the condition

|z| <
∣∣∣log 1

1−w

∣∣∣ for convergence. Continuing,
− 1

2πi

∫
|w|=γ

1

wn+1

1

1− w

(
log

1

1− w

)n+1

× 1

2πi

∫
|z|=ε

1

zn+1

z

exp(z)− 1

1

z − log 1
1−w

dz dw.

Now we have with γ ≪ 1 that∣∣∣∣log 1

1− w

∣∣∣∣ > γ −
∑
q≥2

γq

q
> γ −

∑
q≥2

γq = γ − γ2

1− γ
.

This is because log 1
1−w = w + w2/2 + w3/3 + · · · and the first term has

modulus γ so that we minimize the whole if we subtract the maximum modulus
of all remaining terms. If we choose this last term for ε we have convergence.
As an example γ = 1/10 and ε = 4/45 will work.

Summarizing we have that all the poles in z at ρk = 2πik where |k| ≥ 1
are outside the contour in z, as is the pole at log 1

1−w . Note also that with the

principal branch of the logarithm | arg(log 1
1−w )| ≤ π so the pole at log 1

1−w does
not coincide with any of the ρk.
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We evaluate the inner integral using the fact that residues sum to zero.
Hence we require minus the contribution from the logarithm pole and minus
the contribution from the ρk. The former yields

1

2πi

∫
|w|=γ

1

wn+1

1

1− w

(
log

1

1− w

)n+1(
log

1

1− w

)−n
1

1/(1− w)− 1
dw

=
1

2πi

∫
|w|=γ

1

wn+2
log

1

1− w
dw =

1

n+ 1
.

Multiply by n! to get n!/(n+1) which is the claim. It remains to show that
the ρk contribute zero. These are all simple. We get

lim
z→ρk

z − ρk
exp(z)− 1

= lim
z→ρk

1

exp(z)
= 1.

This yields

1

2πi

∫
|w|=γ

1

wn+1

1

1− w

(
log

1

1− w

)n+1
1

ρnk

1

ρk − log 1
1−w

dw.

Note that

∣∣∣∣log 1

1− w

∣∣∣∣ =
∣∣∣∣∣∣
∑
q≥1

wq

q

∣∣∣∣∣∣ ≤
∑
q≥1

γq

q
<

γ

1− γ
.

With the choice of contour above we have a bound of 1/9 on this term.
Hence we may expand into a convergent geometric series, of which only the
initial segment can possibly contribute:

1

2πi

∫
|w|=γ

1

wn+1

1

1− w

(
log

1

1− w

)n+1
1

ρn+1
k

1

1− 1
ρk

log 1
1−w

dw

= [wn]
1

1− w

(
log

1

1− w

)n+1
1

ρnk

n∑
q=0

1

ρqk

(
log

1

1− w

)q

.

Note however that we are extracting a coefficient on [wn] from a term that
starts at wn+1+q, and we have a zero contribution, which concludes the argu-
ment.

This was DLMF [DLMF, Eq. 24.15.8].

58.16 Formal power series vs contour integration

We seek to show that
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K∑
q=0

(−1)q
(
2n+ 1− q

q

)(
2n− 2q

K − q

)
=

1

2
(1 + (−1)K).

We do it two ways, using formal power series and residue operators as well
as contour integration.

Formal power series

The LHS is

K∑
q=0

(−1)q
(
2n+ 1− q

2n+ 1− 2q

)(
2n− 2q

K − q

)

= [zK ](1 + z)2n
K∑
q=0

(−1)q
(
2n+ 1− q

2n+ 1− 2q

)
zq

(1 + z)2q
.

Here we may extend to infinity because of the coefficient extractor in z. We
find

[zK ](1 + z)2n[w2n+1](1 + w)2n+1
∑
q≥0

(−1)q
zq

(1 + z)2q
w2q

(1 + w)q

= [zK ](1 + z)2n[w2n+1](1 + w)2n+1 1

1 + zw2/(1 + z)2/(1 + w)

= [zK ](1 + z)2n+2[w2n+1](1 + w)2n+2 1

(1 + z)2(1 + w) + zw2
.

Important note: what we have here is that
(
2n+1−q
2n+1−2q

)
is zero when 2n+1−2q

goes negative. This is not always what CAS systems might use. Maple for
example uses that

(
a
b

)
for b < 0 is

(
a

a−b

)
if a ≥ b. This is a generalization that

we will use in the second answer. It applies here because we replace
(
2n+1−q

q

)
by
(
2n+1−q
2n+1−2q

)
which is zero when 2q > 2n+ 1 under the first rule.

The contribution from w is

res
w

1

w2n+2
(1 + w)2n+2 1

(1 + z)2(1 + w) + zw2
.

Now we put w/(1+w) = v so that w = v/(1− v) and dw = 1
(1−v)2 dv to get

res
v

1

v2n+2

1

(1 + z)2(1 + v/(1− v)) + zv2/(1− v)2
1

(1− v)2
.

Restoring the coefficient extractor in z we have

[zK ](1 + z)2n+2[v2n+1]
1

(1 + z)2(1− v) + zv2
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= [zK ](1 + z)[v2n+1]
1

(1 + z)2 − (1 + z)3v + zv2(1 + z)2

= [zK ]
1

1 + z
[v2n+1]

1

1− (1 + z)v + zv2

= [zK ]
1

1 + z
[v2n+1]

1

(1− v)(1− vz)

= [zK ]
1

1 + z

2n+1∑
q=0

zq = [zK ]
1− z2n+2

1− z2
.

This is clearly an even function hence zero when K is odd. When K is even
and K < 2n+2 we get a value of one, and when K is even and K ≥ 2n+2 the
two contributions cancel, for a value of zero. Thus we have

1

2
(1 + (−1)K)[[K < 2n+ 2]].

Contour integration

We again seek to show that

K∑
q=0

(−1)q
(
2n+ 1− q

q

)(
2n− 2q

K − q

)
=

1

2
(1 + (−1)K).

This time we will not flip the lower index of the first binomial coefficient and
we get an answer that agrees with the second rule, which is used by CAS.

The LHS is

1

2πi

∫
|w|=γ

1

2πi

∫
|z|=ε

K∑
q=0

(−1)q
1

zq+1
(1 + z)2n+1−q 1

wK−q+1
(1 + w)2n−2q dz dw

=
1

2πi

∫
|w|=γ

1

wK+1
(1 + w)2n

1

2πi

∫
|z|=ε

1

z
(1 + z)2n+1

×
K∑
q=0

(−1)q
1

zq
(1 + z)−qwq(1 + w)−2q dz dw.

Here we may extend q beyond K to infinity because the pole at zero in w is
canceled for the extra values. We obtain

1

2πi

∫
|w|=γ

1

wK+1
(1 + w)2n

1

2πi

∫
|z|=ε

1

z
(1 + z)2n+1

× 1

1 + w/(1 + w)2/z/(1 + z)
dz dw
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=
1

2πi

∫
|w|=γ

1

wK+1
(1 + w)2n+2 1

2πi

∫
|z|=ε

(1 + z)2n+2

× 1

(1 + z(1 + w))(w + z(1 + w))
dz dw.

The pole at zero in z is gone but a new pole has appeared inside the contour.
Note that when we summed the geometric series we required |w/(1 + w)2| <
|z(1 + z)|. We have with γ ≪ 1 and ε ≪ 1 that |w/(1 +w)2| ≤ γ/(1− γ)2 < 2γ
and |z(1+ z)| ≥ ε(1− ε) > 1

2ε. Therefore taking ε = 4γ will work e.g. γ = 1/11
and ε = 4/11.

We have for the first simple pole at z0 = −1/(1 + w) that | − 1/(1 + w)| >
1/(1 + γ) > 4γ = ε. This pole is not inside the contour. The second pole is at
z1 = −w/(1 + w) and we have | − w/(1 + w)| < γ/(1− γ) < 4γ = ε. This pole
is inside the contour. We thus write

1

2πi

∫
|w|=γ

1

wK+1
(1 + w)2n+1 1

2πi

∫
|z|=ε

(1 + z)2n+2

× 1

(1 + z(1 + w))(w/(1 + w) + z)
dz dw.

Evaluating the residue from the simple pole at z1 we find

1

2πi

∫
|w|=γ

1

wK+1
(1 + w)2n+1(1− w/(1 + w))2n+2 1

1− (1 + w)w/(1 + w)
dw

=
1

2πi

∫
|w|=γ

1

wK+1

1

1− w2
dw.

This is

[wK ]
1

1− w2
=

1

2
(1 + (−1)K)

as claimed.

Alternate evaluation

Returning to the start we seek

K∑
q=0

(−1)q
(
2n+ 1− q

q

)(
2n− 2q

K − q

)
=

1

2
(1 + (−1)K).

With

(
2n− 2q

K − q

)
=

(
2n− 2q

2n−K − q

)
=

1

2πi

∫
|w|=γ

1

wK−q+1

1

(1− w)2n−K−q+1
dw
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the LHS becomes

1

2πi

∫
|w|=γ

1

2πi

∫
|z|=ε

K∑
q=0

(−1)q
1

zq+1
(1+z)2n+1−q 1

wK−q+1

1

(1− w)2n−K−q+1
dz dw.

Here we may extend the sum to infinity due to the pole at w = 0 vanishing
when q > K. This yields

1

2πi

∫
|w|=γ

1

wK+1

1

(1− w)2n−K+1

1

2πi

∫
|z|=ε

1

z
(1 + z)2n+1

×
∑
q≥0

(−1)q
1

zq
(1 + z)−qwq(1− w)q dz dw

=
1

2πi

∫
|w|=γ

1

wK+1

1

(1− w)2n−K+1

1

2πi

∫
|z|=ε

1

z
(1 + z)2n+1

× 1

1 + w(1− w)/z/(1 + z)
dz dw

=
1

2πi

∫
|w|=γ

1

wK+1

1

(1− w)2n−K+1

1

2πi

∫
|z|=ε

(1 + z)2n+2

× 1

z(1 + z) + w(1− w)
dz dw

=
1

2πi

∫
|w|=γ

1

wK+1

1

(1− w)2n−K+1

1

2πi

∫
|z|=ε

(1 + z)2n+2

× 1

(z + w)(z − (w − 1))
dz dw.

Once more the pole at z = 0 is gone but a new one has appeared (two of
them, in fact). To see this note that in the summation of the infinite series we
require for convergence that |w(1 − w)| < |z(1 + z)|. We have for ε ≪ 1 and
γ ≪ 1 that |z(1 + z)| ≥ ε(1 − ε) ≥ 1

2ε and |w(1 − w)| ≤ γ(1 + γ) ≤ 3
2γ. Hence

3γ < ε will work e.g. take γ = ε/4 as in γ = 1/16 and ε = 1/4. In particular
|w| < |z| so the pole at z0 = −w is inside the contour. On the other hand the
closest that the pole at z1 = w− 1 which is on a circle at z = −1, rotating with
radius γ, gets to the origin is 1− γ = 1− ε/4 > ε as long as ε < 4/5, so this is
definitely not inside the contour. Hence the contribution from z0 = −w is the
only one and it yields

1

2πi

∫
|w|=γ

1

wK+1

1

(1− w)2n−K+1
(1− w)2n+2 1

1− 2w
dw

=
1

2πi

∫
|w|=γ

1

wK+1
(1− w)K+1 1

1− 2w
dw
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=

K∑
q=0

(
K + 1

q

)
(−1)q2K−q = −(−1)K+1 1

2
+

1

2

K+1∑
q=0

(
K + 1

q

)
(−1)q2K+1−q

= −(−1)K+1 1

2
+

1

2
1K+1 =

1

2
(1 + (−1)K).

We once more have the claim.
This was math.stackexchange.com problem 4597569.

58.17 A sum of the derivatives of inverse powers

We seek to show that

n∑
k=0

(−1)k
(
n+ 1

k + 1

)[
1

fk(x)

](n)
fk+1(x) = [f(x)](n).

Suppose for the moment that x is a complex number. We will assume f(x)
and 1/f(x) are analytic at x so they both have power series there with some
non-zero radius of convergence. Take ρ ≪ the lesser of the two and take ρ = 1
if both converge everywhere. We then get for the sum

n∑
k=0

(−1)k
(
n+ 1

k + 1

)
fk+1(x)

n!

2πi

∫
|z−x|=ρ

1

(z − x)n+1

1

fk(z)
dz.

This is

n!

2πi

∫
|z−x|=ρ

f(z)

(z − x)n+1

n∑
k=0

(−1)k
(
n+ 1

k + 1

)
fk+1(x)

1

fk+1(z)
dz

=
n!

2πi

∫
|z−x|=ρ

f(z)

(z − x)n+1
dz

+
n!

2πi

∫
|z−x|=ρ

f(z)

(z − x)n+1

n∑
k=−1

(−1)k
(
n+ 1

k + 1

)
fk+1(x)

1

fk+1(z)
dz

= f (n)(x)− n!

2πi

∫
|z−x|=ρ

f(z)

(z − x)n+1

[
1− f(x)

f(z)

]n+1

dz

= f (n)(x)− n!

2πi

∫
|z−x|=ρ

1

fn(z)

[
f(z)− f(x)

z − x

]n+1

dz = f (n)(x).

Expanding the bracketed term into a power series about x we find

g(z) = f ′(x) + f ′′(x)(z − x)/2 + f ′′′(x)(z − x)2/6 + · · ·

so it goes to a constant f ′(x) with no more pole at z = x. More importantly
it is convergent in the neighborhood of x so it represents an analytic function
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there. Integrating gn+1(z)/fn(z) which is the product of two analytic terms we
obtain a zero contribution from the integral which concludes the argument.

This was math.stackexchange.com problem 4993025.

58.18 Shifted central binomial coefficient convolution

We seek to simplify

n∑
k=0

(−1)k
(
k + r

r

)(
2k + 2r

k + r

)(
n− k + r

r

)(
2n− 2k + 2r

n− k + r

)
.

With this in mind we introduce

Fr(z) =
∑
k≥0

(
k + r

r

)(
2k + 2r

k + r

)
zk.

For a closed form we have

1

2πi

∫
|w|=γ

1

wr+1
(1 + w)2r

∑
k≥0

(
k + r

r

)
(1 + w)2k

wk
zk dw.

For the series to converge we need |(1 + w)2z/w| < 1 or |z| < |w/(1 + w)2|.
We will take γ = 1 which gives validity for |z| < 1/4. Continuing,

1

2πi

∫
|w|=γ

1

wr+1
(1 + w)2r

1

(1− (1 + w)2z/w)r+1
dw

=
1

2πi

∫
|w|=γ

(1 + w)2r
1

(w − (1 + w)2z)r+1
dw

= (−1)r+1 1

zr+1

1

2πi

∫
|w|=γ

(1 + w)2r
1

((1 + w)2 − w/z)r+1
dw.

The fraction under the integral factors into (w − ρ0)(w − ρ1) where ρ0,1 =
(1−2z±

√
1− 4z)/2/z. We have with |z| < 1/4 the convergent series expansion

ρ1 = − 1

2z

∑
k≥2

zk[vk]
√
1− 4v.

Note that we have |1/z| > 4. Now the coefficients of the square root are
all negative except for the constant term which is not included. Therefore the
norm of the sum term is at most

1

2|z|

(
1− 2|z| −

√
1− 4|z|

)
< 1.

This is because 1 − 2|z| −
√
1− 4|z| < 2|z| or 1 − 4|z| <

√
1− 4|z| which

holds when 1−4|z| < 1 (z = 0 is not included here) and we find that ρ1 is inside
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the contour (the unit circle). From the quadratic ρ0 = 1/ρ1 so ρ0 is not. We
then have from the integral evaluating at w = ρ1 where we require

1

r!

(
1

(w − ρ0)r+1
(1 + w)2r

)(r)

which is with the Leibniz rule

1

r!

r∑
q=0

(
r

q

)
(−1)q(r + 1)q

(w − ρ0)r+1+q
(1 + w)2r−(r−q)(2r)r−q

=

r∑
q=0

(−1)q

(w − ρ0)r+1+q

(
r + q

q

)
(1 + w)r+q

(
2r

r − q

)
.

Observe that(
r + q

q

)(
2r

r − q

)
=

(2r)!

(r − q)!× r!× q!
=

(
2r

r

)(
r

q

)
so that we find(

2r

r

)
1

(w − ρ0)r+1
(1 + w)r

r∑
q=0

(
r

q

)
(−1)q

(1 + w)q

(w − ρ0)q

=

(
2r

r

)
1

(w − ρ0)r+1
(1 + w)r

[
1− 1 + w

w − ρ0

]r
=

(
2r

r

)
1

(w − ρ0)2r+1
(1 + w)r(−1)r(1 + ρ0)

r.

Evaluating at w = ρ1 we have (1+w)(1+ρ0) = 2+ρ0+ρ1 = 2+(2−4z)/2/z =
1
z to get collecting everything

Fr(z) = (−1)r+1 1

zr+1

(
2r

r

)
(−1)2r+1 z2r+1

√
1− 4z

2r+1

1

zr
(−1)r =

(
2r

r

)
1

(1− 4z)r+1/2
.

We may now evaluate the sum almost by inspection and get

(
2r

r

)2

[zn]
1

(1 + 4z)r+1/2

1

(1− 4z)r+1/2
=

(
2r

r

)2

[zn]
1

(1− 16z2)r+1/2
.

We see that n must be even in which case we obtain

(
2r

r

)2

[zn/2]
1

(1− 16z)r+1/2
=

(
2r

r

)2

(−1)n/216n/2
(
−r − 1/2

n/2

)
.
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We can re-write the second binomial coefficient somewhat,

1

(n/2)!

n/2−1∏
p=0

(−r − 1/2− p) =
1

(n/2)!

(−1)n/2

2n/2

n/2−1∏
p=0

(2r + 1 + 2p)

=
1

(n/2)!

(−1)n/2

2n/2
(2r + n− 1)!!

(2r − 1)!!
=

1

(n/2)!

(−1)n/2

2n/2
r!2r

(2r)!

(2r + n)!

(r + n/2)!2r+n/2
.

Plug this into the closed form to get

(
2r

r

)2

2n
(
2r

r

)−1(
2r + n

r

)(
r + n

n/2

)
= 2n

(
2r

r

)(
2r + n

r

)(
r + n

n/2

)
.

Remark. On seeing that Fr(z) has such a simple form we gather that it
can be computed very straightforwardly from first principles. We note that

Fr(z) =
1

r!

∑
k≥0

(
2k + 2r

k + r

)
zk+r

(r)

=
1

r!

∑
k≥0

(
2k

k

)
zk −

r−1∑
k=0

(
2k

k

)
zk

(r)

=
1

r!

(
1√

1− 4z

)(r)

=
1

r!
(1− 4z)−1/2−r(−1/2)r(−4)r

=
1

(1− 4z)r+1/2

(
−1/2

r

)
(−4)r =

1

(1− 4z)r+1/2
[wr]

1√
1− 4w

=

(
2r

r

)
1

(1− 4z)r+1/2
.

This identity was from a paper by Lucio Barabesi in the JIS, the full citation
is [Bar23].

58.19 Stirling cycle numbers and an exponential EGF

We seek to verify that[
n

m

]
= (−1)n−m

(
n− 1

m− 1

)
(n−m)![zn−m]

(
z

exp(z)− 1

)n

.

We may simplify the factorial,

(−1)n−m (n− 1)!

(m− 1)!
[zn−m]

(
z

exp(z)− 1

)n

.
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The contribution from z is

res
z

1

zn−m+1

(
z

exp(z)− 1

)n

= res
z

zm−1 1

(exp(z)− 1)n
.

Now put z = log(1 + w) so that dz = 1
1+w dw to get

res
w

logm−1(1 + w)
1

wn

1

1 + w

= [wn−1] logm−1(1 + w)
1

1 + w
=

n

m
[wn] logm(1 + w).

Restoring the factors in front,

(−1)n−m n!

m!
[wn] logm(1 + w) = (−1)m

n!

m!
[wn] logm(1− w)

=
n!

m!
[wn](−1)m logm(1− w) = n![wn]

1

m!

(
log

1

1− w

)m

.

We have obtained the standard Stirling cycle number EGF and may con-
clude. This was Formal Laurent Series. It can also be done using complex
variables. Noting that z/(exp(z)−1) is analytic in a neighborhood of the origin
we obtain from the Cauchy Coefficient Formula

1

2πi

∫
|z|=ε

1

zn−m+1

(
z

exp(z)− 1

)n

dz.

The substitution z = log(1 + w) then maps z = 0 to w = 0 and is locally
invertible. With w = exp(z) − 1 we have w = z +

∑
q≥2

zq

q! . The first term

produces a circle with the same radius as the image of |z| = ε. The sum of
the remaining terms is bounded by |z|2/(1 − |z|). Now put ε = 1/Q, with Q
large. The bound on the remainder becomes 1/Q/(Q− 1) which shows that it
is of lower order than the circle term and we may deform the image contour to
|w| = γ where γ < 1/Q− 1/Q/(Q− 1), getting the integral

1

2πi

∫
|w|=γ

logm−1(1 + w)
1

wn

1

1 + w
dw.

We may then apply the CCF one more time to return to the realm of formal
power series. The above also shows that the singularity at w = −1 and the
branch cut do not intersect the initial image contour (before shrinking to |w| =
γ) given that it is contained in a circle of radius 1/Q+1/Q/(Q−1) = 1/(Q−1) ≪
1.

This was math.stackexchange.com problem 5046903.
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