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The Egorychev method is from the book by G.P.Egorychev [Ego84]. We
collect several examples, the focus being on computational methods to produce
results. Those that are from posts to math.stackexchange.com have retained
the question answer format from that site. The website for this document is at
this hyperlink:

https://pnp.mathematik.uni-stuttgart.de/iadm/Riedel /egorychev.html.

The crux of the method is the use of integrals from the Cauchy Residue
Theorem to represent binomial coefficients, exponentials, the Iverson bracket
and Stirling numbers, Catalan numbers, Harmonic numbers, Eulerian numbers
and Bernoulli numbers. There is a tutorial at the following article: [RM23].

We use these types of integrals:

o First binomial coefficient integral (By)

(A e R

k - 211 |z|=¢ Zk+1 Zk+1

where 0 < £ < 00.

e Second binomial coefficient integral (Bz)

n 1 / 1 d 1
=_— z = res
k 210 )y ze (1 — z)ktipn=htl z (1 — z)ktlgn—k+l

where 0 < ¢ < 1.

e Exzponentiation integral (E)

k! exp(nz) exp(nz)
k

n' = — dz = k! res ————
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where 0 < £ < o0.


https://pnp.mathematik.uni-stuttgart.de/iadm/Riedel/egorychev.html

e [Tverson bracket (I)

1 P 1 P 1
dz = res —— ——
2 z7z+1 1—2

E<n|| = — _—
(1% < nl] 270 Jpjme 2" 1 — 2

where 0 < e < 1.

o Stirling numbers of the first kind

nl ! 1/ L (1, L ’“d n! L (1, L k
= —— — | log —— 2= —r1es —— | log ——
L BT T i g o 1o o (losT—

where 0 < ¢ < 1.

e Stirling numbers of the second kind

n n! 1 1 n! 1
Ui} = Frame [ e epte) = 0" e = s s (eopte) 1)

z
where 0 < ¢ < o0.

The residue at infinity is coded R.
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1 Introductory example for the method (B5;)

Suppose we seek to evaluate

Introduce

k) 1 L+t
k _% |z|=e Zk+1 *

k 1 k
< ) = — / 7(1 + w) dw.
j 270 = witl

This yields for the sum

and
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= — (1+2) 7/ - (1— (1 +w) +Z)) dw dz
210 J|5)=e z 275 J )=y wi+l z

1 (14+2)" 1 1 )
2mi /Z—e Zn+1 211 /wl_’Y w]+1 ( w 'I.UZ) w az

(= / (L+2)" 1
|z|=e

1
— 1 dw dz.
o 2 o /w| et (Lt ws) dw dz

This is

(=n" (1+2)" 1
27 /Z_Ez"H2m/| wa+1z wil +2)7 dw dz.

Extracting the residue at w = 0 we get

/ 1;:; ( )(1+z)ﬂ dz
(ZL) \ |=e 1J;"Z+):ﬂ =
o ()(7)
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thus proving the claim.
This is math.stackexchange.com problem 1331507.

2 Introductory example for the method, conver-
gence about zero (B;B,)

ET: (r - k;) (s + k)
m n
k=0
where n > s and m < r. We then have it for non-negative r and arbitrary s
because the sum is a polynomial in 7 and s and we have agreement on an infinite

number of points.
Introduce

Suppose we seek to evaluate

r—k 1 1 1
= dz.
m 2mi Zr—h=m4l (1 — z)m+l

|z|=e

Note that this is zero when k£ > r —m and € < 1 so we may extend the sum
in k to infinity. Observe here that we get a zero value for (T;Lk) when k£ > r
i.e. the upper index becomes negative. We do not get (r — k)2/m! which does
not vanish. Introduce furthermore

s+k
<s+k>:1./ A+w)e™
n 270 || =~ wntl

This yields for the sum

1 1 1 1 (1+w)° — 4 .
— — — 1 dwd
210 J) = Zr—m+L (1 — 2)m+1 274 /w—’Y whtl ZZ (1+w)" dw dz
E>0
1 1 1 1 1 5 1
- — / (L+w) dw dz
270 Jpjme 27T (L= 2)™ 2700 Jjp=y w1 — (1 +w)2

1 1 1 1 (14 w)* 1
=75 r—m-42 m—+1 Py n+1 dw dZ
27 J|p)=e 2 (1-2) 270 Jj|=y W w—(1-2)/z

For the geometric series to converge we must have |z(1 4+ w)| < 1. Observe
that |2(1+w)| = e]l+w| < e(147). So we need to choose 1+ < 1/e with € in
a neighborhood of zero. We also want the pole at w = (1 — z)/z to be outside
the contour in w. Now |(1—z)/z| > (1 —¢)/e so we need the latter to be larger
than «. Taking v = € we require from the pole 1 —e > €2 or € < (v/5 —1)/2. For
the convergence we need 1 + ¢ < 1/e or once again e < (v/5 — 1)/2. Therefore
the choice e = 1/2 and vy = 1/2 will work.

Continuing we evaluate the inner integral with minus the residue at w =

19
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(1—2)/z because residues sum to zero, the residue at infinity is zero by inspection
and the pole is outside the contour. We find

1 1 1 1t

271 Jjsjme 2772 (1 — 2)m L 25 (1 — 2)nHL

! 1 1
- Tm 2| yrts—n—m-+1 (1 _ Z)n+m+2

dz

dz.
This yields

r+s—n—-m+n+m-+1 - r+s+1
n+m+1 T \n+m—+1

which concludes the argument.

Alternate proof
Start with

1 14+2)" 1 14+ w)® < (1 +w)k
7/ %7/ ( n+1) > (1 ) dw de
T J|p)=e Z T =y W prs (1+2)

where € > « and this time we require n > s and n,m > 0. Note that here

(") does not vanish when k > r but those k are outside the range of our sum.
We obtain

[ O+ (+w) 1= (+w)y /a4t
Joos T i

2mi 2l 97 w1 1—(1+w)/(1+2)

BN (1+2)" 1 I+w)l+z—(1+w) /(1 +2)" w d
/|z|—s /le—v =

2mi zmtl 2mg wntl z—w

The sum was finite so no convergence issues. Now we have two pieces, the
first piece is

1 (142" 1 1+w) 1

— — — dw dz.
210 Jizj=e 2L 270 =y w2z —w

Note that with our choice of contour the pole at w = z of the integral in

w is outside the contour. With n > s the residue at infinity is zero so we may
evaluate the integral with minus the residue at w = z. We get

1 / (1+ z)rts+t r+s+1
S ———dz = .
2M0 Jyj=e 22 m+n+1

This is the claim. The second piece gives
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1 11 (14 w)rtstt 1
“omi oL e om W
|2|=¢ |w|=~

Here we note that when n 4+ 2 — (r + s + 1) < 2 the residue at infinity does
not vanish, hence we cannot evaluate by the method that we used on the first
piece. Instead we apply the Leibniz rule to the integral in w to get

(n)
1 1
- 1 r4+s+1
(oo =)
1 n

_ n r+s+1—q q; n—q
= <q>(1+w) (T+s+1)7(z—w)1+n*q1 .

q=0

Evaluate at w = 0 and simplify geometrics,

" r4+s+1 1
ZO q 2l+n—q’
q=

Note however that

! 1 ! dz = 1 =0/]|=0
2 )y, et gurieg 42 = [man AL =g =0 =

owing to the boundary conditions, which once more concludes the argument.

Remark. If we insist on evaluating the second piece with the residue at
infinity we get from the pole at w = z a value of —(JI;LTI), where we have
flipped the sign. We get from minus the residue at infinity

(14 w) e+l 1
res —w -
wow wrTst 1/w— =z

(1+w)rtstt 1
- l"S)S wr+sfn+1 1 —wz

r+s—n
1\ .,
e

q=0 1

With the remaining integral in z the only non-zero contribution is from
qg=r+s—n—m,giving (Tfjf:fm) = (:j:;;ll) Adding the two contributions
produces a zero value as before.

This was math.stackexchange.com problem 928271.
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3 Introductory example for the method, an in-
teresting substitution (B5)

Suppose we seek to verify that

22%(_1)q(p—1+q)<2m+2p+q—1)2q:(_1)m<p—1+m).

g q 2m —q m

Introduce

2m+2p+qg—1 1 / 1 2m2pg—
= — — (1 m+2p+q-1 7.
( 2m —q ) 20 |y me 22mTaTL (1+2) :

Observe that this controls the range being zero when ¢ > 2m so we may
extend ¢ to infinity to obtain for the sum

1 1 -1
i gr (L2227 (p “)(—qu%%wz)q dz
™ |z|=€ Zem

q=>0 q
1 1 1
= 1 2m—+2p—1 d
210 )= 22mH (1+32) (14+2z(z+1))p *
1 1 1
- 1 2m+2p—1 d
20 )y = 22mHL (1+2) (14 2)%2 + 22)p :
1 1 1
_ - (1 2m—1 d
27 ).y et LA e
1 1 1 1
- 14 2)*™ dz.
270 )= 227”( +2) z(1+2) (14 22/(1+ 2)?)? :
Now put
z U 1
=u sothat z=-—— and dz=-——du
142 1—u (1 —u)?

to obtain for the integral

1 1 1 1 1
2ri /| () x 1~ w) (L ) (w2

1 1 1

T om w2+l (1 4 u2)p du.

[ul=v
This is

[u2 ](1+u2)?’_[v ](1—|—1])p_(_1) ( )v

m
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as claimed.

For the conditions on € and -y we require convergence of the geometric series
with |22(1+2)| < 1 which holds for ¢ < (—14-1/3)/2. Note that with u = 2+ - -
the image of |z| = € makes one turn around zero. The closest it comes to the
origin is at €/(1 + €) so we must choose v < ¢/(1 +¢€) e.g. v = €2/(1 + ¢) for
|w| = 7 to be entirely contained in the image of |z| = e. The poles at u = +i
are definitely outside this image. Taking ¢ = 1/5 will work.

This was math.stackexchange.com problem 557982,

4 Introductory example for the method, another
interesting substitution (B;)

Suppose we seek to evaluate
Lmz/:?J n (—1)k m—2k+n—1
Pt k n—1

where m < n and introduce

m—=2k+n—-1\ (m-2k+n-1
n—1 N m — 2k
1 1
= 1 + m—2k+n—1 d
2 l2|=c Zm_2k+1( Z) z
which has the property that it is zero when 2k > m so we may set the upper
limit in the sum to n, getting

1 1 1 m+n—1 ~ (n 1)k 22 d
9 | Zm+1( +2) Z k (=1) 1122k &
|z]=e€ k=0
1 1 2 "
- 1 m4+n—1 1— d
270 Jj2|=e ) < (1+Z)2> ’
1 1 m—n— n
= i L TR H(1+22)" dz
1 (1+2)™ 1 (1+22)"
- 2mi = 2™ 2(1+2) (1+2)"
Now put
1422 u—1 1 1+z 1
T =u so that z-—m,l—i—Z——u_27 bk
1 (u—2)2 1
= d de=-—75d
z2(1+ 2) u_1 ™ : (u—2)2 “
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to get for the integral

1 1 —2)2 1
L LS P
270 Jiy—1j=y (0 —=1)™ u—1 (u—2)

1 1 "
= — U Uu.
21 |lu—1|=v (U — 1)m+1

This is

=0 = =713 (M- = (7).

q=0

This solution is more complicated than the obvious one (which can be found
at the stackexchange link) but it serves to illustrate the substitution aspect of
the method.

Concerning the choice of € and «y the closest that the image of |z| = € which
is 1+ 1=, gets to one, is ¢/(1 + ¢€) so that must be the upper bound for ~.
Taking € = 1/3 and v = 1/5 will work. Note also that v = 1+ z + - - - makes
one turn around one.

This was math.stackexchange.com problem 1558659.

5 Introductory example for the method, yet an-
other interesting substitution (Bs)

Suppose we seek to evaluate

Introduce

2n 1 / 1 1 d
= z.
n+k 270 J|z)=e Zn—ktl (1 — z)nthtl

Observe that this is zero when & > n so we may extend k to infinity to
obtain for the sum

1 1 1 2k
— k d
91 Ji_ 271 (1 — z)ntl 2 1- 2k
|| k>0
1 1 1 z/(1—2) d
= — 2z
270 || 2L (1 —2)n L (1 —2/(1 — 2))?
1 1 1 1
— dz.

- 211 |z|=e 27 (1 — Z)n (1 — 22’)2
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Now put z(1 — z) = w so that (observe that with w = z + - -+ the image of
|z| = € with e small is another closed circle-like contour which makes one turn
and which we may certainly deform to obtain another circle |w| = )

1-V1—1
22% and (1—22)>=1—4w

and furthermore
1 1

dz = —5 x o x (=4) x (1= 4w) V2 dw = (1 — 4w) Y2 dw

to get for the integral

1
211 ‘

1

1 1 1 1
w™ 1 — 4w

1—4w) V2 dw = — ———— dw.
(=) de = o o wr (L= w2

w|=y
This evaluates by inspection to

41 (" - 1/2) =41 (n 3 1/2> - i n_Q(n -1/2-4q)

n—1
q=0

gn—1 122 on=1l  (2p —1)!
BRG] qli[@” B Rl Fa b Ty

n? (2n 1 [(2n
B 271(71) - 2n(n>

Here the mapping from z = 0 to w = 0 determines the choice of square root.
For the conditions on € and v we have that for the series to converge we require
|z/(1—2)| <1lore/(l—¢€)<1ore<1/2. The closest that the image contour
of |z| = € comes to the origin is € — 2 so we choose v < ¢ — €2 for example
v = €2 — €. This also ensures that v < 1/4 so |w| = 7 does not intersect the
branch cut [1/4,00) (and is contained in the image of |z| = €). For example
e=1/3 and v = 2/27 will work.

This was math.stackexchange.com problem 1585536.

Using formal power series

We may use the change of variables rule 1.8 (5) from the Egorychev text (page
16) on the integral

1 1 1 1 1 1 1

- — dz = res—
210 Jypjme 2" (1= 2)" (1 —22)2 z 2" (1—2)" (1 — 22)2

with A(z) = iz and f(z) = 7. We get h(z) = z(1 — z) and find

o [7we)

z=g(w).
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with g the inverse of h.
This becomes

1 z/(1 —22)?
" [(1 —22)/(1-2)||,
4 lz=g(w)
or alternatively
1 2(1 - 2) B 1 [ 1
Wt {(1 - 23)3} 2=g(w) ~ W (1 - 22)3} 2=g(w).

Observe that (1 —22)2 =1—42z+422=1—42(1 — 2) = 1 — 4w so this is
1 1

o wn (1= w32
and the rest of the computation continues as before.
This was math.stackexchange.com problem 4007052,

6 Introductory example for the method, using
the Iverson bracket only (I;)

Suppose we seek to verify that

n
Sp=3 2+ (”‘ng) —on,
k=0
We introduce the Iverson bracket

k< n)] = — LIS S

=" o lzj=e 271 — 2
so we may extend k to infinity, getting
1 1 1 n+k
— _ 2~k 2F dz
270 Jsjme 2" 1 — 2 kz>0 ( n )

1 1 1 1 d
= — zZ.
2m |z|=e Zn+1 11—z (1 — 2/2)""'_1

We evaluate this using the negative of the residues at z = 1,z = 2 and
z = co. Here the contour does not include the other two finite poles which also
ensures that the geometric series converges. We could choose € = 1/2. We get
for the residue at z =1

1
(1/2)n+1

For the residue at z = 2 we write

— 72n+1
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1 1 1

_1 TL+1R .
(=1) =2 i1 1—2(z/2—1)nt1

11 1
_ n+lon+1
=(-1) 2" T Res,—2 LT — 2 (z — 2)ntl
1 1 1
= (—1)"2""' Res,_
) RS G o 15 (=) (s =2
= (U Res e e e e T (2~ 9) (2 2
This is
(=)" Y (-1)" (” " ")2%—1)“ = <n . q)” o
7=0 q q=0 q

Finally do the residue at z = oo getting (this also follows by inspection
having degree zero in the numerator and degree 2n + 3 in the denominator)

1 1 1
21—z (1 —z/2)n !
1 1
1-1/2(1—-1/2/z)n+1
1 Zntl
z—1(z—1/2)n+1

Res,—

1

= 7ReSZ:0 722”‘1“1
z

1

= —Res,_o—2"1!
z

2n+1 1 1 =0
z—1(z—1/2)n+1

Using the fact that the residues sum to zero we thus obtain

= —Res,—¢z

Sy, =2 +8, =0
which yields
S, =2".
This was math.stackexchange.com problem 389099,

7 Verifying that a certain sum vanishes (B)
Suppose we seek to evaluate

i(n)i 1 (a—l—bk)(k—n—l)

o \m) =a+bk+1\ m k '

Now when n = 0 this becomes 1/(a + 1) so we will suppose that n > 1. We
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also assume that 1/(a 4+ bk 4+ 1) does not become singular in the range.

Re-write this as
i n i (=D fa+bk\ (n
m) & a + bk +1 m k

m=0

()5 (1) ().

We get for the inner sum with € < 1

1 1 " /n\ 1
- (1 a+bk =
211 z (I+2) mz::o m) z

|z|=¢

1 1 1\"
— —(1 4 z)at0k (1+> dz
= 2mi |2|=e ? z
1 1 a+bk+n
_ 1 a+bk+n dz = .
21 ). Zn+1( +2) z n

This also follows by Vandermonde. There is the possibility of a pole at

z = —1 but it is not inside the contour. Substitute into the outer sum to get
i 1)k 1« .
= k)a+bk+1 n n— k n—1

With the extractor integral, where € < 1 since we only want the one binomial

coefficient and no cancellation from a potential pole at z = —1
11 1 (1_|_ )a—‘—ni n ( 1)k(1_|_ )bkd
—— — z — z z
n 211 _. 2" k
|z|=e k=0
11 1

= 5277” | | Z7(1+Z)a+n(17(1+z)b)n dZ
z|=€

This is zero and the sum vanishes, because

(1 _ (1 4 Z)b)n _ (—1)”[)”2’” N

and the third term under the integral cancels the pole at zero. With this
last integral when a + bk 4+ n < 0 the residue at infinity is zero and when € > 1
with both poles inside the contour we would get zero for the value of (atlbff”)
This was math.stackexchange.com problem 1789981
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8 A case of radical cancellation (B, R)
Suppose we seek to show that
2m " on+1\ (m+k
(2n> _;;) <2k+1>( 2n )

where m > n. We introduce

on +1 o +1 1 1 ,
= = — n+l g
<2k + 1) (Qn - 2k) omi /Zze et L+ 7) :

Observe that this vanishes when k& > n so that we may use it to control the
range and extend £ to infinity. We also use

m+k 1 1 Tk

‘We thus obtain

1 (1+2)**1 1 (1+w)™ ok k
— —_— —_— 1 dwd
271 |2 = Z2n+1 271 Jw|=~ w2n+1 Z z ( + ’LU) w az
k>0
1 1 2n+1 m
:7_/ (1+2) i (1 +w) 1 dw dz.
270 Jisj=e 22D 270 1=y w1 — (14 w)2?

Evalute the inner integral using the negative of the residue at the pole at

1—22
w=—7
(residues sum to zero) as in
1 1 2n+1 1 1 m 1
7/ ( +22) — ( _Zw) . . dw dz
21 Jyj=e  22TL 0 2m0 fjymy w1 =22 — w2z
1 1 2n+1 1 1 m 1
:—7./ ( +Z) a o ( +U}) dw dz.
21 Jyme 22T 270 =y WP w — (1 - 22)/22
The negative of the residue is
1 Zin+2 1 1

ZQm (1 _ Z2)2n+1 - Z2m74n72 (1 _ Z2)2n+1

and we obtain from the outer integral

1 (14 2)2ntd 1 1 J
211 l2|=c »2n+3 »2m—4n—2 (1 _ 22)271,4-1 z
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1 1
= d
27.(-2' /z=e Z2m72n+1 (1 _ Z)2n+1 Z

B 2m — 2n + 2n - 2m
- on S\ 2n )’
This is the claim.

Remark. We also need to show that the contribution from the residue at
infinity of the inner integral is zero. We get

(I+w)™ 1
ReSw:OO w2n+1 1 — (1 + UI)ZQ
= —Res i(1 + 1/w)mw2”+1;
w=02 1—22—22/w

1

_ n 2n—
= ~Resu=o(l+w) e e

No contribution when 2n > m. Otherwise,

1 1
wm=2n 1 —w(l — 22)/22

1 m§71 m (1 — 2%)1
22 m—2n—1—gq 224

q=0

R L YR
22 2n+1+q/ \ 22

q=0

1
;Reswzo(l +w)™

Combining this with the integral in z yields

S )L / U491 S () e Ly,
2n+1+q)2mi Ji = 2T 22 Ap 220

q=0 p=

The contribution from the residue is

[22n+2+2p](1 + Z>2n+1 — 0

We can express this verbally by saying that the term from the integral is
[22"](142)?" ! and the sum only contributes negative powers of z with exponent
starting at two.

Remark, II. From the convergence we require that |2%(1 + w)| < 1 in the
double integral and must choose our contours appropriately. Choosing v = € we
require €2(1+¢€) < 1 so we may take e < 1/2. We must also verify that (1—22)/22
is outside the contour |w| = ~y. This is 1/2? — 1 i.e. a circle of radius 1/¢? shifted
by one to the left. The circle has radius at least four so it completely encloses
|w| = v from the outside without touching the inner circle, showing that the
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pole is outside the contour.
This was math.stackexchange.com problem 1900578l

9 Basic usage of exponentiation integral (B F)

Suppose we seek to verify that

QG-

q=r

We use the integral representation

q
(0-() -,
r q—r 2mi Jjy)me 20T

which is zero when ¢ < r (pole vanishes) so we may extend ¢ back to zero.
We also use the integral

P = (p—r1)! / exp(qu)
211 Jw|=" wp—r+1 '

‘We thus obtain for the sum

(*1)”(2?*7')!/ 1
21 Jw| =" wp—r+1

1 - 1+ 2)1
X — P Z (p) (—1)‘1# exp(qw) dz dw
|z|=€ P q z

2me
_ =DPp—r)! / 1
o 211 |w|=~ wp—r+l

1 1 p
X — P <1 _ 1t exp(w)> dz dw
|2]=¢ z

2
_ =DPp—r)! 1
o 211 |w|=~ p—r+1

1 1
Xo— . W(—exp(w) + 2(1 — exp(w)))? dz dw
_(p=n) / 1
N 211 |w|= wp—rtl
1 1
X5 e W(exp(w) + z(exp(w) — 1))? dz dw.

We extract the residue on the inner integral to obtain
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b /hm - (p P ) exp(ruw) (exp(w) — 1P duw

pl 1 1 B
= rl2mi P — )P dw.
270 J )=y wP—T+1 exp(rw)(exp(w) ) w

It remains to compute
[wP™ "] exp(rw)(exp(w) — 1)P7".

Observe that exp(w) — 1 starts at w so (exp(w) — 1)P~" starts at wP~" and
hence only the constant coefficient from exp(rw) contributes, the value being
one, which finally yields

p!
ﬁ.
This was math.stackexchange.com problem 1731648.

10 Introductory example for the method, elim-
inating odd-even dependence (B;)

Suppose we seek to verify that

2 () () - (")
2 ()= (0 2 ) ()

q=0 q=

This is

We treat these in turn.
First sum. Observe that

) () =G0

This yields for the sum
" /n\ (n—q
2" ’ 2724,
Z <Q) ( q )

q=0
_ 1 1 n—gq
n=ay 7/ (A+z) dz
q 270 Jjpjme 297!
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which yields for the sum

2 e (i),
270 Jjsj=e 2 “\q z9(1 4 z)4

q=

L e

~ omi

Second sum. Observe that

) () = () G)

This yields for the sum

n— - n n—gq —2
PG
qz::()q g+1

This time introduce

_ n—q
n—q\ _ L/ (I+2)m
qg+1 270 Jjsj=e 2972

which yields for the sum

2”—1/ (14 2)" < (n 020 L
270 Jisj=e 27 q z4(1 4 z)4

q=0

dz

1+ 1 ! d
|2|=e z 4z(1 + 2) “

2-n (1+22)% 2n 2n
2mi /Z_E Zntl : n

n

gn-1 (1+2)" R
2mi /|Z,_E 2 Trnayy) ¢

I / (L+22™ i 20 Y _
27T’i |z|:e Zn+2 n—+ 1

Conclusion.
Collecting the two contributions we obtain

<2n> < 2n ) <2n+ 1>
—+ =

n n+1 n

as claimed.

This was math.stackexchange.com problem 1442436
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11 Introductory example for the method, prov-
ing equality of two double hypergeometrics
(B1)

Suppose we seck to verify that fy(n, k) = fa(n, k) where

n

(2K + 2v)!

Rl :;)(kw)! oTx @R x (-l
and
[n/2] 1 )
fa(n, k) = mz::O (k+m)!xm!x(n—2m)!2 '

Multiplying by (n + k)! we obtain

O oY G [ G B

v=0

and

Ln/2]
, Z n+k\/m+k—-—m\__,
k — 2’L 2 I’YL.

m=0
We will work with the latter two.
Re-write the first sum as follows:

" In+k\ [2k+ 2n — 20
2" 2
()

Introduce

2k +2n — 2v 1 1 20
< ) = /IZI—e Zn_vﬂ(l 4 z)2kt2n=20 g

n—uv 211

This integral is zero when v > n so we may extend v to infinity.
We get for g1(n, k)

v

1 1 n+k z
2—717 1 2k+2n 27) d
2mi Zntl (1+2) Z v J(1+2)% :

|z|=e v>0

1 1

__o—n
=2 Zn-l—l

n+k
L 1 2k+2n (4 2# d
27T’L' \z\:e ( +Z) + <1+Z)2 z
1 1

—_— (1 + 4z + 22)n+k dz.

__o—n
- 2 Zn+1

21 |z|=e
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There are no convergence issues here as the sum in v is in fact finite.
For the second sum introduce

n+k—m 1 1 ke
( n—2m >:2m'/|z|_eznzm+1(1—|—z) dz.

This is zero when 2m > n so we may extend m to infinity.
We get for ga(n, k)

2m

o1 1 n+k z ,
n_— n+k —4m
2 2mi o 2l (1+2) Z ( m ) (1+ z)m2 dz

|z|= m>0

1 1 1 22 \"*F
=" 1 k(14 — d

omi /Z|_E (Lt ( * 161+z) :

1 1 1 n+k
=" — — (1 — 22 dz.
2mi /IZ:e ontl ( +z 4+ 162 ) z

Finally put z = 4w in this integral to get

1 1 n+k

p — (1 +dw+w?)" 4d
27TZ ‘w|:€/4 4n+1wn+1 ( + W ) v

a1 1 n+k
=27 — —— (1 + 4w +0?)"" dw.
27 Jjwj=e/a gt (1w w) T dw

This concludes the argument.
This was math.stackexchange.com problem 924966,
12 A remarkable case of factorization (B;)

We let T(0) =0 and T'(1) = 1 and prove that when

[n/2]
7 = 3 (0 (M e w

k=1

r=cn =5 (020 = (2 - (707)

In fact the case of a zero argument to T is not reached as for n > 2 we also
have n — |[n/2| > 1. Applying the induction hypothesis on the RHS we get two
pieces, the first is
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[n/2]
_ k4 n—=~k\ /(2n—2k—2
A=y e (M

(-2 +L"/2J(_1),€+1 n—k\ (20— 2k — 2
S \n—1 Pt k n—k—1

and the second

B= an/éj(nkﬂ (” ; k> <2n ;Ekk— 2)
B (an_ 2) + anm(—l)kﬂ (n . k) (2n ;Ekk_ 2)

k=0

As we subtract B from A we see that we only need to show that the contri-
bution from the two sum terms call them A’ and B’ is zero.
For these two pieces we introduce the integral representation

n—k n—k 1 1 ek
()= (0h) - [ ket

This has the nice property that it vanishes when k& > |n/2| so we may extend
the upper limit of the sum to infinity. We also introduce for the first sum

2n — 2k —2 1 1
- 1 2n—2k—2 d .
< n—k—1 ) 2mi /|w|=,y w"*k( +w) v

‘We thus obtain

1 1
— 7(1 +w)2nf2
271 lw|=y W
1 1 22k
— 14 2)" —1)k+L dz dw
210 )y = 2" ( ) kzzo( ) (14 2)*(1 4 w)2*
1 1
= 7(1 + w)2n—2
2T J )=y W
1 1 1
— 1 " dz d
270 )= z”*l( +2) 14 22w/(1+2)/(1+w)? =
1 1
- = (1 2n
21 |w|=v w™ ( + w)
1 1
_ 1 n+l dz d
270 J | = z"“( +2) (1+2)(1+w)?+ 22w = aw
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1 1
- | 2n
1 1 1 1
X — 1 ntl dz dw.
2mi ‘Z‘:Ez”“( +2) z+1+wz+(1+w)/w =
We evaluate the inner integral by summing the residues at z = —(1 + w)

and z = —(1 + w)/w and flipping the sign. (We will verify that the residue at
infinity is zero.)
The residue at z = —(1 + w) yields

1 1
= 1 2n
2'/TZ |u)‘:’y wn+1( + w)
—1)n+1 1
( ) - (_1)n+1wn+1 dw
(1 +w)nt —(14+w)+ (1 +w)/w
1 o1 W

|w]=
This is zero as the pole at zero has been canceled. Next for the residue at

z=—(14w)/w we get

1 1

= 1 2n
2mi | (1+w)

n+1
wl=y W

(71)n+1wn+1

Xi
(14 w)ntt

1 1

w
- 1 n—lid
270 J )=y wnt1 (1+w) 1 — w2 w

1 1 1
—(1 "2~ dw.
w”( +w) 1—w v

1 1
_1 n+1
(=1) wntl —(1+w)/w—|—1+wdw

270 Jjwl=

With n > 2 we can evaluate this as

-1
(") =2
q=0 q

To wrap up the residue at infinity of the inner integral is

1 1
oo —— 1 n+1
Res.— z”+1( +2) z+1+wz+(1+w)/w
1 1 ntl 1 1
= —Res,—g—=2"1! (L+2)
22 2l 1z414wl/z+ (14 w)/w
1 1
= —Res,—o(1 + 2)"** =0

1+z(1+w) 1+ 2(1+w)/w
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Collecting everything and flipping the sign we have shown that

A= —2"2,

For piece B’ we see that it only differs from A’ in an extra 1/w factor on
the extractor in w at the front. We thus obtain

1 1
= 1 2n
2i o]y wn+2 ( + UJ)
1 1 1 1
— 1+ z)"t! dz dw.
2mi ‘Z‘:EZ”'H( +2) z+1l+wz+ (1+w)/w =
The residue at z = —(1 + w) vanishes the same because there was an extra

w to spare on the w/(1 — w?) term:

1 1

- 14 w)" ' —— duw.
o LT T
For the residue at z = —(1 + w)/w we are now extracting from
1 1 n—2
i s w”+1( +w) T—w wdw

to get

q=0

as before. The residue at infinity vanished in z and did not reach the front
extractor in w, for another contribution of zero. This means that

B/ — 727’7,72

and we may conclude the proof. The fact that the sum term from the
geometric series factored as it did is the remarkable feature of this problem.

Addendum, four years later. In the present version with complex vari-
ables the proof requires the convergence of the geometric series. This is |22w/(1+
2)/(1+w)?| < 1or [22w| < [(1+ 2)(1 +w)?|. Now we have |(1+ 2)(1 +w)?| >
(1—¢€)(1—7)?s0 (1—e€(1—7)?> ey will do. Suppose we take € = . We
obtain (1 — )% > +3. Therefore e.g. ¢ = v = 1/4 ensures convergence of the
series. This also ensures that the two poles at —(1 + w) and —(1 + w)/w are
outside the contour |z| = e.

This was math.stackexchange.com problem 2113830
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13 Evaluating a quadruple hypergeometric(B;)

Suppose we seek to evaluate

2 (G0

=S (e e (I 0)

Evaluate the inner sum first and introduce

n+k—1 _L/ (14 z)nthk=t "
n _2’7TZ |z|=e Zn+1 ’

E+1y 1 (1 4 w)k+
( n >_ 2mi /w|_€ wntl dw

This yields for the inner sum

=

and

1 (1+2)"tF 1 (1+w)k§n:<n>(_l)l(l+w)l dw do

% |z|=¢ Zn+1 271'1 |w|=e U)n+1 =0 l (1+Z)l
1 14 2)"tF 1 1 k 1 "
:7./ (14 2) — (1+w) (1_ +w> dw dz
27 Jjpj=e 2T 270 = wn T 1+2
1 (1+2)F 1 (1+w)k
= — — ———(z—w)"dwd
omi Jiyoe 2t 2mi /lw—e 1 (2T w)” dw dz

Extracting the inner coefficient yields

2 ()2 e

q=0

The outer coefficient becomes

£ o)
SO0

Call this S. By symmetry we have on re-indexing that

5= () (el
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o QL)

q=0

This is zero when n is odd so the entire sum being evaluated vanishes when
n is odd and we may assume that n = 2m and get

S 6as,)

q=0

Substituting this into the outer sum yields

2 (Vs (e ()6a)

q=0

We evaluate the inner sum with the integrals

k 1 k
<>_/ (Sl
q 270 Jjyj=e 27T

k 1 1 k
= 7/ 7< +w) dw
2m —q 26 J || me wAMTIFL

and

to get

1 ii/ L% 2 (1)1 4 2)F (1 + w)F dw d
21 |z|=€ za+1 27y |w|=¢ w2m—q+1 =0 k

1 1 1 ! 2m
o 24+ 2 w2m=a+l dw d
270 J) = 2a+1 9 /w_6 w2m—a+1 (z 4+ w + wz) w ds
1 1 1 .
" 2mi 29+1 27 S 2m—qt1 1 2m qw dz.
270 J|yyme 297 20 ) ML (w(l + 2) + 2)*™ dw dz

Extracting the coefficient we get for the inner term

( 2m )(1+z)2m_qzq

2m —q

and for the outer integral

2m 1 1 2m
— —(1 m=q gy = .
<2m — q) 211 /|Z|_6 z( +2) § <2m — q)

We are now ready to conclude and return to the main sum which has been
transformed into
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which is
[P0 = 0P (14 ) = [P0 = P = (1 o)
2m
= (-n™ :
Com (™)
Observe carefully that there were no convergence issues as both sums were

finite, so there is no problem using one and the same value of € < 1 in the
integrals.

This was math.stackexchange.com problem 1577907.

14 An integral representation of a binomial co-
efficient involving the floor function (B5;)

Suppose we seek to prove that

Q:Z: (Z) 2* ([(2m Z If k:)/%) - (22:;:11)

Observe that from first principles we have that

(Lq7zJ> B (n—@/%) N % /M_e qu+1

1 1 "
xf/ %(1+z+wz2+w23+w224+w225+"') dw dz.
wl=y  @"

211

This simplifies to

1 11 / (1+w)" Lo, o d
— — z w dz
270 J)sjme 20T 2M0 J =y WL 1—wz? 1—wz?

1 1+2 1 / I4+w)™ 1
- 2mi lz)=e 291 270 Jip=y w1 —w2?

dw dz.

This correctly enforces the range as the reader is invited to verify and we
may extend k beyond 2m + 1, getting for the sum

1 142

271 2] = Z2m+2
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1 14+w)™ 1 n\.p p wk
2V ——— dw d
" omi wnrtl 1 —wz? Z (k) : (1+w)k waes

|w|= k>0
1 1+2
o 211 |z|=€ z2m+2
1 1 | 2 "
x—,/ ( +w1) 2<1+ wz) dw dz
270 Jjwj=y w1 —wz 14w
1 1 1 1 2 " 1
= — 2+227-/ AR Zdwdz'
21 J|p)me 222270 |y =y wntl 1—wz

Extracting the inner coefficient now yields

n n

$ (0o (e

q=0 q=0
1+22\"
_ ,2n _ 2n
=z <1 + 2 ) = (1+2)“".

We thus get from the outer coefficient

1 1 2n+1
7/ % dz
|z|=e

27Ti ZQnL+2

which is

2n+1
2m + 1
as claimed. I do believe this is an instructive exercise.

This was math.stackexchange.com problem 2087559

15 Evaluating another quadruple hypergeomet-
ric

Suppose we seek to verify that
2”:(_1)”% 2kt 1 (n\ (n+k\ TR (ktm) _
= n+k+1\k k m m oo

Here we may assume n > m, the equality holds trivially otherwise.

Now we have
n\ (n+k\ ! B n! k!n!
k k o Elln — k) (n + k)!
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- <n7i!k>mfk>! B (nsz> (2:>1'

We get for the sum

- , 2k +1 n kN (k+m 2n
_1\n+k —
Z( 1) n+k+1<n+k>(m)( m ) (SmnX(n)'

o) () ()

k=m
=0mn X (2n+1) x (2n>
n

We also have

(o) (") = st = G G 20)

The target statement to prove now becomes

(o) () G20)

k=m

= Gy % (20 4+ 1) X (2”>
n

With the LHS in mind introduce

on + 1 on +1 1 1 )
= =— —(1 " e
(n+k+1) (nk) 2mi /|Z|=E z”*’”l( +2) :

Observe that this vanishes when & > n so we may extend k upward to
infinity. Furthermore introduce

E+m 1 1 &
- — — (14 w)* du.
( 2m ) 2mi /wl_,y gt (1 w) T dw

Observe once again that the integral vanishes, this time when 0 < k < m so
we may extend k back to zero.

We then have for the sum without the scalar (2::)

(-1)" / (L4221 (1+w)"
|z|=¢

2mi zntl 270 Jw|= w?2m+1

XY (—1)F(2k + 1)z + w)k dw dz
k>0
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_ (71)"/ (1+2)** 1 (1+w)m
- 271 2= Zn+1 271 Jw]=~ w27n+1

1-z(1+w)
xm dw dz.

=" (1+2)>+1 1 (I+w)™
211 |z|=¢ Z”+3 21 |w|=~ w2m+1

" 1—2z(1+w)
(w+ (1+2)/2)

This is

5 dw dz.

Here the convergence of the geometric series requires |z(14+w)| < 1. We have

|2(14w)| < e(147y) so we can take v = € and € < 1/2. We will now work with the
pole at w = —(1+ z)/z. We have for this pole the norm [1/2+1| > e 1 -1 >«
because 1 — & > 2 from the convergence requirement. This means the pole is
outside the contour in v. With residues summing to zero and the residue at
infinity being zero by inspection we can evaluate the inner integral as minus the

contribution from the residue at that second finite pole.

We get for the first piece,

(1 +w)mt (I4+w)™
——— —(2m+1)—%—
w2m+1 w2m+2 we—(142)/2
2m—+1 1
o (_1\2mAl_ A ym—1
=m(-1) 1 +Z)2m+1( 1) om—1
Z2m+2 1

—(2m +1)(-1)*"** (=D"

(1 + z)2m+2
Extracting the residue on z yields
2n —2m 2n —2m —1
-1Hm —(=1)™(2 1 .
(P2 - camem (20

Continuing with the second piece, which has the factor z(1 + w)

(1 +w)mHt
w2m+2

(1+w)m™

et~ (2m+1)

{(m—kl)
w=—(1+2)/z
22m+1 ” 1
(=)™ —

(1 +Z)2m+1 2

22m+2
(1 + Z)2m+2

Once more extracting the residue on z yields

= (m+ 1)(~1)> !

1

+1
(_ )m Zerl °

—(2m +1)(—1)?m*+2
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2n —2m

U] (i) R CHCE R

Subtract the second piece from the first,

2n2m1)

n—m n—m

2n —2m

(ayem+ (12 < coymiam o)

Now when n = m this evaluates to —(—1)"(2m + 1) and when n > m we
get

2n—2m—1)

n—m n—m

2n—2m —1
n—m-—1

(—1)™(2m + 1)2(

Taking into account the sign flip from the residue we are left with

Srim (2’”) (=) (=1)™(2m + 1) = Gpm(2n + 1) (ij)

m

which holds by inspection.
This was math.stackexchange.com problem 1817122,

16 An identity by Strehl (B))

Suppose we seek to show that

(0= > (0)'()

k=[n/2]

<Z> (2nk> Tk x (n— 1(62)]'6); k—n)l <2:> <n ﬁ k:)

we find that the RHS is

(O

2\ 1 (14 2)%
(k) = o /|z|_e T ®

and (this integral is zero when 0 < k < [n/2])
k 1 k
= 7/ M dw
n—k 270 J )=y wnTRFL
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to get for the RHS

1 11 (14 w)k(1+ 2)2

i P dw d

27T’i |Z|:€ z 27T’L ‘wl_ wn+1 Z ( ) Zk w az

_ b 11 L) waw)(d 22\

- 2mi |z|=¢ # 27” |w|="~ wntl z
1 1 1 1 .

~ 2mi 2= 2 2mi )= WL (z + w(l +w)(1 + 2)*)" dw dz

Z =7
1 1 1 1 . .
" 2mi I2| 2 2 = wh L (z4+w(z+1)"(1+w(z+1))" dw dz.

zZ|=€ =y

Extracting first the residue in w in next the residue in z we get

1 1 " /n n
- n—q(q q 1 n—gq
omi o) ;) (q)z (1+2) (n - q>< +2) dz
- (1+2)"
Z:: (q) 2mi /Z_E zq+1 dz

n 3
n
- ;0 <q>
QED.

Addendum May 27 2018. We compute this using formal power series as
per request in comment. Start from

(3) =10+ 2

(5 4) = w

Observe that this coefficient extractor is zero when n —k > k or k < [n/2]
where & > 0. Hence we are justified in lowering k to zero when we substitute
these into the sum and we find

;‘J() 1(1 4 2) 2K [w™ (1 + w)*
wZ;() (14 2)%Fwk (14 w)k

and
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(1+2)w(l +w)\"
= [2%][w"] (1 + . )
= [2"[w"](z + (1 + 2)*w(l + w))"
= ["|[w"](1 +w(l+2))"(z + w(l +2))"

We extract the coefficient on [w™] then the one on [2"] and get

[2"] an (’;) (1+ 2)7 (n " q) (14 2)"921

q=0

() e =3 (0 () -2 ()

q q=0 q=

The claim is proved.
This was math.stackexchange.com problem 586138.

17 A simple triple hypergeometric

We seek to verify with n > k,£ > 0 that
Z n+s\[(k\ [\ _(n\(n
= E+¢)\s)\s) \k/\¢)
We get with the usual extractors,

1 (1+2)" 1 (1+w)* k
— —_ e e 1 fw® dw dz.
2 J)z)=e SEHHL 9 /Iw—v witl ; s (14 2)%w® dw dz

Here we have €,7 < 1 and we may evalate the sum without regard to
convergence issues because it contains a finite number of terms. Doing so will
produce

1 (14+2)" 1 (14 w)* i
M/Z—€WW/w|_7W[1+(1+Z)w] dw dz.

Expanding the binomial as

yields
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Next observe that

(ﬁq)(eiq) - (n—ﬁ—q)!xZix([—kq—k)! - (Z)(ezq_fk)

We have obtained the first factor (Z) This leaves

ZO05)-00)

q=0

1 (140)"* &N [k
= % /Ul_p 7@’”’7@4’1 Z q ’Uq dv

q=0

L B ) P
/v|p (1+v)"d

~ omi pn—i+1

1 14+v)* ([ n\ _ (n
- 2mi /U|_p pn— il dv = (n€> B (€>

This is the second factor and we may conclude. The second sum also yields
to Vandermonde seeing as if k& < n — ¢ we may raise ¢ to n — ¢ due to the first
binomial coefficient and if £ > n — ¢ we may lower to n — ¢ due to the second
one.

This was math.stackexchange.com problem 2381429,

18 Working with negative indices (B))

Suppose we seek to prove that

In/3] o
—1)k =2x 3" L
2. (1 (n + 3k> X3

k=—|n/3]

We start by introducing the integral

2n 2n 1 1
= =— ———(1+2)*" dz.
(n + 3k) <n — 3k:) 2mi /Z_E Zn—3k+1 (L+2)7 dz

Observe that this vanishes for 3k > n (pole canceled) and for 3k < —n
(upper range of polynomial term exceeded) so we may extend the summation
to [—n,n] getting

1 1 -
(1 +Z)2n Z (_1)kz3k dz

k=—n

21 |z|=e Zn+1
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2n
1 1 n n. —on
~omi ), S (L2 (=127 Y ()2 de
zl=e k=0

1 1
- ] 2n —_1)"
2 2= Z4n+1( + Z) ( )

1— (71)2n+123(2n+1)

Ty dz.

Only the first piece from the difference due to the geometric series contributes
and we get

1 1 1
— —(1 mnr——d
21 Jyj= Z4n+1( +2)"" (1) 1522 z
1 1 1
= — 1 el dz
2mi 2= Z4n+1( +Z) ( ) 1—Z—|—z2 z

We have two poles other than zero and infinity at p and 1/p where

C1+4Bi
P=
and using the fact that residues sum to zero we obtain

R ) <(1+p)2>"+1/p(—1)" 1 ((1+1/p)2)"

p(L+p)p—1/p p! (I+1/p)1/p—0p 1/p*
+Res ! (1+2)* 1 (=1)" ! =0
FTO0 pAntl 1—z+422
We get for the residue at infinity
—Res _oiz‘l"“(l + l/z)Qn_l(—l)";
T2 1—-1/2+1/22
1
_ 2n+2 2n—1 n _
= 7ReSZ=()Z (1 + Z) (71) m =
Now if 22 = 2 — 1 then 2% = 22 — 22 + 1 = —z and thus

(1+1/p)>  (14p)? p—1+4+2p+1 _ 5
1/p* p* —p
and furthermore with z(1+2)(z —1/2) = (1+2)(22—1) and (1+2)(z—2) =

22 — 2z — 2 = —3 we finally get

or
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This was math.stackexchange.com problem 2054777,

19 Two companion identities by Gould (B;)
Suppose we seek to evaluate
P20+ 1\ [z —k
=2 (%50 (60

where = > p.
Introduce

z—k r—k 1 1 &
= = —F(1 e .
<p _ k) (x _ p> 271 |2 =¢ sr—p+l ( + Z) dz

Note that this controls the range being zero when p < £ < x so we can

extend the sum to x supposing that x > p. And when & = p we may also set
the upper limit to z.

We get for the sum

1 1 e~ 2241 1
— —(1 * ——dz.
27 J) e 2% P (142) Z ( 2k ) 1+ 2)k :
|z|=e k=0

This is

11 1 (1 N )x . N 1 2x+1 N . 1 2x+1 p
—— —_— z - z
2270 J|y)me 22T 1+z2 1+=2

11 1 1 .
= 22“,/ T (T VI+2)2 T + (1= V1 +2)*) dz.
zZ|=¢€

Observe that the second term in the parenthesis (i.e. 1 — /1 + 2z) has no

constant term and hence starts at z2**! making for a zero contribution. This
leaves

11 1 1
- | 1 2z+1 g
297 /IZI—S o pt1 /71+z( +V1+2) z

Here we have ¢ < 1 so the pole at z = —1 is not inside the contour. Now

put 1 + z = w? so that dz = 2w dw to get

1 1 1
27 ——(1 2041 . d
277 1, (B D)ot (LS wdw

1 1
270 Jjp—1)=ry (w = 1)=7PFL (w + 1) =P+

1+ w)? ™ dw
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1 1

- — | ztp g
20 )y 1)y (w — 1)7=rF1 (1+w) w
T+p
1 1 T+ p _
_ § : 21"1‘/3 q _1 q d .
270 Jjy—1j=y (w — 1)TPH = ( q ) (w= 1) dw

Here we use the principal branch of the logarithm asin /1 + 2 = exp(% log(1+4+
z)) with branch cut (—oo, —1]. We have for |2| < 1 that v/1+z =1+ 1z—£2%+

This means that the image of |z| = € under this substitution approximates
the circle |w — 1] = %5, making one turn. It contains the one pole at w = 1.
With the radius of convergence p being one we obtain |w — 1| = & + O(e?)
from the geometric series (¢/p)?/(1 — ¢/p). The image approximates the circle
as closely as we wish as ¢ is small. Hence we may take v = %6. Continuing we
find

w1973 (") eaw -y

q=0 q

_ (TP \grten) = (TP g20 (T TP\ 920
xT—p r—p 2p

We can also prove the companion identity from above.
Suppose we seek to evaluate

Qz,p) = g @i I 1) <i - :>

where x > p. With the same preliminaries as before we obtain

11 Wm<<1+1>21+1_ (1_1Z>2z+1> dz

5% |z|=e Zr—p+1 1+Z 1+

_ 11 1 (Q+VI4+2)»T — (1= V1+2)*") da.

2271 |z|=¢ z7—ptl

We observe once more that the second term in the parenthesis (i.e. 1 —

+ z) has no constant term and hence starts at z making for a zero
V1 h tant t d h tarts at z2*t! making f
contribution, which leaves

11 1
— (1 +V1+2)> gz,

22m |z|=¢ zr—ptl

o1



We again put 1 + z = w? so that dz = 2w dw to get

1 1

2x+1

270 Jjw—11=

1 1
2w J ey (W — 1)L (w4 1)t

(1 4+ w)* ™ w dw

1 1
=_— — (1 0w duw.
271 /w—ll—'y (w — l)fr—p+1 ( + w) w aw

Writing w = (w — 1) + 1 this produces two pieces, the first is

T+p
L. ;_ Z (x + P) 2z+p7q(w — l)q dw
210 Jjo1j=y (0 =1)77P L=\ g
This is

w11 3 (7Y -y

q=0 q

_ x+p grtp—(z—p—1) _ T+p 920+l _ T+p 920+1
z—p—1 x—p—1 2p+1

The second piece is

-1y ("5 7)o -y

q=0 4

_ (TP grbep) = (TP g20 (T TP\ 920
T—p T—p 2p

Joining the two pieces we finally obtain

2x TP L) x (TP
20+ 1 2p

:2x+1 T+p 920
20+1\ 2p

This was math.stackexchange.com problem 1383343,
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20 Exercise 1.3 from Stanley’s Enumerative Com-
binatorics

Suppose we seek to verify that

DN GH AR AR GOIGS

k=0

where we take y > a and = > b both integers We then have it for all z and y as
both sides are polynomials in those variables. We also take a,b > 0.
We have for the LHS with the usual extractors,

z y
1 (1+2)* 1 / (1+w) Z<x+y+k>zkwkdwdz.
[w|=~

21 |z|=¢ Zb+1 211 w““ k
k>0

Here we have extended the range of the sum to infinity because the two
residues combined enforce the upper limit of min(a, d). Continuing,

1 1 1 1 Y 1
Y N 0 / (1+w) dw d-.
220270 Jiymy w0t (1 — zw)Ttytd

211 |z|=¢

Now for the geometric series to converge we take €,v7 < 1. We re-write

1 1 vl 1 4 1
(1+2) / (1 +w) dw dz
lw]=

27i |2 =e b+l 9ms witl (14 2z — 2(1 4+ w))etv+l

1 1 1 L/ (14 w)? 1 o
- 2mi loj=e 22TH (14 2)v 1 2mi fj=y w1 = 2(1 +w) /(1 + z))=+y+l '

Expanding the fractional term taking the residue in z into account we find

Substitute into the integrals to get

(e ()

q=0
Note that

O e e T O [

93




We have obtained the first factor on the RHS. This leaves

Ry

q=0

1 1 _ r+y+q _

_ +b—a b

=5 o, T (1+4v)Y E ( ¢ )(—1) 9 du.
vi= q>0

Here we have extended to infinity due to the residue in v and we take p < 1.
We finally have

1
Loyt —— ¢
lvl=p (o) (1+v)etytt °

:(_1)b<b—a;x—1> _ (aHb—a)

This is the second factor which concludes the argument. Observe that when
we expanded into the alternate series convergence requires |z(1+w)/(1+2)| < 1.
The norm is bounded by e(1++)/(1—¢) so we need e(2+v) < Lore < 1/(2+7).
For example € = 1/5 and v = 1/2 will work.

This was math.stackexchange.com problem 1426447.

1
b
15— pb+1

211

21 Counting m-subsets (B)

Suppose we seek to verify that

) L 4]

q=0

Observe that the sum is

which is

Now introduce
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This is zero when ¢ > p so it provides the range control. Continuing we get
for the sum

1 1 n 224

L (14 2)" YR

31 e 0T ;(() (T+2)7
1 1

2 n
— e N dz
20 J)y = 22! 41+z2

1 1 1
= 4P (1+z+4z2> dz

27 |z|=¢ Z2p+1

Now put z = 2w to get

1 1
p_—_ - - 2\"
47— iy PRI (142w +w?)" 2dw
1 1
- 2mi w|=y WPH

2n

2p
as claimed. Here we take v = 2¢ < 1. This was /math.stackexchange.com problem
1430202.

(14 w)*™ dw.

This is

22 Method applied to an iterated sum (B R)
Suppose we seek to show that
L E - n 1 (2n
S(SO)(E0)-2C)

Using the integral representation

n n 1 1 n
= = / 7( +2) dz
q n—gq 210 )= 20T
where we shall see that only finite sums appear and there are no convergence
issues, we get for the first factor

k
1 (IT+2)" q 1 (1+2)" 1 — 2kt
It dz = — d
210 Jpj=e 2™ ZOZ “7 o zjme 2T 11—z -
1 1 n Jk+1
_ogn_ L A+2)" 2

21 |z|=e€ zntl 12
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and for the second factor

1 / (1 + Z)" Zk+1 _ ZTL-‘rl 4 1 (1 + Z)n zk-‘rl J
— z=— ——dz.
210 Jjsj=e 2" 1—2 21 Jp=e 2L 1—2

These add to 2" as they obviously should.
Summing from k£ = 0 to n — 1 we get a positive and a negative piece. The

positive piece is
on 1 (1+2)" nf: Al
210 Jip=e 2" — 1=z

1 n _n
ni/ (I+2)" 1—2 &
270 Jisj=e 2" (1= 2)?

Qni/ (1+=2) 1 ds.
|z|=e€

2mi 2" (1—2)2

The negative piece is
n n—1

1 (142" 1 / (1+w) .
2mi (1= 2) 97 dw d
21 |2|=e z”(l—z) 271 w]=e wn 1_ Z w" dw az

2mi z"(1 — z) 2mi wr(l—w) 1-—zw
1 1 "ol 1 " 1
L) ey iw o e
270 Jpj=e 2"(1 = 2) 270 Jpj=e w(1 —w) 1 — 2w

We evaluate the inner integral by taking the sum of the negatives of the
residues of the poles at w = 1 and w = 1/z instead of computing the residue of
the pole at zero by using the fact that the residues sum to zero.

Re-write the integral as follows.

1 1 " 1

1 (1+w) dw
27 Jjp)=e W (w — 1) 2w — 1

1 1427 1 1+ w)" 1— 2"
/ (ﬂi/ (Ltw) 1=2mw® o
Jol= foj=c

11 1+w)" 1
T Z2mi w|=e W™ (W —1)w—1/z

Now the negative of the residue at w =1 is
1 1

n

—=2 =2 .
z 1-1/z 1-=%

Substituting this into the outer integral we get

1 L+

2" —
21 |z|=€ Zn(l — 2)2
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We see that this piece precisely cancels the positive piece that we obtained

first.
Continuing the negative of the residue at w = 1/z is

1 (d+1/) _ 1 (14 2z)" _ (A4
21/2n x (1/2—1) 2(1/z—1) (1-2)"°

We now substitute this into the outer integral flipping the sign because this

was the negative piece to get
1 1 2n
- 7& +2) 5 dz.
21 J|z)=e 2"(1 = 2)

Extracting the residue at z = 0 we get

Remark. If we want to do this properly we also need to verify that the
residue at infinity of the inner integral is zero. We use the formula for the

residue at infinity
1 1
Res,—ooh(2) = ReS,—g |——<h | —
es (2) es,—0 [ = (z)}

which in the present case gives for the inner term in w

1 (1+1/w)" !
—Resw:oﬁ T/wr x (1-1/w)1—z/w

1 (I+w" 1
= ReSu—0 e T T ) 1= 2w

C he (w1
B w=0 (w—1) w—=z

o7



which is zero by inspection. Here z runs on the circle |z| = € > 0.
This was math.stackexchange.com problem 889892.

23 A pair of two double hypergeometrics (B;)

We seek to show that

Y [ A (R D

where we set n > 1 for the parameter. We obtain for the coefficient on [27]
of the LHS that it is

£ (L))

q=0

With the usual coefficient extractor integrals,
1 / 1 1 1 / 1 1
2mi |z|=¢ Zitl (1 — Z)”Jrl 271 Jw| =~ w (1 _ w)n+1
2n + 1>
X —1)72%07 dw dz.
> (")

q=0

Here we have removed the upper limit on ¢ because the residue in z vanishes
when g > j. Note that the sum is finite, so we may just deploy the usual ¢,y < 1.
We get

1 1 1 1 1 1
. ' 1— 2n+1 dw dz.
270 Jyzme 24 (1= 2)"H 27 /Iw—v wi (1— w)ng( Zw) w dz

Now write
2n+1
2 1
(1—zw)* ™ = (1 -2+ (1—w)2)* ! = Z ( n )(l—z)Z"Hq(l—w)qzq.
q
q=0

Extracting the residues we obtain using the fact that the residue in 2z vanishes

when g > j
j .
3 (2n+1) (n_ q>(1)jq(n q+J 1)'
q J—q J—1

q=0

Now observe that
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A R e e

(o))

We have obtained the first factor of the closed form coefficient, leaving us

with
i<2n+1)(1)jq<nq+jl>
=\ a Jj—q
which is
1 1 ; 2n+1 . v
— — (1 o))"t —1)/7 91— dv.
i [ e Z( ) )( o

q2>0

Here we have again removed the upper limit on the sum because the residue
at zero will produce zero when ¢ > j. Note also that when ¢ > n+j5—1 a
pole appears at v = —1. We don’t want it to contribute so we choose p < 1.
Continuing,

(_1?j/ 1 (1+0)" 711 —v/(1 +0)* T dv

B (—1)3/ 1 1 .
Co2mi ey 09T (L4 w)n IR v

_ (_1)j(_1)j<n_j;l+j> _ (n;&)

This is the second factor, which concludes the argument. The sums were
finite.

This was math.stackexchange.com problem 869982.
24 A two phase application of the method (B5;)
We seek to show that
L§J(_1)k n+1\ (20— 3k\ z": nt+1\ [ k

k n N k n—k)

k=0 k=|n/2]

Note that the second binomial coefficient in both sums controls the range of
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the sum, so we can write our claim like this:
SS n+1(_Uk2n73k<_§5 n+1\( k

k n—3k ) k n—=k)
k=0 k=0

To evaluate the LHS introduce the integral representation

2n — 3k 1 / (14 z)2n=3k J
= — Z.
n — 3k 210 Jipyme  2nTERHL
We can check that this really is zero when k > [n/3].
This gives for the sum the representation

k=0

1 / (1 + Z)2n . 2'3 n+1 d
=— - z
27 Jjpj=e 2" (14 2)3

1 1 1 n+1
S 32243+ 1)" 4
270 |2 =e 2L (1 4 2)n+3 ( SR ) N

n+1
1 1 1 n+ 1)
- . 39291+ 2)?dz
21 J|sjme 27T (14 2)7F3 = (
n+1
1 1
‘z|:5 q=0 q

1 SR 1 .

_ = 2.
270 )|z =e = q Zntl=a (1 4 z)nt+3—q

Computing the residue we find

n+1
()
=\ q n+2—gq

n+1

1 2n — 2q + 2
=Y (n+ >3q(_1)"q( K q+2 >

=\ q n—q+

Now introduce the integral representation

2n — 2 2 1 1 2n—2q+2
( n—2q+ > B / (1+2) &
|z|=€

n—q+2 )  2mi Zn—at3
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which gives for the sum the integral

q=0
1 1 2n+2 3 n+1
- (1+2) < z s — 1> dz
210 Jiy=e 23 (1+=2)
1 1

— = -1 _ 2\n+1 d )
21T l2]=¢ Zn+3( +z z ) z

Put w = —z which just rotates the small circle to get

1

—1— _ 2n+1d
omi w—w )" dw

1
EMEE

|w|=e

1 1
n+1
27TZ |lw|= w”+3 (1+w+w ) dw.

We get for the final answer

[wn+2](1 T+ w _|_w2)n+1

but we have 2n 42 —n —2 = n and thus exploiting the symmetry of 1+ w + w?
we get

[w"](1 + w 4 w?)" T

To evaluate the RHS introduce the integral representation

k 1 (1+2)k
= — d .
(n — k‘) 2mi /|Z|_6 on—kt1 4

This gives for the sum the representation

1 n+1 .
27T’L 2= Z"+1 Z( ) )Z) dz

1 1
Py 1+ 2(1 ntl g
=50 L z"*l( +2(1+4+2)) 2.

The answer is
[2"](1 + 2 + 2%)"H,

the same as the LHS, and we are done.
This was math.stackexchange.com problem 664823.
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25 An identity from Mathematical Reflections
(B1)

Suppose we seek to evaluate

L(mg:)/ﬂ n 1) m+n— 2k
k n—1 ’
k=0
Observe that in the second binomial coefficient we must have m +n — 2k >

n — 1 in order to avoid hitting the zero value in the product in the numerator
of the binomial coefficient, so the upper limit for the sum is in fact m 4+ 1 > 2k

with the sum being
L(m-i—zl:)/ﬂ n (_1)k m—+n— 2k
k n—1 '

k=0
Introduce
m+n—2k\ _ (m+n-2k\ _ 1 (1+z)m+"_2kdz
n—1 C\m+1-2k)  2mi P '

This integral correctly encodes the range for k being zero when k is larger
than [(m + 1)/2]. Therefore we may let k go to infinity in the sum and obtain

forn >m
1 (14 z)m+n n L 22k
— S i B L
271 /Z —. amt2? Z <k>( ) (14 z)%k ?
|| k>0

1 m+n 2 n
= 7/ % (1 — Z> dz
210 J=e 22 (14 2)?

1 1
= — (1 +22)"dz.
271 /|Z|=€ (1 + Z)nfmzmjtz( + Z) z

This produces the closed form

m+1
S (M) mea(m e
q n—m-—1

q=0

— (- nijj (e, "0 ).
This is

S (e ()
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Introduce
_ 1 n—gq
n—q '\ _ 7/ A+ dz
m+1—gq 276 Jjyy=e 2MT2TE

which once more correctly encodes the range with the pole at z = 0 disap-
pearing when g > m + 1. Therefore we may extend the range to n to get

(_;ZH /Z_E (12—7:2” i (Z)(—l)q2q(1 fz)q dz

q=0

- (e
2 |z]=e 2MT2 1+2

_ =y / (I+2)"([1—2)"
2

27 zmt2 (14 2)"

(- / d=—2"
|2|=¢

27 zmt+2

= (o™ (mi 1) (=)™ = (mi 1)'

This was math.stackexchange.com problem 390321,

26 A triple Fibonacci-binomial coefficient con-
volution (B)

We seek to show that

[ L [ IRt

k=0
n+k 1 1
=— 1+ 2)"F dz.
< n ) 27‘_2 /Z_l Zn+1( +Z) z

This yields the following expression for the sum on the LHS

2m/|| 12( ) L )n+ksﬁk+1 _ i/gl/so)kﬂ .

This simplifies to

o SR G) (e () )

k=0

Start from

which finally yields
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\}52;./2_1% (go(1+<p(1+z))n+; (1—;(1+z)>n> dz

Continuing we have the following expression for the sum on the RHS

1 n n 3 1 .§02k+1 _ (_1/%0)2]64-1
— —1)" k 142 n—+k dz
210 J|2)=1 kZ:O (k) (=1) zntl ( ) V5

This simplifies to
11 / (1+2)"
\/5 27 |z|=1 Zn+1

X kz:% (Z) (—1)nk (so (p*(1+ z))k + é (;2(1 + z))k> dz

which finally yields

\}52;/'2_1 (12‘:75'1)” (@ (14 (14 2)" +$ (—1 + %(1 +z))"> dz

Apply the substitution z = 1/w to this integral to obtain (the sign to correct
the reverse orientation of the circle is canceled by the minus on the derivative)

11 1\"

—=-= 1+—) wtt

\/527TZ/|’LU|—1( U))

1\" 1 1 IA\™ 1
—1+ Q%1+ — -1+ =0+ — —d
X<¢( +¢(+w)> +<P< +w2(+w)>>w2 v
which is

L (1)

V5 270 Jj)=1 w/) w

) no 1 1 "
X o (—w+¢*(w+1)) —l—; —w—&—ﬁ(w—i—l) dw

which finally yields
L[ ey
\/5 21 |lw|=1 w"“

n 1 1 "
X (go(—w+g02(w+1)) +(p<—w+()02(w+1)> ) dw
This shows that the LHS is the same as the RHS because

—w+ PP(w+1)=—w+ 1+ (w+1)=1+¢p(w+1)

64



and

1 1
1 1
:—w+(w+1)*;(w+1):1*;(w+1)'

This is math.stackexchange.com problem 53830.

27 Fibonacci numbers and the residue at infin-

Suppose we seek to evaluate in terms of Fibonacci numbers

Z (n - p) (n - q)
p,q20 q p
We use the integrals

n—op 1 / 1 d
= — z
q 270 J)zj=e (1 — 2)0H1zn—pmatl

n—q 1 / 1 d
=— w.
D 270 )=y (1 — w)PHlun—p-atl

These correctly control the range so we may let p and ¢ go to infinity to
get for the sum (note that we get zero from the binomial coefficients when the
upper index goes negative which is necessary for the sum to be finite, in general
these vanish when the upper index is less than the lower one)

and

1 1 1 / 1 Z ZPTayPTa
270 J)sj=e (1= 2)2" 1 270 )=y (1 — w)wn Tt ) (1—w)P(1—2)

dw dz
q

1 1 1 1
T omi 2j=e (1 —2)2" Tt 27i /|w|_7 (1 —w)wnt!
o 1 1
1—zw/(1—w)l—z2w/(1-2z)
1 11 1 1 1
T omi Mqﬁﬁ lwj=y W'l —w —2zwl—2—zw

dw dz

dw dz

Y S S W S U e
2 e 2214 2) 20 ey T w — 1/ (1 + 2) w — (11— 2)/2 '

Here we require for convergence that |zw/(1 — w)/(1 — 2)| < 1. We have
|2/(1 — 2)| < €/(1 — €) so we may take € < 1/2 and v < 1/2 as well.
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We evaluate the inner integral using the fact that the residues of the function
in w sum to zero. We have two simple poles. We get for the first pole at
w=(1—2)/z=1/2—1 that it lies on a circle of radius 1/¢ > 2 centered at —1.
This circle encloses the circle |w| = v < 1/2 so this pole is outside the contour in
w. For the second pole at w = 1/(1+4z) we get |1/(14z)| > 1/(1+4¢€) > € which
holds when e < 1/2 so this pole also is outside the contour. Collecting everything
we have that we can evaluate the integral using minus the contribution from
the residues of both poles.

Starting with the pole at w = (1 — z)/z we find

2t 1 2t 2(1+ 2)

1=zt (1-2)/z2-1/(14+2) (QA—=-2"T1(1-2)(1+2)—=2

g2 142
(1=t -z — 22

Substituting this expression into the outer integral we see that the pole
at z = 0 is canceled making for a contribution of zero. The poles from the
quadratic are outside the contour in z, as is the pole at z = 1. For the second
pole at w =1/(1+ z) we get

1
1/(1+2)—(1—=2)/z

2(1+4 2)

=0

(14 z)"H!

This yields the contribution (taking into account the sign flip from the sum
of residues)

1 1 z(1+ 2)
- I —— n+l_ <\ T <) d
211 |2]=e Z7L+2(1 + Z)( +Z) 1—2— ZQ z

1 1 1
= — (1 [t )
270 J)|2)=e Zntl (1+2) 1—2z— 22 *

We evaluate this using again the fact that the residues sum to zero. There
are simple poles at z = —p and z = 1/ which are outside the contour in z.
These yield

11— n+1 1 ) 14 1/¢ n+1 1
— —1+2¢ /g -1-2/¢p
_ b L onse
- \/5902n+2 :

\/590

Taking into account the sign flip this is obviously Binet / de Moivre for

Fopyo.

Remark. If we want to do this properly we also need to verify that the

66



residue at infinity in both cases is zero. For example in the first application we
use the formula for the residue at infinity

Res.=o0h(2) = Res.= [_;h (1”

z

which in the present case gives for the inner term in w

1 1
1jw—1/1+2)1/w—-(1-2)/z

n+1

—Resw—o —w
w

1 1 1
1—w/(1+2)1-w(l—2)/z
which is zero by inspection. Alternatively observe that we have a rational
function with denominator degree exceeding numerator degree by at least two.

The two poles in z do not vanish.
This was math.stackexchange.com problem 801730.

+

= —Resy—ow"

28 Permutations containing a given subsequence
(B1)
We seek to show that
" r4+n—1 3n—r 1 4n m) 2
S = =— + .
n—1 n 2 2n n
r=0

This gives 1 on both sides when n = 0, we will work with n > 1. We write

this as

sesoseS (0 5 000

r=0 r=n+1

We start with S5 and introduce

3n—r 1 1 1 d
= — z
n 20 )y jme 2277 (1 — 2)nFd
where ¢ < 1. Note that this will vanish when r > 2n so we have for Ss
1 1 1 r+n—1

— rd
omi ). _. 22n+1 (1—z)n+1z( n—1 )Z ‘

|z|=e r>0

1 1 1 1
C 2w Jiee 22 (L= 2 (1= 2)n

dz
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1 / 1 1 d an
= — Z = :
210 J)jme 2271 (1 — 2)20H1 2n

This was the easy part. We now get for Sp

S0

ML

Using the integral

2n—1—r 1 1
- 1 2n—1—rd
(n—l—r) 271'2'/2_5,2"_7’( +2) :

we see that this will vanish when r > n so it controls the upper range of the
sum and we obtain

1 r+2n 2"
1 277, 1 d
270 Jyz)=e % T ;()(nl) (14 2) z
1 1 1 1 z"
=-— f(l—i-z)%_lf/ — (1 4+w)* )y (1+w) ——— dwdz
2mi Jyaj=e 2" 21 o=y 0" zz;) (1+2)
1 1 1
Py *14‘22”717./ — (1 +w)*™ dw dz
~ 2mi |2]=¢ z”( 270 S )=~ w”( ) 1-z(1+w)/(1+ 2)
1 1 1 1
= — — (14 2)*"— — (1 4 w)*" dw dz.
2mi J)y)=e 2" 270 )=y W™ —wz

Here we require for convergence that |z(1 + w)/(1 4 z)| < 1. We have the
upper bound (1 +«)/(1 — ¢). Taking v = & we require 2¢ + 2 < 1 so we may
use € < 1/3. Note that the pole at w = 1/z is outside the unit circle and hence
the contour and does not contribute, so we directly extract the residue in w to

get
2n L
n—1—g¢q

With the integral in z this will produce

S0A6 )0

q=0

|
—

n

<
Il
=]

Now observe that

S-S0 -0

We have by Vandermonde
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() ()

q

S {0

That was S7. Subtract from S; to get

L[ (Y (2 2
2 2n n
as claimed.

This was math.stackexchange.com problem 1255356.

It follows that

29 A binomial coefficient - Catalan number con-
volution (B)

A problem from MSE asks us to show that

ni_:l 1 2r\ /fm+n —2r _(m+n
r+1\r n+l—r ) n ’

r=1

This identity has a certain simplicity but it will be easier to include the term
at r = 0 where we need to show that

sy 1 2r\ /fm+n—2r m-+n m-+n m+n+1
> (") () - |
r+1\r n+1l-—r n n—+1 n—+1

r=0

Here we may now take advantage of the fact that the second binomial coef-
ficient enforces the upper range, so we obtain

r

1 1 1 2r w
— —— (1 +w)™" dw.
270 ) w|= w”+2( ) T; r+1 (r) (1+w)?r

The Catalan number OGF is

1—-+v1—-4z
2z

The binomial term (1 — 42)/2 has radius of convergence 1/4 about zero
where we get series coefficient (—1)"4" (14 2) hence to close the sum we require

69


http://math.stackexchange.com/questions/1255356

|lw/(1 + w)?| < 1/4. (Note that there is no pole at z = 0.) We get the upper
bound 7/(1 —7)? so we may set v < 1/6. We then obtain

2%”' jwl=v ﬁ(l by 2;/_(?;/1(,}); L

- QLﬂ'Z w]=~ wi+2 (14 w)mtnt Lhw= (21w+ w) - dw dw
- % =~ w7}+2 (I+ w)ernHHw;—UEl_w) dw
B % o=~ w7}+2 (1 +w)™ "+ qw = (m:f;— 1).

This is the claim.
This was math.stackexchange.com problem 563307,

30 A new obstacle from Concrete Mathematics
(Catalan numbers) (B))

Suppose we seek to evaluate

5 (o) (1) 55

k>0

where m,n > 0. In fact we may assume that n > m because if m > n
the binomial coefficient vanishes using the definition (}) = n%/k! because zero
appears in the falling factorial.

Furthermore observe that when k = n—m+q with ¢ > 0 we obtain (;::g:zqq)
which is zero by the same argument.

This gives
"i < n+k ) <2k) (—1)*
= \n—m-— k k) k+1
Introduce

n+k 1 1 .
<n—m—k> m/IZEZn_m_kH(HZ) dz.

Observe that this is zero when k > n —m so we may extend k to infinity to
get for the sum

. Y > (2k> (_l)kzk(l +2)" da.

21 |z|=€ zn—m+1 k>0 k k+1
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Here we recognize the generating function of the Catalan numbers

Z(Qk) 1, 1-V1-4dw

w =

= k)k+1 2w
where the binomial (1 — 4w)'/? has coefficient (—1)k4* (122) and radius of
convergence 1/4.We certainly have analyticity in a neighborhood of zero. We

obtain

1 1 1—/1+42(1+2)

_ — n d

271 |z|:e Zn—m—i—l ( + Z) 22’(1 T Z) yA
11 1

=_-— — (142! (1 —J/ar 22)2) dz.

227 Zn—m+2

|z|=€
Now with z in a neighborhood of zero the square root produces the positive
root so we finally have

11 1 L

|z|=

1 1
- — | n—1 d
27_[_1 |Z|=€ anerl( + Z) z

which evaluates by inspection to (:__7}1) which is

n—1
m-—1)
Note that for the series to converge we need |z(1+z)| < 1/4 Nopw |z(1+z)| <

€(1 + €). With e < 1 this is less than 2e. Therefor e = 1/8 will work.
This problem has not yet appeared at math.stackexchange.com.

31 Abel-Aigner identity from Table 202 of Con-
crete Mathematics (B;)

Seeking to prove that

Z tk+r\ [tn —tk + s ro [(tn+r+s
k n—k th+r n

k

We will prove it with integers ¢,7,s > 1 and r,s > t. We then have it for
arbitrary ¢, 7, s because the sum is a polynomial in these variables and we have
agreement on an infinite number of points. Under these additional asumptions
we see that LHS of our identity is in fact
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z": tk+r\ [tn —tk + s _z": tk +7r\ (tn —tk+ s\ tk
P k n—=k P k n—=k th +1r’

First do the case t > 2. Starting with the first sum we introduce

th+r 1 1 et
= — —(1 " dw.
( k ) 2 /|w='y wk+1( +’LU) w

Now put w/(1+4 w)! = v and introduce the inverse f(v) = w. We then have

by Lagrange inversion that [v™]f(v) = ﬁ (mnﬂ) = %(ntfl) with the coefficient

on the index zero term being zero. For the radius of convergence we have with

n>t
-1
n tn+1t tn
n+1 n n—1

n—1 —
n (n—1)! 1
:n—i—l o thth—thnfq
q=0 q=0

t—1 t—2

= e +tm—a/m It —m-2/n+am ~
q=0

tt
=

It follows that f(v) is analytic in a neighborhood of the origin with radius
of convergence p = (¢t — 1)1 /t*. With w/(1+w)* = w+ - - a convergent series
the image of |w| = v approximates a circle |v| = v as v < 1. Therefore we may
deform the image to |v| = v where we take v < p. We obtain

q=0

1 1 1
270 J )=y VF f(V)
From the definition of f(v),

1+ f(0)"f'(v) do.

1 1

211 lv|=v UkJrl

L+ f(0)" " f'(v) dv

Now introduce

tn —tk+s 1 1 tn—tht
( n—=k ) 2mi /Z_E z”*"?“( +2) §

This will vanish when k > n so we may extend the sum to infinity, getting
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1 1 P

(1 + Z)tn+s Z

% |2 =¢ zn+1 = (1 + Z)tk:
1 .
5 s (14 f(0)""f'(v) dv d=.

[v|=>

Note that the terms involving f(v) and f’(v) are analytic on and inside the
contour hence the product has a convergent Laurent series there with empty
principal part. In the sum we are extracting all cofficients of this series, evalu-
ating the corresponding power at z/(1 + z)¢. Hence we obtain

1 1
27 zntl

(L +2)" (14 f(2/(1+2)) 7 f'(2/(1 + 2)") dz.
|z|=¢
Note that here we require |2/(1+4 2)*| < p. With |z/(1+ z2)*
may take ¢ < &* where ¢* is the unique solution of € = p(1 — ¢
[0, 1].
Computing the derivative we find

f'(w) tf(v)

e/(1—¢e)t we

| <
)t in the interval

!/
_ -1
A+ foy @ ot
so that
1 t
oy )
1—tf(v)/(1+ f(v))
We get for the integral
1 1 . (1+2)
— 1 + tn+s 1 + r—t__ \- v~/ d
270 J )2 =e z"+1( ?) (1+2) 1—tz/(1+2) :
1 1 1
- 1 tn+r4+s+1__ ~ )
omi ), (L F2) T -0 ”
|z|=¢
Continuing with the second sum we obtain
" (th4r—1\[tn—thk+s
t
S(O)MAD)
k=1
n—1
thk+t+r—1\(tln—1)—tk+s
-2 (" )
= k (n—1)—k
We can recycle the earlier computation and find
t 1 1
v — 1 t(n—1)4+r+t—1+s+1 d
27’(’7; \z|:s Zn( +Z) 1+(1—t)Z z
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t 1 +a 1
- 7(1 + Z)t7l+7+6

——dz
273 J|s)=e 2" 1+(1-1¢)z

Now we have subtracting the second piece from the first that (1+2)/z—t =
(1+2—1tz)/z and we get

1 1
211 |z|=¢ Z"+1

t
(14 2)/+7+ dz = < ”“*S)

n

which is the claim. For t = 1 we get the following two sums, first,

> L [ e

) 1 _(n+r+s+1
B (1 —z)r+st2 n '

Repeat for the second sum to get

(nl+r+t1+s+1) B <n+r+s)

n—1 n—1

The difference gives

n+r—+s
n
as required.

This was math.stackexchange.com problem 2814898,

32 Reducing the form of a double hypergeomet-
ric (B)

Suppose we seek to evaluate

s =53 (L) ()

which we re-write as

_’f 2 —g—1 _’f n+1+gq if k+q\ (2n—q— k-
n+1 n+1 n—k+1 '

q=0 q=0 q=0 k=0

Call these pieces up to sign from left to right S1,S2 and Ss.

The two pieces in front cancel the quantities introduced by extending k to
include the values zero and n + 1.

Evaluation of S;.
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Introduce

2n—q—1\  (2n—q—1 _L/ (1+z)2”7’1’1d
n+1 S \n—q¢-2) 2mi [, et =

This vanishes when ¢ > n — 2 so we may extend the sum to infinity to get

1 1 2n—1 q
7/ (1+2) Z z ds
|z|=€

y n—1
271 z = (1+2)

1 14 z)2! 1
7/ (1+2) &
|z|=€

~ 2 T 1-—z/(1+2)
1 (1+2)%"
= — _— d
21 |z|=e¢ zn—1 i

_ 2n
T \n-2/)
Evaluation of 5.

Introduce
n+1+gq 1 / (1 + z)ntita
= —dz.
n+1 270 |2 =e Znt2

This yields for the sum

1 (14 2)n+1 2
— Sl A 1 a4
3 | Sty

q=0
1 / R g () g B
—_ y4
27Ti |z|:e Z"+2 1 + Z — 1
1 (1 + Z)n+1 1
2me /Izl— Zn+3 ((@+2) ) dz

_ 2n
\n+2)
A more efficient evaluation is to notice that when we re-index g as n —2 — ¢
in Sy we obtain
n—2 n—2
Z n+l+n—-—2—gq _Z 2n —q—1
n+1 N n+1
q=0 q=0

which is 5.
Evaluation of Sjs.

(6]



Introduce
2n—q—k—1 1 / (1+ z)2n—a-k-1 J
= — D Z-
n—k+1 210 J|2)=e Zn—k+2

This effectively controls the range so we can let k go to infinity to get

1 (1+ z)n—1 =2 k+q P
= e 4
il e SR () ae

q=0 k>0
e L
S Jlgee 2 (L 2)0 (1 2/(1 4 2))e ’
L ey L,
=50 2= ont2 — (1 + Z)qul (1 _ Z/(l + Z))qul z
1 (1 _|_z)2n
- A A, -1 d
ot e x(n—1)x dz

= (n—1) x <n2f1>.

Finally collecting the three contributions we obtain

(n=1) (n2—&T—Ll) _2(n2+n2) =) <n247:2> _2<n247:2>
=n X 2n .
(n72)

This is math.stackexchange.com problem 129913\

33 Basic usage of the Iverson bracket (B/)

Suppose we seek to evaluate
l
q+k\[l—q
k,l) = .
Sk ) ;( D))

We start with the Iverson bracket valid for ¢ > 0

1 z4 1
<qg<l]=— - d
[0 <q<1]] omi e pRE I 1
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This gives for the sum

1 (1+w) 1 1 1 q+k 24
— LW S —Z_ qwd
270 =y W 2772/ z“‘ll—zZ( q >(1—|—w)‘1 was

wl q>0

1 (1+w) 1 / 1 1 1 o
2mi TwFL 9 w dz
T2 Jigey w270 J s 2T = 2 (1= 2 /(1 w)) R
1 (1 + w)r+t / 1 1 1 o

= o T Wk 9 w dz.
270 )= wht1 270 J)2 = AT — 2 (1w — 2)FH1

We evaluate the inner integral by taking the negative of the sum of the
residues at z =1 and at z = 1 + w and z = co. With € and  small the second
pole is not inside the contour.

The negative of the residue at z =1 is

1
wht1

which when substituted into the outer integral yields

1 / (1+w)l+k+1d l+k+1
_ B m— w = 5
27'('7: ‘UI|=’Y w2k+2 2](1 + 1
which is the formula we are trying to establish.
Next we prove that the residue at infinity is zero. This is given by

R 1 L 1 R, 1 2
—Res,—o—== = —Res,—¢z
=022 1-1/z(14+w—1/z)k+1 0% 21 (z(1+w) — 1)k+1
1 1 Zl+k:+1
= —————Res,. .
(14 w)k+1 z2—1(z—=1/(1 4 w))k+1
This is zero by inspection, which leaves the residue at z = 1 4+ w. Write
—1)k+1 14 w)thtl 1 11 1
( ) / ( kll 57 IT1 7T dw dz.
2mi Jw]=~ w 270 Jsj=e 2L =2 (2 = (1 +w))

We require the derivative
(k) k
LGN lz jo (Lra)t  (k—g)
B\ 2+ 1 — 2 k! g “ X 1+ (1 = 2)1+k—q

Ny 1 1
= i (1—z)itk—a’

q=0

(s



Evaluate this at z = 1 4+ w to get
k

53 ) e

= T ) ()

and substitute into the outer integral to obtain

(_1)k+1/ (1 + w)lth+t k l+q 1 1
—1)¢
271 Jw|=~ wk+1 qZ:;) q ( ) ( dw

1+ w)lF1Ha (—gp) I Hh—a

B 1 (1+w)l+k+1 k l+q 1 1
= o o=y wht1 Z

a=o \ 14 (1 +w)iH+a lth=a dw

k
l 1 1 k—q
_ (ﬂ), / A+w)r=e
o\ 4 ) 2m =y

w2k+2—q

The inner term here is

[w2k+1—q]<1 4 w)k—q.
But we have 2k +1—q > k+ 1 while k — ¢ < k so these terms are zero, thus
concluding the proof.

Simplified solution. As observed elsewhere this can be done without the
Iverson bracket.

Introduce
l—q 1 1 1
= — dz.
( k) %¢L ®

e AR (1 — )k

This controls the range becoming zero when ¢ > | — k so we may extend q
to infinity.

We obtain for the sum

1 1 1 g+ kY,
2mi f e 2R (1 — 2)RHL Z < k )Z dz
|2]=e >0
1 / 1 1 1 d
= — 2z
210 J|2)=e 2=kl (1 — 2)k+1 (1 — 2)kH]
1 1 1

T 2mi J e 2R (1 = 2)2R2 dz.
This evaluates by inspection to
l—k+2k+1\
2k+1

I+k+1
2k+1 )
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This was math.stackexchange.com problem.

34 Basic usage of the Iverson bracket II (B/)

Suppose we seek to compute

Introduce

m+k 1 1 ,
=— 1+2)"*d
(m + 1) 2mi /Z_E zm+2( +2) :

as well as the Iverson bracket

1 wk 1
<k<n||=— — — dw.
0=k =<n] 270 )=y w1 —w v

This yields for the sum
1 1 1 1 1
(I+2)™ / kak(l—i—z)k dw dz.
|w]=y

20 )z j=e 22 2mi wrtl 1 —w
k>0

For this to converge we must have |w(1 + z)| < 1. We get

1 1 1 11 wl+z)
_ - 1 m_ d d
2mi zm+2( +2) 2mi /wlz’y W T —w (1 —w(l+2)2 "%

|z|=¢€
1 1 1 1 1
:T m+2(1+2)m+1f/ w1 1 1
70 Jiz)=e 2 i Jj)=y W™ 1T —w (1 = w(1 + 2))

We evaluate the inner integral using the fact that the residues at the poles
sum to zero. The residue at w = 1 produces

5 dw dz.

1 1

271 Zm+2

1 1

1
1 m—+1 dz = ——
|z]|=€ ( - Z) (_Z)2 : 2mi |z|=€

For the residue at w = 1/(1 4 z) we re-write the inner integral to get

1 1 / 1 1 1 d
_ — w.
(1+2)22m0 Jjyj=y 0" 1 —w (w—1/(1 + 2))?
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We thus require

( 1 1 )/
w1 —w
w=1/(14z)

N U
C\wt l—w o wn (1 — w)?

=—n(l+2)"" 1 +2)/2+ 0+ 2)"(1 + 2)?/22

w=1/(1+z)

Substituting this into the outer integral and flipping signs we get two pieces
which are

1 1 m— n
omi |Z\26W(1+Z) 'n(l+2)"*? /2 dz

n 1 ntm
T 2mi Zm+3(1+z)+ +1dzn><(

n+m-+1
m+2 )

|z|=e

The second piece is

1 1
2 zm+2(1+z)m71(1+z)n+2/32 dz
|z|=€
1 1 n+m+1
- 1 n+m+1 d - _
o ), zera (L) : m+ 3

It follows that our answer is

n—1 n+m+1 nm+2n+1/m+m+1
n— = .
m+3 m+2 m+3 m+2
Remark. Being rigorous we also verify that the residue at infinity in the
calculation of the inner integral is zero. We get

1 1 1
—Res,,_n—w™
Pu=072% 1—-1/w (- (142)/w)?
5 W w2 — _Res._ wntl 1
w—1(w—(1+2))2 Y01 (w— (1+2))%

There is certainly no pole at zero here and the residue is zero as claimed
(the term 1+ z rotates in a circle around the point one on the real axis and with
€ < 1 it is never zero). This last result could also be obtained by comparing
degrees of numerator and denominator.

This was math.stackexchange.com problem 1836190.

= —Resy—quw™™
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35 Iverson bracket used twice (Bi/R)

Suppose we seek to evaluate

vin) = ;2 ()

by considering

[n/2] [(n—1)/2]
2k 2k+1
_ n—2k _ n—2k—1
Yi(n) = ZQ <k> and Ys(n) = Z 2 < k: >
k=0 k=0
We will use the following Iverson bracket:
1 A |
0<k< = — ——d
0<k<nll=35 P

|z|=e

where we must have € < 1.
Evaluation of Yi(n).

Introduce o . )
=— 1 *k dw.

With the Iverson bracket controlling the range we can extend k to infinity
to get for the sum

on 11 1 1 1 2k
- / S Z 2*2’%’“& dz dw.
|z|=€

270 ) p|=y W 270 zn/2]41 1 — » =~ wk

We can instantiate these contours to get convergence of the series. In partic-
ular we require |z(1 4 w)?/w/4| < 1. We have |2(1 +w)?/w/4| < (1 +7)%/v/4
hence we may take e = v and v < 1.

We thus obtain

on li/ 11 1 b
w2 Jiy_ 2T = 21— 2(1 4 w)2jwjd

27 |w|="~

on+2 1 1 1 1 1
= o 1 5 90 (/251 1 T/ (1 5 dz dw.
T Jjw|=y (1+w)2 270 )|, = 2 z—1z—4w/(1+w)

We evaluate the inner piece by computing the negative of the sum of the
residues at 2 = 1, 2 = 4w/(1 + w)? and z = oco. This works because z = 1
and z = oo are outside of the contour as is z = 4w/(1 + w)? because |z| <
|4w/(1 + w)?| by the constraint on the convergence.
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We get for z =1

1 (1+w)?  (14w)?

1—dw/(1+w)?2  (I+w)2—4dw (1-w)?

for a zero contribution.
We get for z = o0

—Res 1 ! L !
=021 /21 ) — 112 — dw/(1 + w)?

1 1
1-21—4dwz/(14+w)?

= —Res,_oz"/2+1

again for a zero contribution.
Finally for z = 4w/(1 + w)? we get

(1 +w)2L"/2J+2 (1 +w)2
T 92[n/2][+2 % oln/2]+1 (1—w)?

Substitute into the outer integral to obtain

gn  mod 2 / (1 +w)2Ln/2j+2 1 p
— w.
lw]=y

2mi wln/2I+1 (1 —w)?

Extracting the negative of the residue we get the sum

[n/2]
gn modz §° (2L"/2J+2>(Ln/2j—q+1).

q

This yields

g mod 2(|p /9| 4 1)% (QQWQHQ - (QLE?//;JtF 12))

» o L 22+ 1
-2 “(2Ln/2j+2)z< i1 )

q=1

—on w2+ g (e - ()

In/2] +1
e e o)
e e (- ) )
e (47L)
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Evaluation of Ys(n).
We get

1+[(n—1)/2]

[(n—1)/2]
2k +2 2k 1
}/2(71) — E 2n—2k—2< > —_ § 277,—2]6 ( L ) — _2n+§yl(n+1)

k=0 k+1 k=1

Evaluation of Y'(n).
We get for n = 2p the contributions

—2%(p + 1) (zp; 1) 2% 4 (p+1) <2p; 1)

= 2% 4 (4p+2) (if).

On the other hand for n = 2p + 1 we obtain

2p+1 ) 1 2p+3
2(p+1 — 2%ty o +2( )
(p )< ) ) 5P +2) b1

%+ 1
:—22P+1+(4p+5)( p; )

Joining the two formulae we get the compact closed form

—2" 4 (2n 42+ (n  mod 2))<Ln72j>'

Alternate proof.

Using
Z(2k>z2k_ 1
= k V1—4z22
and
2k:+1> o1 1 <2k+2) I 1 1 1
> () - L ()
kzo( k 22k20 k+1 2z 2241 — 422
we obtain
1 11 1 1
Yn) ="y, [_2z+2z\/14z2+\/14z2]

g o)L [1 L }
= — A - .
1-22 (221 —422 1 —422

83



Now observe that

" 1 1 1 p 2 _ —3/2 pAp
[22]1—22\/1—422_2[22](1422)3/2_< P ><_1) !
- (e e (7)

and
2p+1 1 1 _ 1 2p+1 4z _ 2
1= +}1—22:\/14122_5[2 +](1—422)3/2_2(217+1)<:f>'

Collecting everything we have for n = 2p

—2" + (2p+1) <2§> +@2p+1) (2;) =22 + (4p +2) <2§)

and forn =2p+1

1

—920 1 4 9(2p 4+ 1) (2;) +2(2p+3) (2p + 2)

p+1
2p+1 2p+1
22p+1+2(p+1)<pp >+(2p+3)(pp )

2 1
= —2%H+1 4 (4p+5)( p;— )

This is the same result as what we obtained earlier.
This was math.stackexchange.com problem 1219731,

[\

36 Iverson bracket and an identity by Gosper,
generalized (/R)

Suppose we seek to show that

n—1

Tf (n_1+q)x"(1 —z)i+ Y (m _q1+q)xq<1 =1

=\ p=

where n,m > 1.

We will evaluate the second term by a contour integral and show that is
equal to one minus the first term which is the desired result.

Introduce the Iverson bracket

1 z4 1
0<g<n-—-1|]| = — — dz.
O<a<n-=5- [ D

84


http://math.stackexchange.com/questions/1219731/

With this bracket we may extend the sum in ¢ to infinity to get

1 1 1 m—1+¢q a.q
- . 1_ md
211 Zzeznlzz( q )Zw( z)" dz

q>0

1—a)™ 1 1 -1
S () e s

2m lo|l=e 2" 1 — 2 q

q=20
(I—a)™ 1 1 1

- 2mi /|Z|=6 2" 1=z (1 —xzz)™ dz.

For the series to converge we need |zz| < 1. With |z| = € < 1 we may restrict
to |z| < 1. The claim then holds for all # because the sum is a polynomial in .
Now we have three poles here at z =0 and z = 1 and z = 1/2 and the residues
at these poles sum to zero, so we can evaluate the residue at zero by computing
the negative of the residues at z =1 and z = 1/z.

Observe that the residue at infinity is zero as can be seen from the following
computation:

R 1,1 1
—Res,—0—=
2% 1-1/z(1—a/z)™
1 z z™
—Res,_g— 2" <
=027 z—1(z—xz)™
1 1
—Res,_gz"Tm ! =0

z2—1(z—2)m™
Returning to the main thread the residue at z = 1 as seen from
(1—=ax)™ 1 1 1

2mi 2|=e 2" 2 = L(L—z2)™

is N 1
—(1—x) m = —1.

For the residue at z = 1/ we consider

(1— )™ / 11 1

— — dz

o™ X270 [z 2" 1 — 2 (12 — 2)™
(D)™ — 2™ / 11 1
2™ x 27 ls]=e 2" 1 —2 (2 = 1/z)™

and use the following derivative:

1 11 \"™VY
(m—l)!(z”l—z)

dz.
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m—1

m Difn+qg—1)!(m—1—g)!
;;( q) (n—1lente (1 —z)m—a

q

m—1

1 (-1)%n+q—1)! 1
q' (n—1)lznte (1 —z)m—¢

=0

Sl

2

=}

Evaluate this at z = 1/2 and multiply by the factor in front to get

(—1)m§n_ z)" y Z—; (n + ;1 - 1) (—1)1z7 = 1}1’)qu

S AL Wi <”+q N 1)(1)qzn+ql’mq

xm = q (x — 1)m—«a

~ oy (M ey

=~ q (1 —a)ym—a
= T:z__; ( +;’_ 1)33"(1 — 2.

This yields for the second sum term the value

m—1
n+q-— 1>
1- E ( 2" (1 —x)?
q=0 q

showing that when we add the first and the second sum by cancellation the
end result is one, as claimed.
This was math.stackexchange.com problem 538309,

Special case by formal power series
Here we show the special case:

L

k=0 k=0

which is obtained from x = 1/2. We have by inspection i.e. same as before
that

" m kL, | 1
Z( )2 = A
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This is
1 1 1
2l — 2 (1 —z/2)m !
1 1 om+l1
2l 2 — 1 (2 — z)mtl
1 1 1
ntl o] (Z _ 2)m+1'

n
2" x Res,—g

n Q
= —2" x Res,—g

= 2L ()™ % Res,—q
With

1 1 1
zntl 2 — 1 (z —2)m+l

we will be using the fact that residues sum to zero i.e.

f(Z) — 2n+m+1 (_1)7n

Res.—of(z) + Res,=1f(2) + Res,—2f(2) + Res.— f(2) = 0.

The residue at infinity is zero since limg_,o, 27 R/R" "1 /R/R™ ! = 0.
The residue at one is

2n+m+1(71)m X (71)m+1 —_ 72n+m+1.

For the residue at two we use the Leibniz rule:

1 1 1 (m)
m! \ 2zt 2z —1

1 & /m n+k)! 1 — m —k)!
:mkzzo(k>(_1)k( nl : R (1) k(z(l)m)m

m

m n+k 1 1
=(=1) Z ( k >Zn+1+k (z — 1)m—Fk+1"

k=0

Restore factor in front and evaluate at z = 2:

n+m+1 m m % n+k 1 _ G n+k m—k
2 (=)™ x (—1) Z( N )W_Z M Pt

k=0 k=0
Summing the residues we have shown that

- m+k n—k - n+k m—k n+m+1
Z( A )2 +Z( N )2 ~2 =0

k=0 k=0

which is the claim.
This was math.stackexchange.com problem 3024722,
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37 Factoring a triple hypergeometric sum (B)

Suppose we seek to evaluate
zn:(—l)k p+qg+1\(p+n—Fk\[/qg+n—k
k n—=k n—=k

o

We will prove it for p, ¢ > n and then we have it for all p, ¢ because the sum
is a polynomial in p, q.
Re-write as follows:

BT

k=0

p+qg+1 1 / 1
= — (1 e+l g
( n—=k ) 211 |z|=¢ ankr+1( +Z) “

qt+k 1 / 1 &
= — 1 atk g
( q ) 2T o=y wq+1( + 'UJ) w

Note that the first integral vanishes when k£ > n so we may extend k to
infinity, getting

which is claimed to be

Introduce

and

1 1 1 1
1) — ptg+l_— - q
( 1) 2 || =e Zn+1 (1 + Z) 2 /w|——y wq+1 (1 + ’LU)
k
X Z (p;; >(1)kzk(1 +w)* dw dz.

k>0

Here we have ¢ < 1 and v < 1 and we require for convergence that |z(1 +
w)| < 1. We have |z(1 + w)| < (1 + ) so we may choose ¢ = v and v < 1/2.
Continuing,

1 1 1 1
1 1 p+q+17/ 1 q
(=1)"5 e (1 2) 27 e sy G
X 1 dw d
w dz
(14 2(1 +w))ptt
1 1 1 1
= (—1)"— — P*q“—/ 1+ w)?
(=1) 211 |z|=¢ z”+p+2( +2) 271 lw|=~ wiatl (1 +w)
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1
“wt (1 +2)/2p

Here the residue at infinity in w is zero by inspection and the pole at w =
—(14 2)/z has norm lower bounded by (1 —~)/v =1/y—1 > v so it is outside
the contour. Hence we may evaluate using minus the residue at that pole with

the Leibniz rule:
(p)
1 1
! (wq+1 (1+ w)q)
- q+1)
P> ( >wq+1+kq =1+ )t

_1
p
- g+k\ 1 q
q+k—p
= (1) (L

0

dw dz.

Evaluate at w = —(1 + z)/z and flip sign to get

i k Q+k (_1)q+1+k: Zq+1+k q (_1)q+k:—p 1
(1+z)attk\p—k 2q+k—p

=0
)P i q + k q Ll .
s p— k (1 + Z)q+1+k

Substitute into the integral to obtain

g ()

Now note that

<p3k) (pnk> “ (= (k) ><q;L!X(p—/f—n)! N (Z>(pzkfn>'

Both sides here are zero when g < p—k and we have used the initial condition
q > n in this step. We obtain

(1)t (Z) kz:(_l)k (q 4}; k) (p E ; f n)

We have obtained the first factor. With the standard extractor on the re-
maining sum using the initial condition p > n

1 1 _ qg+k
-1 n+p 1 q—n -1 k k )
AN /|z|_€ e (1 2D ( k )Z *

k>0
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Here the residue enforces k < p —n so we may extend to infinity, with ¢ < 1.
We find

We have obtained the second factor and may conclude.
This is math.stackexchange.com problem 174054.

38 Factoring a triple hypergeometric sum II (B;)

Suppose we seek to verify that

206

We use the integrals

<pn - n> o (14 2)Pn=n

k N % |2]=e Sht1 z
and
pm+k 1 (14 w)Prk
~ om — 7 dw.
k 200 Jipjme W
This yields for the sum
! ! mr 1 pn 1 k
= Tiw
270 J) = z 270 J )= w >\ k) ok
k=0
]‘ 1 pn—m 1 1 o 1 "
:—,/ %7/ (“")(H +w) o
2mi e 2 27 Juee W —
L B 0 1+ wp
~ 2mi ol 9mg — " dw dz.
211 /|z_e m+l1 oi holme ] (1+w+2w)" dw dz

Expanding the binomial in the inner sum we get

n

5 (oo

q=0

" /n\ 1 / (14 2)Pn=n%a [ pp P
— —_— 2
q) 2mi Jjz)=c Zntl n—gq

q=0

which yields
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SO

q

1 G [

_ (pn)!
g'x (n—qg)! x (pn—2n+q)! x (n—q)!

The inner term is

_(pn n! x (pn —n)!

S \n/dxm—g)!x(pn—2n+q)! x (n—q)!
~(pn)\ () [pn—n
\n/\¢/\n—-q)

Thus it remains to show that
n
2 G- ()
= \¢/\n—q n
This can be done combinatorially or using the integral

1 1 +v)yPr IS (n
3 /U|_e D (q>”q dv

q=0

1 (1 _i_,U)pn—n
- Ny 1 n d
A7 /;;|_€ ’Un+1 ('U + ) v

L[ o (e
C2mi Ji=e vt \n )

This was math.stackexchange.com problem 656116,

39 Factoring a triple hypergeometric sum III
(B1)

Suppose we seek to verify that

min{zm:,mp} m\ (n\(p+m+n—r\ (p+m)\ p+n
r=0 AN m+n - m n /)

Introduce
n n 1 1
= = — —(1 "d
<T) (n - r) 2 /Z_6 zn-rtl (1+2)" dz
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and
p+m+n—r\ [(pt+tm+n—r
m+n B p—r
1 1

S (14 w)PTHT gy,
2mi )| wP—7’+1( ) v

w|=e

Observe carefully that the first of these is zero when r > n and the second
one when r > p so we may extend the range of r to infinity.
This yields for the sum

1 1 L | 1 ptm+n r
ﬂi/ (—l—w)z<m>zrw dw dz
|w]=e >0

2mi 2|=e 27T 2mi wpt1 r (1+w)"
1 (1+2)" 1 / (1 4 w)ptm+n 2w "
_ 1 R Qw777 dw d
270 Jisjme 2" 270 S = wptl - 1+w waz

1 (I+2)" 1 (1 +w)Ptn
~ 2mi S oantl o — ™ dw dz.
21 /Z—e nt+l 9mg /|w|_€ wh+1 ( +w + zw) w dz

The inner integral is

1 (1 +w)Pt I~ (m
— TR 1 Qg
2 /|w|_€ e <q>( +2)%w dw

q=0

G

= pP—q

with residue

which in combination with the outer integral yields

e
= qg)\n+gq n )

q

Now note that

(ZJ:D (” Z q> b (Z)T(: )J'r q)! (nq;?)!
“i=aman = ()0

Therefore we just need to verify that

min(m,p) m » D+ m
> (62 ()

q=0
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which follows by inspection.
It can also be done with the integral

1 1 p
p - 7/ ﬂ dw
p—q 2mi |w|=e€ wp—atl

which is zero when ¢ > p so we can extend ¢ to infinity to get for the sum

1 (1+w)P m\
— I L d
2m [w|=¢ wrtl Z < q > v

q=>0
1 1 ptm
211 |w|=e wP‘H

1)

This was math.stackexchange.com problem 1460712,

40 A triple hypergeometric sum IV (B;)

Suppose we seek to verify that

l
Ly (DG
== m—101/\qg)\p—¢q l
where m >n and m —n > [.
This is

Now introduce the integral

m—n 1 1
=— (14 2)™ " dz.
(p —q ) 27 /z_e 2p—q+1 ( + Z) z

Note that this vanishes when ¢ > p so we may extend the range of ¢ to
infinity, getting for the sum

5 (0 Ao ()

p=0 q>0

1
m—p\ 1 1 _

= — 1 MmN — 2)" dz.
<l_p>2ﬂ-i/zezp+1( +2) (1—-2)"dz

p=0

Introduce furthermore
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m—p 1 1 _
= — —(1 TP dw.
<l—p> 21 /|w—7 wl_p+1( +w) w

This too vanishes when p > [ so we may extend p to infinity, getting

1 1

— 1 m
270 J ) —ry wl+1( +w)
1 1 wP 1
— -(1 mT(l = 2)" — ——— dz dw.
X2m' |2|=e z( +2) (1-2) 1;0 2P (14 w)P zaw

The geometric series converges when |w/z/(1 + w)| < 1. We get

1 1 .
270 Jypj=ry witl (1+w)
1 1 1
X — -(1 mTl = 2)" dz d
2mi ‘z‘zez( +2) (1-2) 1—w/z/(1+w) =
1 m
= 21 gy )
- (14 2)m (1 — 2y — iz d
— z — ) —————— dz dw.
271 \z\:e Z—’LU/(1+U)) w

Now from the convergence we have |w/(1 + w)| < |z| which means the pole
at z = w/(1+w) is inside the contour |z| = €. Extracting the residue yields (the
pole at zero has disappeared)

1 1 w """ w \"
— Q4w 1+ 2 1- -2 ) 4
2700 J o= w“‘l( +w) ( * 1—|—w> < 1+w> v

1 1
- (142w d
27{_1 |“}‘:’Y wl+1 ( + w) w

(")

This was math.stackexchange.com problem 1767709,

41 Basic usage of exponentiation integral to ob-
tain Stirling number formulae (F)

Suppose we seek to evaluate
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‘We observe that

(-2 = o [ L exp((n— 20)%) d
211 |z|=€ Zk+1 ’

This yields for the sum

k! 1 < n
— —_— E —2 d
2mi |z]=€ 2 q=0 (2(] + 1) eXP((” q)Z) :

w WZ( " >exp((—2q—1)z> dz

- % |z|=e¢ 7=0 2q+1
which is
1R [ exp((nt1)2)
22w |z|=e Zk+1
X <n) exp(—qz) — Z (n) (—D)%exp(—qz) | d=.
g=0 q q=0 4

This yields two pieces, call them A; and As. Piece A; is

- » DD (1 4 exp(—2))" dz
= %2]% " i(:;g(exp(z) +1)"dz
and piece A, is
%2]% . W(l —exp(—2))" dz
= %21% s e};?;fj)(exp(z) - 1" dz.

Recall the species equation for labelled set partitions:

PUPB>1(Z2))

which yields the bivariate generating function of the Stirling numbers of the
second kind

exp(ulexp(z) - 1)).

> {11 - w1y

|
nog V4 q:

This implies that
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and

> {”} (;"_‘i)! _ <exp<2>_‘1)1!>q‘1 exp(2).

= g (q
Now to evaluate A; proceed as follows:
1 k! exp(z)

22m |z|=e€ Zk+1

1K GZES) > <Z) 2" (exp(z) — 1)7 dz

(2+exp(z) — 1)" dz

22m |z|=e 7=0
s (n) o L[ (o) (exp(a) —1)7
= \4 22mi Jjy=e 251 q!

Recognizing the differentiated Stirling number generating function this be-

comes
- k+1
Z " on-a-1 g1 x T
q qg+1

q=0

Now observe that when n > k + 1 the Stirling number for k+1 < g < n
is zero, so we may replace n by k + 1. Similarly, when n < k + 1 the binomial
coefficient for n < ¢ < k 4 1 is zero so we may again replace n by k + 1. This
gives the following result for A; :

k+1
Z <n>2"‘11 x q! % {]H— 1}.
q qg+1

q=0

Moving on to As we observe that when k < n the contribution is zero because
the series for exp(z) — 1 starts at z. This integral is simple and we have

Jnt [ ool el -0
|z|=¢€

- z.
2 2mi zht1 n!

Recognizing the Stirling number this yields

1 k+1
— xn!x .
2 n+1

which correctly represents the fact that we have a zero contribution when
k <n.
This finally yields the closed form formula

k1
E ") on—a-1 g1 x Bl VT ol .
q q+1 2 n+1

q=0

confirming the previous results.
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This was math.stackexchange.com problem 1353963

42 Three phase application including Leibniz’
rule (BlBQR)

Suppose we seek to verify that
= 2 -1
oty () = ()
= n+q m — m
where n > m.

We use the integrals

2n 1 / 1 1 d
= — z.
n+gq 210 J | 5)=e Zn—atl (1 — z)ntatl

m+q—1 1 (14 w)mta-t i
=— — dw.
2m — 1 211 |w|=e w2’”

Observe that the first integral is zero when ¢ > n so we may extend ¢ to

and

infinity.
This yields for the sum
1 1 1 1 (14 w)m1 29(1 4+ w)d
— _— dwd
27 Jyee 2T (1= 2)7 1 27i /,w_e g 2 1—z0 0
q>0
1 1 1
- 2mi z]=e 2" (1 = 2)ntt
1 1 m—1 1 1-—
B ) R R

210 Jjyj=e  w?™ (1= z(1+w)/(1-2))

1 / 1 1
2w Jpyee 2 (1= 2)n

1 1 mlA(1 1—
xf./ ( +1§2L 21+ w)l=2) 5 dw dz
278 Jjp|=e W (1-z-z(14w))
_ b R
C 2w Jiee 2t (1= 2)n
1 (1+w)™ 1
— dw dz.
" o /|w_6 w?™ (1 =2z — zw)? waz

We evaluate the inner integral using the negative of the residue at the pole
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at w = (1 — 22)/z, starting from

1 111 (1+w)™ 1
: — dw dz.
2mi 22 (1= 2)"2mi Jjyj=e W™ (0 — (1 —22)/2)?

|z|=e

Differentiating we have

(1+w)m ! (1+w)™ (1+w)™!
M —2m pr s (w72(1+w))mw
(1+w)m1t

The negative of this evaluated at w = (1 — 22)/z is

1 (1 _ Z)m—l 22m+1
P N (P

which finally yields

m 1 1 1

L dz.
270 J|_e 2 (1= 2)nm L (1 — 2z)2mtt O

We have that the residues at zero, one and one half sum to zero with the
first one being the sum we are trying to compute. Therefore we evaluate these
in turn. We will restore the front factor of m at the end.

For the residue at zero we have using the Cauchy product that

ni? <nm+q>2nmq<2m+nmq)

= q n—m-gq
%1 <”m+q>2"mq<m+”q).
= q 2m

For the residue at one we have that

(_1)n—m+1 1 1 (n—m)
(n —m)! (z”m+1 (1- 22)2m+1)

G (“—m><_1)q( _(n—m+q)!

(n —m)! q m)! x zn—mtltq

q=0
2m+n—m—q)!
(2m)! x (1 — 2z)2mtl4n—m—q

_ (=yrnmmAtgnTm nisn (n ; m) (—1) - _(n —m+q)!

(n—m)! m)! x zn—mtlta

q=0
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(m+n—q)!
(2m)! x (1 — 2z)m+1+n—q’

Evaluate this at one to get

R m=—m4q\._  (m+n—q
n—m 271 .
Z( q > ( 2m >

q=0

x274

The residue at one evaluates to the sum we seek just like the residue at zero.
This leaves the residue at one half, where we find

(—1)2m+1 ( 1 1 >(2’")

(2m)! X 22m+1 Zn—m+1 (1 _ Z)n—m—i—l

(=1t 2 (2m . (n—m+q)!
= Gz 2 g )V G e

(n—m+2m — gq)!
(n—m)! x (1 — z)n—m+l+2m—q

o 2m
_ (—1)2m+1 2m (—1)0 (n—m+q)!
(2m)! x 22m+1 o\ 4 (n —m)! x zn—m+l+a

" (n+m—q)!
(n—m)! x (1 — z)ntmt+l-q’

Evaluate this at one half to get

2m

1 n—m+ Q> _ n+m-—gq B

- —1)29" m+1+Q< gnt+m+l—q
22m+1 ;::0 < q 1) 2m —q

2m
- —-m+gq n+m-—gq
— _92n 2m+1§: n—m _1)4 )

q=0

For this last sum use the integral

n+m-—q n+m-—gq 1 / 1 1 d
= = — V.
2m —q n—m 210 Jjyj=e vEMTITE (1 — p)nmmHl

This controls the range so we can let ¢ go to infinity in the sum to get

1 1 1 (nm+q
q=>0

>(1)qvq dv

271 Jv|=e p2m+1 (1 — U)n—m—H q
1 1 1 1 d
= v
271 Jv|=e p2m+1 (1 _ U)n—m+l (1 + U)n—m—i—l
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1 1 1 d n—m-+m n
= —_— V= = .
270 J)pme 02 (1 — p2)nmmtd m m

‘We have shown that
25 —m x 2 x 22n72m (") -0

and hence may conclude that

S =mx4""" x (n)
m

Remark. If we want to do this properly we also need to verify that the
residue at infinity of the integral in w is zero. Recall the formula for the residue
at infinity

Res.—ooh(z) = Res:—o [_;h (1”

z

In the present case this becomes

1 (14+1/w)™ 1
—Resu,:oﬁ : 1/w/2m) (1—-2z—2/w)?
(14+1/w)™ 1
/w2 (w(l —2z) — 2)?
1
(w(l —22) —2)2

= —Resy—0o

= —Resy—o(l + w)"w™

which is zero by inspection.
The same procedure applied to the main integral yields

1 1 1
—R, fe0— n—m-+1
=027 (1= 1/z)n—m+1 (1 — 2/z)2m+1
1 n—m-+1 2m—+1
= —Res,_g—=z"" "t z i
Z2 (Z _ l)nferl (Z _ 2)2m+1
1 1
= fResZZOZQ"H

(Z _ 1)n—m+1 (Z _ 2)2m+1

which is zero as well.
This was math.stackexchange.com problem 1247818\
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43 Same problem, streamlined proof (B;B:R)

Suppose we seek to verify that

" 2n m4+q—1 _ n
S = _ gn—m
2o ) (o) = (0)

where n > m.
This is

S0 () (")

which has two pieces. We use the integral

mtn—qg-—1\_ (m+n—-q-1 :L/ ;(1+w)m+"*q*1dw.
om — 1 n—m-—gq 27 Jw|=e wn—m—q+1

Observe that this integral vanishes when ¢ > n —m and we may extend ¢
to 2n. We get for the first piece

n 1 2n 2n w?
e E— ] m+n—1 o d
270 Jyw=e o) q; ( q ) (T+wy "

n 1
wn—m+1 (1 + w)n—i—l—m

- 1+ 2w)*" dw.

w|=e

The second piece is the negative of

() (") 2 ()

=0 g=1
n n—1
2Zn—1\/m+n—-—qg—-1 2n—1\/m+n—-—q—2
=2 =2
nq_zl<q1>( 2m —1 ) nq_zo( q )( 2m —1 )

:2n7§ (271—1) (m—l—n—q—i).
o q n—m-—q-—
This vanishes through its integral representation when ¢ > n —m — 1 and
we obtain

2n 1 1
— 1+ 2w)*" ! dw.
2711 /|w_e wn—m (1 + w)n+l—m( + lU) w

Joining the two pieces we arrive at the single integral
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n 1 1

— 1+ 2w)*" ! dw.
270 J|pjme W (1+w)n+1fm( +2w) w

w|=e

We know the residues at zero, minus one and infinity sum to zero, where the
first represents the queried sum. For the residue at minus one it is given by

n 1 1
R 1 2) 2n—1 d
20 Jyg 1=y WL (14 w)n+17m( +2w) w

= 5 2 —1 2n—1 d
o ), T e G D
= ! 1 2n—1
a _Tm |v|=" (—U — 1)”_m+1 (_v)n—i-l—nz (_]‘ - 2,0) dv

n 1 1
_ 1 2 2n—1 dv.
Imi /U|—’y (14 v)n—mt1 ,U’n+17m( + 2v) v

We see that this residue also represents the queried sum. This leaves the
residue at infinity which is

1

2n—1
Resu;:oo wn—m+1 (1 + w)n+1_m (1 + 2’UJ)
= —Res 70iw”_m+1;(1 +2/w)? !
w2 (14 1/w)ntt-m
= —Res,—ow" " w24 w)h
w= (1 +w)n+17m w2n71
1 2 2n—1
= —Resy—o (2+w)

w2m71 (1 + w)nJrlfm :
Extracting coefficients we find

2m—2

“n Z < 2n—1 )22n2m+1+Q(_1)q<n—m+q>.
por 2m —2 —q q

Introduce (this vanishes when ¢ > 2m — 2)

2n —1 _ 2n —1
2m—2—-q) \2n+1-2m+q
1 1 1

211 Zmelfq (1 _ Z)2n72m+2+q

|z|=€

to get for the sum
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_”22n2m+1/ 1 1 n—m+gq Qq(_l)qizq dz
2711 2] = Z2m—l (1 _ Z)Qn—2m+2 = q (1 _ Z)q

22n72m+1 1 1 1
L R / dz
|z|=€

2mi 22m=1 (1 — z)2n=2m+2 (1 4 2z /(1 — z))n—m+l
n22n72m+1 / 1 1 1 p
— z
2711 \z\:e Z2m71 (1 _ Z)nferl (1 + Z)nfmjtl
n22n72m+1 1 1
= . / dz
2711 \z\:e Z2m71 (1 _ Z2)n7m+1

1

1 _ 2n—2m-+4+1r_m—1
—n2 [z ]7(1 — ot

(1 _ ZQ)n—m+l -

— _n22n—27n+1 <’I’L —m+m— 1) )

— _n22n72m+1 [z2m72]

m—1

It follows that

-1
28 — 222l <n > =0 or S=namZ (n>
m—1 n \m

which yields

S=mx4""™ x (n)
m

as claimed.

44 Symmetry of the Euler-Frobenius coefficient
(B1EIR)

Suppose we have the coefficient of the Euler-Frobenius polynomial

= S (1) (Z* ;)

=1

and we seek to show that by = b, , where 0 <k <n+ 1.
First re-write this as

s ("))

=0
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Introduce the Iverson bracket

1 21
0<I<kll = — = _— d
[0=1<k] 270 | e 211 — 2 o
and the exponentiation integral
nnl 1

to get for the sum (extend the summation to n + 1 since the Iverson bracket
controls the range)

n+1
n! 1 1 1 1 n+1 L
1 Spkw) 5= o -1 —lw) dz d
271 = wn+1 exp(kw) ori /|z|—€ Skl ] — 4 ; ( I )( )'z" exp(—lw) dz dw
n' L 71 1 1 n+1
= mi Jyyy, wrt PRI /_k+ T (L zeplw)™ dz du.

Evaluate this using the residues at the poles at z = 1 and at infinity. We
obtain for z =1
n! _ _ n+1

exp(kw)(1 — exp(—w))"™" dw,

270 | =e wntl

note however that 1 — exp(—w) starts at w so the power starts at w"*!
making for a zero contribution.
We get for the residue at infinity

ok 1 n+1
Reszzoz—gz 171/2(1 exp(—w)/z)

= —Res,_z" (1- eXP(_w)/Z)nH

z—1

P 1

— I VR _ n+1
= Res.—g pores e z(z exp(—w))" .

We need to flip the sign on this one more time since we are exploiting the
fact that the residues at the three poles sum to zero. Actually extracting the
coeflicient we get

_ 7§ (” * 1) ()" Yexp(—(n + 1 — q)w).
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Substitute this into the integral in w to get

2mi

1 nl ! .
_§< ) )/wzewnﬂexp(kw)(—l) -t exp(—(n + 1 — qw) dw
- n—k n+1 g . §
__qz_%< q >(_1) (-D)"(n+1-k—q)

_ :z:éj (”;Ll>(—1)4(n+ 1—k—q)".

Using the fact that n 4+ 1 — k — ¢ is zero at ¢ = n + 1 — k we finally obtain
n+l—k
n+1 "
> ( )(—1)q(n+1—k—q)
q=0 q

which is precisely b}, _, by definition, QED.
Addendum. An alternate proof (variation on the theme from above) starts
from the unmodified definition and introduces

n+1 1 1 il
(k; B l) =95 /Z_6 S+ )" dz

This controls the range so we may extend [ to infinity. Introduce furthermore

n!

"=_— — lw) dw.
270 e W expll) du
These two yield for the sum
n! 1 1 (—1)*
e - 1 n+1 -1 L1 l dz d
27 |u)|:e wn+1 21 /z—e z +1 ( + z) ;( ) * exp( w) zaw
n! 11 / (—1)* (14 2 1 & d
= — —_ — z —————dzdw
2711 |w|=e w1 27 |z|=e¢ zhtl 1+ ZCXP(U))
n! exp(—w) 1 / (—1)* 41 1
= — _— 1 e dz dw.
2mi /|w|_6 wrtl 2mi J iz 2P (1+2) z 4 exp(—w) =
We evaluate this using the negatives of the residues at z = — exp(—w) and
at infinity. We get for z = — exp(—w)
n! exp(—w) (—1)* 1
- 1— _ n—+ d
271 /|w—e w1l (_1)k+1 eXp(—(k ¥ 1)w)( exp( w)) w
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n! exp(kw)
= —— (1 — exp(—w))" ! dw.
2mi /|w—e wn T ¢ p(~w))
As before the exponentiated term starts at w™*! so there is no coefficient
on w" for a contribution of zero.
We get for the residue at infinity (starting from the next-to-last version of
the integral)

Kok (L+2)"H 1
z
zrtl 14 exp(w)/z

k k1 (1+2)" 2/ exp(w)
2"t 14 2/ exp(w)

1
—ReSZ:();(—l)

1
= —Reszzoz—2 (-1)

1+2)"" exp(—w)
 Res._(—1)k k ( .
es.=0(—1)"2 2l 1+ 2/ exp(w)

Doing the sign flip and simplifying we obtain

(14 2)"+t 1

i (—1\F
exp(—w)(—1)" x Res,—g T 15 2/ exp(w)

Extract the residue to get

n—k
—w)(=1)* nr) k=4 exp(—(n —k — q)w
exp(—w)( 1>§(q)< ) b(—(n— k — qw)

Substitute into the integral in w to obtain

n—k
n+1\ n! 1 e
S ("0 )am [ e =k ) d
q:O w|=€

We have obtained by, ,_, as before.
This was math.stackexchange.com problem 1435648|

45 A probability distribution with two parame-
ters (B1Bs)

A sum of binomial coefficients CLXVII
Suppose we have a random variable X where
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e (mﬁ 1>_1 (N; k) (k " 1)

fork=n+1,...,N —n and zero otherwise.

We seek to show that these probabilities sum to one and compute the the
mean and the variance.

Sum of probabilities. This is given by

RIS S G [}

N-ky 1 1 L
n 2mi ¢ 2Nkt (1 — z)ntl

|z|=

k—1 1 kot
( > = 7/ w duw.
n 27 Jjyj=e W T!

Observe carefully that the first integral is zero when k£ > N — n and the
second one when 1 < k < n so we may extend the range of the sum to 1 < k.
This gives for the sum (without the scalar)

Introduce

and

1 1 1 1 1 o1 s
2mi SN—n (1 _ ,\n+1l 90 1 dw d
271 2] =e ZN=n (1 — z)nH+l 2mi /Iw—e e ;z (14 w) w dz

" 2mi i dw dz.

271 |z|=¢ ZN—-n (1 — Z)nJrl 271 /w|:e wntl ] — Z(l +w) w az

The integral in w is

1 1 1 1

— d
1—22mi wrt 1 —wz/(1 - 2) v

|w]|=e
which yields for the integral in z

1 1 1 z" d
— 2
2mi ZN=n (1 — z)ntl (1 — z)ntl

|z|=¢

N-2n—1+2n+1 _ N
2n+1 T \2n+41)

This confirms that the probabilities sum to one.

which is
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Expectation. This is given by

= (,0) 0 2 ()

k=n-+1
Introduce
k—1 k! k
= = 1
k( n ) nlx (k—1—mn)! (n+ )<n+l)
1 (1+w)*

= (n+1)— S g,

(n+ )27ri e W dw

The range control from this integral produces zero when 0 < k < n so we
may extend the sum to zero, getting

1 1 1 1 1
1)=— — 1 ¥ dw dz.
(n+ )27m' /lzl—e ZN=n+T (1 = 2)n+1 27 /|w—6 w2 gz (1+w)" dw dz

The integral in w is

1 1 1 d
— w
271 |w\:5 w"” 1-— Z(]. -|—w)
1 1 1 1 J
- — w
L= 2270 Jjpme w2 1 —wz/(1 - 2)

which yields for the integral in z including the factor in front

1 1 1 P
(n+ 1)%/ _e 2N (1 et (1 — 2)nt2 dz
|z|=€
which is

N-2n—14+2n+2 N+1
1 = 1 .
(n+ >( M + 2 ) (n+ )<2n+2)

We will scale this at the end, same as the variance.
Variance. Start by computing

E[(X + 1)X] = <2n]\—:- 1) - Ni (k+ 1)k:<Nn k) (kn 1>.

k=n-+1

Introduce

k-1 k+1)!
(k+1)k< n >:n!><<(k—1)—n)!
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wk+1
:(n+2)(n+1)<:i;> =(n+2)(n+1)1‘/ ~ (1:,”733

Y[

The range control from this integral produces zero when 0 < k < n as before
so we may extend the sum to zero, getting

1 1 1

2 1)—

(TL + )(’I’L + )27” \/z|_E ZN—n+1 (1 — Z)n+1
1 1+w & &
|w|=e k>0
The integral in w is
1 14+w 1 d

— w

270 Jjyj=e w3 1 — 2(1 + w)

1 1 1+w 1

- _ d
1 —z2mi J| w3 1 —wz/(1—2) v

w|=e

which yields for the integral in z including the factor in front

(n+2)( +1)i/ : : AR A
T o s N (L= ) L \(T =28 T (1= ) P

which is

(n+2)(n+1)(<N_2”_2+2“+3) (N—Qn—1+2n+2>)

2n + 3 2n + 2

—(n+2)(n+1) ((;ﬁ;é) + (;\;:12»

Simplification for ease of interpretation.
We get for the expectation

(N + 1)! (N — 20— 1)1(2n +1)!
EX] =+ Dy 2 - w2 N
= (N4 1),

We obtain furthermore
E[(X+1D)X]=n+2)(n+1)

(N +1)! (N +1)! (N — 20— 1)!(2n +1)!
x ((N2n2)!(2n+3)! (N2n1)!(2n+2)!> N

1 N-2n—1
SN+ D+ (T
s N1+ )< m+3 >
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n+2
n+3

1
= §(N+2)(N+ 1)
This yields for the variance
Var[X] = E[X?] — E[X]?

n+2
2n+3 2

1
= i(N +2)(N +1)
which simplifies to

N-2n—-1

1
Var[X] = Z(NJr 1) G

This was math.stackexchange.com problem 1257644.

46 An identity involving Narayana numbers (B;)

Suppose we have the Narayana number

and let

k
A(n, k1) = Z HN(itvjt"_]-)

igtiit-Fig=n t=0
Jjotiit - +ig=t

where the compositions for n are regular and the ones for [ are weak and we

seek to verify that
k+1(n n
A = — .
(n, k1) n <l>(1+k+1)

R (q+1><p>

p>1  ¢>0

"2 ZPZ (q+1)()

p>1 q>0

Introducing

we have by inspection that
Aln k1) = [ [wl)G 2, u)* .

To evaluate this introduce for the inner sum term
p P 1 1

= 1 P dw.

(q + 1) (p q— 1) 2mi /|w_€ wl’*q( +w)? dw
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We get for the inner sum

1 1 P
. - P 201 ¢
2mi |w|=e¢ wp( ) Z <q)u v

q=>0
! L (14 w1+ aw) d
= — — w uw w
211 |w|=e wP
! L (14 w1+ utww))? d
= — e w u uw w.

211 |w|=e wP

Extracting the coefficient from this we get

[wP™1] qz: (Z) wI(1 + u + uw)?
- pi (2) [wP ™1 (1 + u + ww)?

p—1
_ (p) ( q >up—l—q(1 + )20t
—\¢/\p—1-4¢

p—1 1
e
q q

q=0

This is

Now observe that with the factor 1/p from the definition,
10 | QP B O

p\g+1 q g+1\ ¢ q
il ) ) )

T gt+l\p—1—g q g+ 1\ 2

where

is a Catalan number.
We thus get for the sum
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q=>0 p>q q
= ZZCquq(quu)*Qq <2p>zp(1+u)p

>0 p>2q N4

P+2q

=2z q;}cquq(l +u) 721+ u)qu2qp§>:O ( % )zp(l +u)?
1
= C,ulz? .
D e

Using the generating function of the Catalan numbers

1—+1—4w
_ O e
q2>0
which has functional equation

Q(w) =1+ wQ(w)?

we obtain

< (u—?mm) T —;(Li N ((1 _;}i u>>2>2

which is

1—2z(1
G(Z,U)M =1+ uG(z,u)*

z
Extract the coefficient in z first. We get from the functional equation

G(z,u)
uG(z,u)? + (1 +u)G(z,u) +1°

z =

The coefficient extractor integral is

1
MGG = 6 04 ()
_k+1 1 S s
 n 2mi |z|=¢ Z”G(Z’u) G'(z,u) dz.

which becomes with G(z,u) =v

k+1 1 (qu—&—(l—l—u)v—i—l)”Uk. o
no 27 Jiy)=y (L '

Here we have used from the definition of G(z,u) that G(0,u) = 0 so the
substitution maps zero to zero. Moreover [21]G(z,u) # 0 so when z makes one
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turn so does v.
This is

k+1 1 (wo(v+1)+ (v+1))"

— dv.

n 2w v

[v|=v

Extracting the coefficient on [u!] we get

kE+1/(n L/ vl (v + 1) (v + 1) v
n 1) 273 Jv|=~ ’UnflC

OG-S OG0

This is the claim, QED.
Remark. The closed form of G(z,u) can be computed as follows:

2 1—/1—4uz2/(1 - 2(1 +u))?
1—2z2(14+w) 2uz?/(1 - 2(1+w))?

B z 1—2z(1+u) — /1T —22(14u) + 22(1 + u)? — 4uz?
(1= 2(1+u))? 2uz?/(1 — z(1 +u))?

11—zl +u) — /1 —22(1+u) + 22(1 + u)? — 4uz?

B 2uz '

The above material incorporates data from OEIS A055151| and from OEIS
A001263 on Narayana numbers.
This was math.stackechange.com problem 1498014.

47 Convolution of Narayana polynomials (B)

This is basically a re-write of the previous entry with a more general conclusion.
Suppose we define

-1 e 0 (1) (1)t

k=0

and let for m > 2
n
C(m) Zcm 1) C(l ()
q=0

This definition is equivalent to introducing

=2 G (tw

n>1

and letting
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‘We seek to show that

n—1
-1
C§™ () =1 and C£m’<t>zz(nk )(n+m> =
k=0

k+m/n+m

The case n zero follows by inspection. Furthermore we have from the previ-
ous section that

[wn]G(w)P+1 — pl/l _ (tv(v—i— 1) + (U+ 1))n dv.

n 2m Y P

Summing with the binomial coefficient,

[w"] zm: <m> G(w)? = 11 . pz:p(m) (to(v + 1) + (v +1))"

- dv
n 2mi P pntl-p

@L/ i(m—l)(tv(v—i—l)—i—(v—i—l))"
[v]=7 p=1

d
n 2mi p—1 yntl-p v
m—1
1 -1\ (¢ 1)™(1 "
_m / Z(m )(v+)_(+v) o
n 2mwi ol=v 5= p n—>p

— dv.
n 2w "

m 1 / (tv +1)"(1 4 v)ntm-1
lvl=v

Extracting the coefficient on [t*],

m(n\ 1 / vk (1 4 p)rtm-1 m(n\ (n+m-—1
mmy 2 il Sl s MY L3 .
n\k) 270 Jjy=y " k

n n—1—k
With some binomial coefficient manipulation we get

m(n—1 n n+m-—1 _ n—1 1 n-—+m 1 (n— k)
n k n—=k m+k -m k n—k\m-+k n—l—mn
_m n—1\/n+m

T n4m k E+m)

This was math.stackexchange.com problem 1997791,

This is the claim.
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48 A property of Legendre polynomials (B;)

Suppose we seek to determine the constant ) in the equality

Qun () (=A== (jz)“m (1 2y

where n > m. We will compute the coefficients on [2%] on the LHS and the
RHS. Writing 1 — 22 = (1 + 2)(1 — 2) we get for the LHS

5o

p=0

<( )= e

n—m-—p

- (n- m)!(—l)“mg () (o Jasarreara—ame.

Extracting the coefficient we get

oS ()5 o

p

ni:p (n - p) m+p
X (—=1)a7* ( ) .
= k q—k
We use the same procedure on the RHS and merge in the (1 — 2%)™ term to
get

v =5 () o)

p=0

TECT)e ()

Working in parallel with LHS and RHS we treat the inner sum of the LHS

first, putting
= — J— 1 m-p d
(q _ k) o /Z_6 Zq—k+l( + 2) z

to get

1 1 = /n —p
- 1 m+p -1 q—k  k d
27T |z|:€ Zq+1 ( + Z) kZ:O ( k ) ( ) z z
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—1)1 1 m n—
:(27r3/|| Zq+1(1—|—z) TP(1 - 2)" P dz.

Adapt and repeat to obtain for the inner sum of the RHS

(_1)(1 1 p n+m-—p
omi |2]=e 2971 (1+2)"(1 —2) dz.

Moving on to the two outer sums we introduce

= 5 - (1 n J
(’ﬂ —m — p) 271 /|w=’y wn—m—p+1 ( + ’lU) w

to obtain for the LHS

%m' lw]=y ﬁ(l o)
X (;;Z).q /|z—6 qu+1 (I+2)"(1—-2)" 7;2__: (Z) (—1)Pwp84_'32 d= dw
B 2%” |w|=v ﬁ(l )’
. (qu /|Z=6 qu+1 (I4+2)"(1=2)" <1 - wi i_ z)" dz dw
“a ful=y ()

—1)¢ 1
><( ?/Il— Zq+l(1+z)m(1—z—w—wz)"dzdw.

Repeat for the RHS to get

1 1

— ] n
27i o] = wn+m+1( +w)

x(_l)q/ ! 1-2)"1—-2z—w—wz)"dzdw
2| =c za+1 ’
Extracting coefficients from the first integral (LHS) we write

l-z—w—wz)"=2-(142)(1+w))"
S (1) 0t 4w

and the inner integral yields
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(=1 Z (Z) (=1)" (m q+ k) (1+w)r2n*

k=0

followed by the outer one which gives

Qe

k=0

For the second integral (RHS) we write

l—z—w—-—w2)"=((1-2)(14+w)—2w)"

— - n (1 _Z)k(l+w)k(_1)n—k2n—kwn—k
>3

and the inner integral yields

7y (Z) (m ’ ’“) (~1)7(1 -+ w)* (1) F2n

k=0 q

followed by the outer one which produces

3 ()b

The two sums are equal up to a sign and the RHS for the coefficient on [29]

is obtained from the LHS by multiplying by
(TL + m)' (71)n7q.
(n—m)!

Observe that powers of z that are present in the LHS and the RHS always
have the same parity, the coefficients being zero otherwise (either all even powers
or all odd). Therefore (—1)"7 is in fact a constant not dependent on ¢, the
question is which. The leading term has degree 2n — (n — m) = n+m =
(2n — (n+m)) + 2m on both sides and the sign on the LHS is (—1)" and on
the RHS it is (—1)"*™. The conclusion is that the queried factor is given by
(n+m)!

(n—m)!’

Qn,m = (*]—)m

This was math.stackexchange.com problem 2066340.

49 A sum of factorials, OGF and EGF of the
Stirling numbers of the second kind (B5;)

We are given that
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k
rE(r+n)l =3 An(r +n+m)!

m=0

and seek to determine the \,, independent of . We claim and prove that

0] e 2

p=0

With this in mind we re-write the initial condition as

Z)\ (r+n+m>

We evaluate the RHS starting with A, using the EGF of the Stirling numbers
of the second kind which in the present case says that

— —p)! xp(z) — 1)™+!
{k+1 p}:(k:+1 p)l/lle 1 (exp(z) )™+t

m+1 2mi e 2RT2P (m+1)!

We obtain for A,

[y i ( > (k + im— p)! /Z_E Zk+12_p (exp((;l)gll))!erl n

The inner term vanishes when p > k42 but in fact even better it also vanishes
when p > k —m which implies m +1 > k+ 1 —p because (exp(z) —1)™*? starts
at [z™*1] and we are extracting the term on [zFT1=P].

Hence we may extend p to infinity without picking up any extra contributions
to get

(-1 kﬂnﬁ
2mi

1 (exp(z) —1)m*? nP 2P
(k+1—p)—— d=.
/Z_6 zk+2 (m+1)! ;%(:) p!

This is

exn(z) — m—4+1
(‘UHM% /I - zk1+2 ( p((m)Jr 11))! ((k+1) — nz)exp(nz) dz.

Substitute this into the outer sum to get

l)k;jr!i/_ ZlirQ((kJrl)—nz)exp(nz)
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We have

r+n+m 1 (r+n+m 1
mn m+1 m+1 Jr+n

and hence obtain

_1\k
( 1) i'/ 1 ((k+1)—nz)exp(nz)

r+n 2w

><§3 C"*"*7">(Um@mp@)1)m+ldz

m=0

We may extend m tom > k in the remaining sum because the term (exp(z)—
1)™*+1 as before starts at [z™*!] which would then be > k + 1 but we are
extracting the coefficient on [z**1], which makes for a zero contribution.

Continuing we find

- Z (7“ +n+ m) (=)™ (exp(z) — 1)+

>0 r+n—1

1
BT =) e U

We get two pieces on substituting this back into the main integral, the first

is
GJVkﬂ/’ 1
r+n 2w f =, Sk+2 ((k+1) —nz)exp(nz) dz

(=D* nktl (—1)k  pk
- k+1) - I’ =0,
R A CES Y T

and the second is

(—1)F+L k!
r4n 2mi

/_ Zlirz((k—Fl) — nz)exp(nz) exp(—(r +n)z) dz

B (_1)k+1 k! 1
T r+n 2mi ~hto

2= ((k + 1) — nz) eXp(—rz) dz

_ (—1)k+1 (_r)kJrl (_1)k+1 (—T)k

= e Dy e
1 pk+1 1 ok

= ——(k+1)! I X |
T )%+1ﬂ+r+n "
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1 1
= — kTl b =k

r+n r+n

This concludes the argument.
Addendum Nov 27 2016. Markus Scheuer proposes the identity

A = (—1)" ;ﬂ {j;} @ (n+ 1)

To see that this is the same as what I presented we extract the coefficient

on [n9] to get
ey (P10 (F,)
Now we have
G0 == (LY
cor () {23

p=m

We get

‘We now introduce

k—q k—q 1 1 b
( , >: (k_q_p):m/hequpﬂaﬂ) v gz,

This certainly vanishes when p > k—g so we may extend p to infinity, getting
for the sum

kY 1 1 _ p
_1\m+k = k—q p
( 1) (q> 21 /|z|—€ Zkrfq+1 (1 + Z) Z {m}z dz.

p>m
Using the OGF of the Stirling numbers of the second kind this becomes

(—1ym+k (K i/ ) | S
q) 270 J)y)=e 2RTaH 1-1z 7

=1

Now put z/(1+2) = w to get z = w/(1 —w) and dz = 1/(1 — w)? dw to get

Iy MERTE. wEEE
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()

This is the claim and we are done.
This was math.stackexchange.com problem 2028293

50 Fibonacci, Tribonacci, Tetranacci (B)

Suppose we seek to evaluate the following sum (with a condition on the binomial
coefficient)

Now when n — 1 — gm < 0 we usually get a non-zero value for the binomial
coefficient but this is not wanted here. Therefore we have

n_ L(n—k)/m] 1 am
w58 ()55

If we have lost any values for g above |[(n — k)/m| these would render the
second binomial coefficient zero. If we have added in any values for g above k
the first binomial coefficient is zero there.

Now with the integral

n—1—qgm n—1—gqgm 1 / (1+z)"‘1_‘1md
= = — _— A
k-1 n—k—qm 210 )y jme  ZmTRTAmH
we get range control because the pole vanishes when ¢ > (n — k)/m and we
may extend ¢ to infinity. We thus obtain for the inner sum
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1 (142)"! AN
i “re —1)2 4
o [, e 2D (o) 2

q>0

1 1 n—1 m k
2mi Jipjme 2"TRT (I+2)m

This yields for the outer sum

X (1 e (1 — ufl)m>n+1> dz

1 w — 2 2 m Zm+1 -1
/z|_e (1= 2)(1+ 2)™ + 2mH)

which is

27 zntl

m n+1
1=zt (1o —— : dz
(1+2)m

Extracting the second component from the difference we get

1 4 om n+1
o 1 n+m—1 1— 1 m m+1 1 - d
2 |z|:e( +2) (@=a+="+="7) (1+2)m ’
The pole at zero has vanished. We now have non-zero poles at z = —1 and

from the inverted term. These depend on m and we can certainly choose € small
enough so that none of them are inside the contour. Therefore this term does
not contribute, leaving only

1 / (14 z)ntm=1 1 .
— 2.
270 )| = Zntl (1—=2)1+ z)m 4 zm+!

The generating function f(w) of these numbers is thus given by

- (n+m—1 q 1
f(w):Zw Z( n—gq >[Z](1—z)(1+z)m+zm+1'

n>0  q=0

This is

q 1 nfn+m-—1
Z[Z]<1—z)(1+z)m+zm+1Zw( n—gq )

q=0 n>q
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_quzq )(1+Z Zm+1z <n+m—1+q>

q>0 n>0

w q 1
B (1fw)’"§(1*w)q[z ](lfz>(1+z)m+zm+1'

What we have here is an annihilated coefficient extractor that simplifies to

o 1
) = Gy T w0 = W) T /(L= w))™ + (/{1 — )7
! 1
= 0w (= 20)/(1 )/~ w)™ w1 — )]
1—w

12w+ wmntt

Now observe that
1—2w+w™ =1-wl-—w—w?—- —w™ ! —w™)

so we finally have

—1
G 1

= 1— q = .

( ;w> l—w—w?—- —wm

We see that by the basic theory of linear recurrences what we have here is
a Fibonacci, Tribonacci, Tetranacci etc. recurrence. The question is what are
the initial values.

Observe however that [w]f(w) =1 and for 1 < ¢ < m we have

1—w 1

1
o FO B
1— 2w 4+ wmtl [w]1—2w+wm+1

1— 2w+ wmntl’

] ~ ')

But

1 = 1 =) 2w (1—w™/2)"

— m—+1 _ —apm
1-2w+w 1—2w(l —wm/2) =

With the condition on ¢ and n > 1 only the constant term from the term
(1 —w™/2)™ contributes because the degree would be more than m otherwise.
This produces just one matching term with coefficient 29.

This yields for f(w)

(w9 f(w) =27 — 2971 = 2071,
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Therefore we get for the intial terms starting at ¢ =0

1,1,2,4,8,16,...,2™ 1  with recurrence f, = Z Ja—q-

q=1

This recurrence also shows (by subtraction) that the sequence may be pro-
duced starting from m — 1 zero terms followed by one.
The OEIS has the Fibonacci numbers, OEIS A000045

1,2,3,5,8,13,21, 34,55, 89, . ..
and the Tribonacci numbers, OEIS A000073
1,2,4,7,13,24,44,81,149,274, . ..
and the Tetranacci numbers, OEIS A000078
1,2,4,8,15,29, 56,108, 208, 401, . ..
and more.

This was math.stackexcange.com problem 1626949.

51 Stirling numbers of two kinds, binomial co-
efficients

Suppose we seek to verify that

() -cor s (s )

k=m q=0

where presumably n > m. We need for the second binomial coeflicient that
m > q so this is

(-2 (e LG

Observe that the Stirling number of the second kind vanishes when k& > n
so we may extend the summation to infinity, getting

(- G LG

k>m q=0

Recall that
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o =t ()

Starting with the inner sum we obtain

WS e e - 1) ()

= (m— q)!

=Y S et - e (U TY),

Now when ¢ > m the coefficient extractor in w yields zero, hence we may
extend the sum in ¢ to infinity:

n! Z J(exp(z) — 1)F[w™ 1] (w +: - 1).

q>0

We thus obtain
n! 1 1 1 w+k—1 1
— —_ —1)F— —_ —2%w? dw d
i 2l o+l (exp(z) ) i o=y Wt < k ) qz;o q!Z w* aw dz

n! 1 kL 1 (fw+k-1
% I2|=c ontl (exp(z) —1) i /w| o ( k ) exp(zw) dw dz.

Preparing the outer sum we obtain

> (Z) (—1)*(exp(z) — 1) (w +: - 1)

k>m

= k — keX z)— kvkil
3 (o)D) - g

Note that for a formal power series Q(v) we have

S () -0t men) = o (@)™

k>m

We get for the derivative in v

() = (0

Substituting u = exp(z) — 1 yields

m! (w e 1) exp(—(w +m)z).
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Returning to the double integral we find

211

w ‘/|Z|_€ Zn?l'+1 (exp(z) _ 1)m(_1)m

! 1 +m—1
“omi o Wexp(zw)<w m ) exp(—(w +m)z) dw dz

wl=y

(=)™ x n! 1 |
- o 7 (P() = D) exp(—m2)

1 1 1
X=— — <w +m ) i
27T’L |w\:’y an+ m

— M / _ 1 (eXp(Z) _ l)m(—l)m exp(—mz) dz

211 x m! e

(=)™ x n! / 1
= 1-— — m(_1\m 4
2wt X m! - Zn+1( eXp( Z)) ( ) >
(=)™ x n! / 1
T omixm! —z) —1)" dz.
271 X m' \z|:e Z”+1 (eXp( Z) ) z

Finally put z = —v to get

(=)™ x n! / (=1)n+1
T a1 - — 1\ g
27 X m! o] pntl (exp(v) )" dv

L / L (exp(v) — 1) d
= —(explv) — V.
21t x m! lv|=e pntl b

This is

T T

(exp(v) — )™ _ {n}

and we have the claim.
This was math.stackexchange.com problem 1926107.

52 An identity involving two binomial coefficients
and a fractional term (B)

Suppose we seek to verify that

i q (pk+q) (pm—pk) _ (mp+q)
= pk+q k m—k m
Observe that
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pk+q\ pk+q(pk+q-—1
k -k E—1
so that

pk +q B pk+q—1 _q pk+q—1\ ¢ pk +q
k P10 ) TE k=1 ) T pk+q\ k)
This yields two pieces for the sum, call them Sy
i pk +q\ (pm — pk
k m—k
k=0
" (pk+q—1\ (pm — pk
PICZ_%( k—1 )<m—k>'

For S; introduce the integrals

pk+q) 1 (142t
k _% |z|=v Zk+1 N

()= [ e
"

T o | wm—k+1

and Sy

and

w|=e

The second one controls the range of the sum because the pole at zero
vanishes when k > m so we may extend k to infinity, getting for the sum

1 1 pmo] 1 q k(1 pk
1 %7 / A +2) 3 “;k(;z)k ds duw
21 lwj=e W 21 |z|= k>0 (1 + w)p
1 1 pmoq 1 g 1
27 Jjp|=e W 218 Jiy=y 2 1—w(l+2)P/2/(1+w)P
1 1 pmtp ] 1
= —/ () Ty B S dz dw.
27 Jjyj=e W™ 270 |2 1= 2(1+w)P —w(l + 2)P

We require convergence of the geometric series i.e. |w(1+2)P| < |z(14w)P|.
This says that /v < |(14+w)?/(142)P|. We also have |(1+w)?/(1+2)P| > (3/5)?
supposing that €,v < i. Hence we may take ¢ = 1/Q and v = 27/Q with
Q > 2Pt3 (@ large. Now z = w is the only pole inside the contour and it
is simple. The latter follows from the fact that when setting z = w in the
derivative
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(1+w)” —pw(+ 2P| _,
=1+ w)? —pw(l+wPt=1+wP (1+w-—pw).

we can choose ¢ small enough such that |14 w —wp| > 0 so the pole is order
one which yields

1 1 pm+p 1 1
— / %(1 + w)? - dw
210 Jjyme W™ 14+wpr1t1l+w-—pw
1 1 pm—+q+1 1
=_— (1+w) dw.
270 || =< wm Tl 1+w-—pw

Following exactly the same procedure we obtain for Sy

1 (1 + w)pPmta 1
—p— dw.
270 J )| =e wm 14+ w—pw

Adding these two pieces now yields

1 (14 w)P™*e (14w 1
2mi )| 14+w—pw

dw

m
wl=e w w

1 / (1 +w)pm+d pm+q
S LT = .
27 Jjyj=e W™ m

Concerning the p — 1 other poles we can factor

2(14w)P —w(1+2)P = :ZO <z> (zw?—wz?) = (zw)+zwqé <§) (wi™t—z471)

= (2= w) + 2w(w - 2) ; (g) § o,

q r=0

Hence we need to show that

p q—2
p o
1—sz ()E 2wl
q=2 q r=0

does not have any roots inside |z| = 7. Exchangeing summations and re-
writing,

p—2 p D ) 1
ZzT Z <q)wq_ = e

r=0 q=r—+2

Choosing @) large and using that e,y < 1 we can make the RHS as large as
we want in modulus yet the LHS is a finite sum bounded above by a constant
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in p and hence equality does not occur in this domain.
Remark Mon Jan 25 2016.
An alternate proof from the integral

! (1 + w)r™ wh 1 (14 =) A

2mi o —(1 PR dz d
2mi |w|=e wm+l Z(1+w)pk Imi /Z o] (1+2) z dw

k>0 ¥
Now put

- and introduce g(u)

u = ——— and introduce u) = z.
(1 + z)P g

Note that the origin in z gets mapped to the origin in u.
We then have

= (<1+1z>p ‘p<1+zz>p+1) 4= (g<uu> ‘1+p§<m> *

and

This yields

1 (1+w)pmz w”
(

271, |w|=¢ wmt1 k>0 1+ w)pk
1 1 1 1
X —— k(1+g(u))q,w du dw
270 Jjuj=y 9(w)u ul+g(u) —pg(u)
or
1 (14 w)Pm 14+ g(u)
— — 1+ guw)————"—— dw.
2mi |w|=e wm 1+ g(u) — pg(u) u=w/(1+w)?

Now observe that g(w/(1 4+ w)P) = w by definition so we get

1 (14 w)rm 14w
_— STYq ¢~ TW
27 wmtl (14w) 14+ w—pw

|w|=¢

1 1 pmtq+l 1
/ (1+w) dw.
|lw|=¢e

~ omi wmtl 1+w—pw

This is exactly the same as before and the rest of the proof continues un-
changed. Concerning g(u) it is analytic in a neighborhood of the origin and has
a Taylor series there whose coefficients can be calculated for n > 1 (the value
for n = 0 must be set to zero):
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11 1 11 1 pn
— g (u) du = —— 7( Jrf)
ul=> <

=) = ()

The radius of convergence of the series can be shown to equal (p —1)P~1/p?
which was done at the following link which is MSE 4983957. For the ratio
between consecutive terms we find

dz

n 2me un N 270 J) )=

np—+p  (pn)!  (+DI'x(pn+p—n—1)
n(p—1)+1n!x (pn —n)! (pn + p)! '

Now we have

) H 11 H 1
(n+p)t  pnta (pn)P S 1+a/p/n
1 P 1
= ——exp log ———
(pn)P q; L+q/p/n

With n large we may replace the logarithm with the first term of its Taylor
series to get

1 1 _ 1 | lp+l
e [ g [

q=1

We also have

p—1 =
<p”?;§_2>!_ L - [Tn—n+q)=@n—np ' [[0+a¢/(0—1)/n)

= (pn —n)P"Lexp li log(1+q/(p— 1)/%)]

q=1

< m = esp | L Sl < moar e [12].

Collecting everything,

(np=D+pn+1) ,, p1 1 [ 1}
P~ (p— 1P —— exp
nppp

nip—1)+1 2n
:n(pf1)+pn+1(pf1)p’1exp 1] -yt
np—1)+1 n pP 2n pP
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This will do it for the radius of convergence. Here we assumed that g(u)
is analytic in a neighborhood of the origin and we then computed the radius
of convergence of that branch. Note also that there is a potential pole in the
last integral involving g(u) when 1+ g(u) — pg(u) = 0 or g(u) = 1/(p — 1) but
this gives u = 1/(p —1)/(p/(p — 1)) = (p — 1)P~!/pP and we take 7 less than
the radius of convergence, so this pole is not inside the contour, making for a
zero contribution. Note furthermore that our choice of ) excludes the pole at
w=1/(p — 1) from inside the contour.

This was math.stackexchange.com problem 1620083l

53 Double chain of a total of three integrals
(B1B)

Suppose we seek to verify that
— g 2n — 2k -2\ (2k—q—1\ (2n—q—2
E\ n—k-1 k-1 ) \ n—-1 )
k=q
This is the same as
ig 2n—2k 2k—q—1\ (2n—q
k k-1 B n )
k=q
which is equivalent to

zn:q; (2n—2k>(2k q_1>+i(22_2k>(2kk_q1_1>

-(", Q>-q

—k<2k—q—1>_q—k 2k —q—1)!
k-1 k (k—=1)Yk—q)!

m™i

k

o (@2k—q-1)!  (2k—q-—1
k!(k—q—l)!( k >

It follows that what we have is in fact

(o () - -0)

or alternatively
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(o () -G - 0)

There are two pieces here, call them A and B. We use the integral repre-

sentation
2n — 2k 1 (14 z)2n—2k p
= — - dz
n—k 210 Jpme 2R

which is zero when k& > n (pole vanishes) so we may extend k to infinity. We
also use the integral

2k —q—1 1 / (14 w)?k-a~1 J
= — _— w
k—q 2mi Jjp=y  whTOTL

which is zero when k < ¢ so we may extend k back to zero. We obtain for
piece A

! w1 (e ()
2

2710 Jyp)=y (1 +w) 0T 2700 Jp, 2 27 = 1+2)2  wk

1 w1 1+ 2)2 1
= — —_— dz dw
270 Jjy=y (L +w) 27 J, 20 2m T 1= 2(1+w)?/w/(1 + 2)?

1 wi 1 (14 2)2n+2 1
C 2w Jpey A w) 2w f s, 2t w(l42)? — 2(1 4 w)

1 wi=t 1 (14 2)2n+2 1
- . dz dw.
27 Jjpj=y (L +w)H 27 Je 2" (2 —w)(z — 1/w)

The derivation for piece B is the same and yields

5 dz dw

1 wi 1 (1 + z)?nt2 1

— S dz dw.
270 Sy (L w) 1 27mi J .~ 20 z—w)(z—Ljw)

The difference of these two is

1 wi=t 1 (1 + z)2n+2 1—w
Py T oNarl o ] dz dw.
270 Jjw|=y (L +w)at 2mi [, 2 (z —w)(z — 1/w)

Using partial fractions by residues we get

1—w 1—w 1 1—w 1

(z—w)(z—1/w) w-1l/wz—w 1ljw—wz—-1/w
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_w(l-w) 1 w(l—w) 1 _ w 1 LY 1
w2—1 z—w 1—w? z—1/w  l1+wz—w 1+wz—1/w
1 1 w? 1

:1+w1—z/w_1+w1—wz'

At this point we can see that there will be no contribution from the second
term but this needs to be verified. We get for the residue in z

w? e (2n+2
_ n—p
1+wz< P )w

p=0

There is no pole at zero in the outer integral for a contribution of zero.
Continuing with the first term we get

1 = /2n+2\ 1
1—|—wp:0 D wn—Pp

which yields

" /oan 42\ 1 wi™t 1
E — dw
D 210 =y (1 +w)T+2 n=p
" 2n 42\ 1 1 1
= E — dw
p 21 | = (]_ + w)‘I+2 wn*Q*P*Fl

S

This is
=\ n—p-q
The last integral we will be using is
n—p+1 1 / (14 v)n—ptt i
= — - dv.
n—p—gq 270 Jjp)=y WTPTIH

Observe that this is zero when p > n so we may extend p to infinity, getting

1 (14 v)n+t 2n + 2 g VP
e ) e

271'7: ‘U|=’Y >0 p 1 +U)p

n+1 2n+-2
_ (_1)n—qi/ (Lo (o "
210 Jjp|=y VT 1+
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1 1 1
= (=1)"1— d
( 21 /u|=’y 1}"7q+1 (1 + ,U)n+1 v

(L1 1ye (n e + n> _ (an— q)

This is the claim. QED.
This was math.stackexchange.com problem 1708435,

54 A summation identity with four poles (Bs)

We seek to show that

S () ()=

m=0

The LHS is

2 Sy (P2

m=0

Jasama

The coefficient extractor enforces the upper limit of the sum and we may
continue with

! a+2)" Sy (2n+2m>(1 +2)m ™ dz

; n+1
20 Jy=e 2 o n+m

B 1/ (1+2) 1/ 1 1
- 2mi lzj=e  2"TE 270 Jip)my wn T (1 — w)n

m>0
1 (1+2)" 1 1 1 1
=5 S R dw d
2mi Jyz=e 2T 2mi /lw—'y W (1= w)™ T4 2(1+ 2)fw/(L—w)

1 1+2)" 1 11 1
= R T e 1 dw dz
27 Jjzj=e 2 T =y W™ (1 —w)" w(l —w) + 2(1 + 2)

1 (I+2)" 1 1 1 1
T Jp)me 2 70 Jj)=y W™ (1 = w)™ (w + 2)(w — (1 + 2))
The contribution from the pole at w = —z is
1 (I+2)"(-1)" 1 1
- dz
210 Jipj=e 2"TL 0 2m (14 2)" 1422
= / 1 1 2 1 2162
= — —  dz=(=-1)" N — (—1)7(=1)%"92"
21 2| =e 22n+1 1 + 22 z ( ) [Z ]1 T2z ( ) ( )
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=|(=1)"2%".

This is the claim. We will document a choice of v and € so that w = 0 and
w = —z are the only poles inside the contour (pole at w = 1 not included, nor
the pole at w =1+ z.)

Now we have for the pole at w =0

1 1 1 1 1
(w+2)w—(1+2) 1+2zw+z 14+2zw—(1+2)
11 U S 1
Szl 4 2214 w/z 14214221 —w/(1+2)

We get from the first piece

n—1
1 (I+2)" 1 g+n—1 e 1
_ N gy . p
211 |z|=e 2nt2 1422 ; ( n—1 ( ) on—1—q z
Z—Z arn 1)"*1*417./ a+2)" i
n—1 2mi |z|=€ z2ntl-aq ] + 2z
n—1 1 n
-2 (q I 1 )(_l)nlq > (n> (—1)%nampginmamr
=0 N T o \P
n—1 n
g+n—1\_,_ n o
:Z( n—1 )2 qz<>(—1) PP
q=0 p=0 p
n—1 1
= (_1)" qg+n gn—q
s n—1

The second piece yields

L Sy 1
271 \Z\:e Zn-i—l 1+2 — n—1 (1+Z)7z—1—q

Sy (1t L
n—1 211

q=0

2

—d
zntl 1422 i

/ (1429 1
|z|=
—E ()R e
(g (e

q=0 p=0
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M

— <q+n >2nq.
=0 n—1

We see that the two pieces from w = 0 cancel so that the contribution is
zero. This almost completes the proof, we only need to choose the contour so
that w = 1 and w = 1 + 2z are not included. For the initial geometric series to
converge we need |1 + z|le < |1 — w|y. With € and v in a neigborhood of zero
we have |1 + zle < (1 +€)e and (1 — )y < |1 — w|y. The series converges if
(14 €)e < (1 —v)7. Therefore a good choice is ¢ = 1/10 and v = 1/5. The
contour in v clearly includes w = 0 and w = —z and definitely does not include
w =1 and w =1+ z with leftmost value 9/10. This concludes the proof.

We are not required to simplify the sum that appears in w = 0, but we may
do so. We get

— (q+n— n—g R 1 1
—Z( ) i
1 1 1
mz—1(z—2)"

Residues sum to zero and the residue at infinity is zero by inspection. The
residue at z = 1 contributes —227. The residue at z = 2 requires

= (=1)"T12?"Res,_g—

1 1 1 1 1
2+ Gz-2)14+(:z-2) 22(A+(z—2)/2)" 1+ (z—2)°

and we get the contribution

(—1)nign Tf (q e 1> (~1)1279(~1)"" 10 = g,

n—1
q=0

This shows that 25, — 22" =0 or 5,, = 221,
This was math.stackexchange.com problem 3729998

55 A summation identity over odd indices with
a branch cut (Bs)

In trying to evaluate
i 2n 2m — 2n
—~ \2n—k m—k

we require
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2 (o) () e R ) (o)

For the first one we find

2 ()0 me e (7).

Here the coefficient extractor enforces the range and we get

[Zm}(l + Z)2mf2n Z (2]:’> Zk _ [Zm}(l + Z)2m72n(1 + Z)Zn

k>0

— M1 4 )P = (i’:‘)

This also follows from Chu-Vandermonde.
Continuing with the second piece we obtain

i (2:) (—1)% (2: : ]2€n> _(ym i (mZiL k) (—1)" <2m; 2n>

k=0 k=0

)" i <2m 2n) [ZQnM*m]‘(l — Z)lmkarl'

k=0

Now when k& > m we have [22"tF=™](1 — 2)k=m=1 = ( 5o the coefficient
extractor again enforces the range and we find

(—1)m/ 1 1 2m -2\ (1= 2
21 Jipjme 22T (1 - 2)m ] k 2k :
k>0

(71)m / 1 1 1 1 — 5 2m—2n d
= — z
271 |z|:e Z2n—m+1 (1 _ z)m-l—l z

B (fl)m/ 1 (1—2am
Jol=¢

2w Jiyme 2t (1= z)mtl

7 (fl)m/ 1 (1—2z)2m+D 1 5
=

27 e 2™l (1 — z)m+l (1 —2z)2n+2
Now put z(1 — 2)/(1 — 22)? = w so that

1

1
+ - —.
21+ 4w

1
z==
2
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We have that w = 2+ 322 + 823 + - -- s0 2z = 0 should be mapped to w =0
and in fact we work with

1 1 1
2 21+4w

We also see from the series expansion that the small circle around the origin
|z| = € is mapped to a contour that encircles w = 0 once and may in turn be
deformed to a small circle |w| = 4. We choose the branch cut on (—oo, —1/4]
so that we get analyticity in a neighborhood of the origin. We also have

Z =

v
1+ 4wy

At last making the substitution we obtain

dz =

( 1)7”/ 1 1 1
d
270 iy W (1T dw)2n+2 (1 + dw)3/2 w
(71)m 1 n— mm ni]‘/2
=i A dw = (-1 -

21 m

Collecting the two pieces we find

e ()

This was math.stackexchange.com problem 3782050.

56 A stirling number identity

We seek to evaluate (note that this is zero by inspection when k > n + m):
Scr)

; J k

=0

where k < n. It is claimed that it is zero for £ < n and n™ for k = n. Using
standard EGFs this becomes

Z n+J (1 g112> (m +j>![wm+j] (eXP(U];)! —1)F

Y'n!m![z Z: < )<log 1Z>j

1 1 (exp@)-1F

21 wmtitl k!

/\

[w|=>
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— _ n ' ' n
= (1) im0 wm k!

x Yy (=1)7 (m +]> <log ) — dw.
— 7 1—2) w

J

1 1 (exp(w) = 1)F
/|“’|—’Y

J .
Now (log 1 ) = 274 - so the coefficient extractor [z"] enforces the upper

limit of the sum:

(=1)*nIm![z"]—

1 1 (exp(w) —1)¥
/w|=’v

21 wmtl k!
: J
jfm+y 1 i
XZ( 1) < i lo T3 ) o
j=>0
1 11 1 (exp(w) —1)*
= (—1)"nIm!— —_
(=1)"nim 2mi /Z_6 2270 J =y WM k!

1 1 (exp(w) —1)F 1
XT m+1( p(k)' ) 11 1 m+1d’wd2’
T Sjuj=y W ! (1+ 5 log =)
1 1
= (—1)"nim!— —
( ) n.m 27T /|Z|—€ ontl
1 — 1)k 1
X (exp(w) ) - dw dz.
25 =~ k! (w + log ;=7 )™ !

Now observe that for the geometric series in j to converge we must have
|log 7| < |w|. Note that with log 2~ = z + - - the image of |z| = € makes
one turn around the origin, a circle of radius ¢ plus additional lower order
fluctuations. We therefore choose € to shrink this pseudo-circle to be entirely
contained in [w| = ~. With this choice the pole at — log 12 is inside the contour

in w. We thus require

. (m) k
v (35 () remon) =gt 3 (o

q=0

Evaluating the integral in w we find
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onl 1 1 [k R .
0 i TZ SV ) d

which is

k
E k q k—q, m
2 () G

Now when k < n we have () = 0 so the entire sum vanishes as claimed. We
get just one term when k = n namely

()

also as claimed. This concludes the argument.
This was math.stackexchange.com problem 3852633.

57 A Catalan-Central Binomial Coefficient Con-
volution

We seek to show that with

Q(z) =

we have

e = ("),

Now with the branch cut on [1/4,00) for v/1 — 4z we have analyticity of
Q(2) in a neighborhood of the origin (note that the exponentiated term does
not in fact have a pole at z = 0) and the Cauchy Coefficient Formula applies.

‘We obtain
1 1 1 1—v1—4z\"
k
406 =5 [ s ( )

:% 2z

We put /1 — 4z = w so that \/11_742 dz = —% dw and z = (1 — w?)/4. With

w=1-—2z—--- we get as the image of |z| = ¢ a contour that winds around
w = 1 counterclockwise once and may be deformed to a circle, so that we obtain

11 4k+1 1 4n

0O =505 sy, T Ty

dw
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(=1)k x gnHht / (w—1)" "
lw—1|=v (

211 w2 — 1)kl
(-1)F x g2k i L,
- w
211 lw—1|=v (w — 1)k+1 (’LU + 1)7l+k+1
(=DF x 2 / 1 1 .
T 2m w
2mi jw—1]=y (W= 1M (1 + (w—1)/2)nFr+l

Apply the Cauchy Residue Theorem to get

1 /n+2k n+ 2k
—1)F x 28 x (=1)F — =
ot o (005 = (1)
as claimed.

This was math.stackexchange.com problem 4025969.

58 Post Scriptum additions

58.1 A trigonometric sum

Suppose we seek to evaluate

m—1 m—1
S = Z sin?(kr/m) = Z sin?(27k/2/m).
k=1 k=0
Introducing (;, = exp(2mik/2/m) (root of unity) we get
m—1 1
S = Z (2i)24 (Ce — 1/C)>.
k=0
We also have
2m—1 1
Z (21)2‘1 (Ck? - 1/Ck)2q
k=m
m—1
B (2i1)2q (Cp exp(2mim/2/m) — 1/, exp(2mim/2/m))*
k=0
m—1 1
= (22)2(1 (_Ck + I/Ck)Qq
k=0
m—1 1
= Z (22)2(1 (Ck - 1/<k)2q =S.
k=0

We conclude that
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Introducing

(_1)q (2,2 _ 1)2(1 2mz2m—1
922q+1 ~2q 22m _ 1

we then have

2m—1

S = Z_ Res,—¢, f(2).
k=0

Observe that the term (22 —1)27 cancels the poles at &1 produced by 22" —1
which however is perfectly acceptable as they correspond to (, = 1 and (,,, = —1
where ¢, — 1/ is zero as well.

Residues sum to zero so we obtain

S+ Res,—0f(2) + Res,—oo f(2) = 0.

Now for the residue at zero we see that when 2¢ — 1 < 2m — 1 or ¢ < m the
residue is zero. Otherwise we get

(=1 aq—2mq, 2 2q  2m

92q+1 [Z 1 }(Z - 1) ngm 1

_ (=17, 2 2 2mz>"

T 92¢+1 [2*](=" = 1) qz2m 1
_ (71)(1 . 2q 2¢—p[.29—2p z2m
__szHP;J ) o

We must have p = g — Im where [ > 1. This yields

1 lg/m] 2%
lm
“2mgs D <q_lm><—1) :

=1

This is correct even when g < m.
Continuing with the residue at infinity we find

Resz:oof(z) = _Resz=02i2f(1/z)

_ R 1 (=1)7(1/2% —1)%92m/2?m~1
TS0 02 T T 120 1/22m ]
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_ R 1 (=1)7(1—2%)% 2mz
=0 g 224 1 — z2m

(=19 (22 -1)%2¢ 2m
22q+1 22q+1 1— Z2m :

= —Res,—g

This is the same as the first residue at zero except now [ starts at [ = 0 and
we obtain

1 Lla/m] 2%
lm
m22q+1 Z <q _ lm> (=)™,

-2

Joining the two pieces we finally have

La/m]
1 (2 1 2 i
m22q<q>+m22q1 2 (q—lm>(_1) '

=1

This was math.stackexchange.com problem 2051454.

58.2 A class of polynomials similar to Fibonacci and Lucas
Polynomials (B;)

Suppose we seek to collect information concerning

/)

S (),
ne

j==In/p) b

We will construct a generating function in n with p > 1 fixed. We introduce

2n 1 1
= — —(1 n dz.
(n _ pj) 271 /|Z|—€ n—pj+1 ( + Z) z

Now as we examine this integral we see immediately that it vanishes if j >
|n/p| (pole at zero disappears). Moreover when j < —|n/p| we have that
[2"7PI](1 + 2)?™ = 0 so this vanishes as well. Hence with this integral in place
we may let j range from —n to infinity and get

oo

1 1 2n J.pi
j=-n
= L (1+2)%" N (—1)77"2PI=P" gy
21 |z|=e Z"+1 =0

=5 o|ee 2@ (1+2) g dz.

We get zero for the residue at infinity, as can be seen from
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1 2n
Resz:ooiz(pﬂ)wrl (1+2)

1+ 2P
1 (14 2)% 2P
- _ (p+1)n+1
= —Res.—g = z ~n T+ or
1
= —Res,_ozP~ D+ (1 2n -0
es,—oz (14 2) T2

With residues adding to zero and introducing py = exp(wi/p + 2mwik/p) we
thus obtain

p—1 1 1 p—1

1 1
D ) g L+ o) —=5 = = ) ()" (L p)™"
k=0 Pz(cpﬂ) i PPy, P2 P

1P*1 1 n
S (+2+pk> |
P \Pk
At this point we can compute a generating function using the fact that

= —pz pz—1/p

and we obtain as a first attempt

15 1
G = - .
p(2) P kZ:O 1—2(1+ cos(n/p + 27k /p))z
Observe that this correctly represents the cancelation of the pole at z = —1

when p is odd, contributing zero when n > 1 and 1/p otherwise. Furthermore
note that with pr = exp((2k + 1)7i/p) we have

1

Pp—1—k

=exp(—(2(p — 1 = k) + 1)mi/p) = exp((2(k + 1 — p) — 1)mi/p)

=exp((2(k + 1) — V)mwi/p — 2mi) = exp((2k + 1)7i/p) = px

so the poles come in pairs with no pole at —1 when p is odd. Therefore the
set of poles generated by this sum corresponds to the first (p — 1)/2 poles when
p is odd and the first p/2 when p is even. Joining these two we get the degree
of the denominator once the sum is computed being |p/2].

This first formula enables us to compute a few of these, like for p = 8 we get
(no complex number algebra required, basic trigonometry only)

_ 1—62z 4 1022 — 423
T 1—82+42022 — 1623 4+ 224"

Gs(z)
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Looking up the coefficients we find for the denominator |(OEIS A034807| and
for the numerator |(OEIS A011973| which point us to three types of polynomi-
als, Fibonacci polynomials, Dickson polynomials and Lucas polynomials. With
these data we are able to state a conjecture for the closed form of the generating
function, which is

Gylz) = LPZ/QJ e (p - q) (—1)72 : Hpim <p - q) (—1)729.

Sp—a\ g = q

To verify this we must show that the poles are at

-1

-1
1 . . 2 (1
— 4+ 2+ pi with residue — - — 42+ pg
Pk D \ Pk

where the factor two appears because the poles have been paired.

We therefore require the generating functions of the polynomials that ap-
pear in G,(z). Call the numerator A,(z) and the denominator B,(z). We first
compute the auxiliary generating function

lp/2]

Q=Y > (7 )= e 3 (7 )

p>0 q=0 q>0 p>2q q

2q + p _ q,942q 1
=3 (e Y (p . q)t =3 ()2t e

920 p>0 >0
1 1 _ 1
Sl —t1422/(1—t) 1—t+ 2

We then have A(t, z) = tQ1(t, z). With p/(p—¢q) = 1+ q/(p — q) we get two
pieces for B(t, z), the first is Q1(¢, z) and the second is

Qslt,2) = th L%Q:J (p —-1- Q) (—1)92% = Z(—l)qzq Z (p _1Iq)tp

p>0  g=1 ¢-1 q>1 p>2q q
—1 1
=Sy (P e = Sy g
>1 psoN 471 =1 (1—1)
22/(1—t) 2t?

T U1t/ —t) 1—t+at?
and hence we have B(t,2) = Q1(t, z) + Q2(t, z). This yields the closed form
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r]—t
Gp(z) _ [ ]1—t+zt

12
)

Now introducing (we meet a shifted generating function of the Catalan num-
bers)

1++v1—4z 1—+1—-4z
— and B(z):f

we have a relationship that is analogous to that between Fibonacci and Lucas
polynomials, namely,

a(z) =

(a(2)P = B(2)) and  Bp(z) = a(2)" + B(2)".

We now verify that B,(z) = 0 for z a value from the claimed poles. Using
1/(1/pr +2+ pr) = pr/(1 + pr)? (pr = —1 is not included here) we find

a(z):1+\/1_4Pk/(1+0k)2:1+(1—Pk)/(1+;0k): 1
2 2 1+ pi
and similarly
Pk
z) =
8l = T2
Raising to the power p we find
17 P 1-1
a2+ B = ok = 0

(A +p)p (4pr)r

We have located |p/2| distinct zeros here which means given the degree of
By (z) the poles are all simple. This means we may evaluate the residue by
setting z = pi /(1 + pr)? in (differentiate the denominator)

(R -1z p—1_g
A DIl G (G G S
p\ = p—a\ ¢ gt q
which is
. L%%J <p—1—q) - L(pzl%/ﬂ p—1—g
z (—1)929 ( )(_szzq
p\im \ a1 = q

The numerator is A,(z) and we get
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1+pe 2 2

L—pe (M +pe)p (1= pr)(L+pe)Pt
The denominator is [t?]Q2(t, z) which is

—zt? 1 — zt? 1
[t — =g
1—1t+ 2t2 1—1¢+ 2t2 1—1t+ 2t2
1— zt? t

_ +1 _ _

= [tp]m =[P ]m = By(z) — Ap+1(2) = —Ap41(2).
We get
1+ pj, 1P — pb ™ (1+pp)? 1

Ll L)t T A=)+ p)Ptt T (L= pr)(1+ pr)

Joining numerator and denominator and multiplying by z/p finally produces

171 o/ —p)/A e 21 .
P (,, *2”’“) 10— o)/ A4 pr b <pk *“pk)

as claimed. We have proved that the formula from the Egorychev method
matches the conjectured form in terms of a certain class of polynomials that are
related to Fibonacci and Lucas polynomials as well as Catalan numbers.

This was math.stackexchange.com problem 2237745,

58.3 Partial row sums of Pascal’s triangle (B)
Here we seek to prove that
2k + 1\ (m—(2k+1)\ = (m+1
2 ()T -2
k=0 =0
This is

= Z": (le:— 1) SF(1 4 2= (@D

k=0

n
2k+1
=[z"](1+2)"? Z ( ]:_ )zk(l + 2)72k,
k=0
Here [2"] enforces the range of the sum and we find

RS /|z|_€ (142" 3 (Qk;‘ 1)Zk(1 427 g

271 zntl
k>0
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(14 2)7% dw dz

L/ (1+z)m1t 1 T+ ws— (1+w)?
|z|=¢€

= omi S N ., w wk
|w|=v k>0

1 1 m—1

_ 7/ a+am 1 1+w 1 e o
270 Jisjme 2" 270 Sy w1 2(14+w)?/w/(1 + 2)?
1 1 mt+l q 1
_ 7/ A+am 1 +w i e
2mi |z|=€ Zntl 2mi |w|=~ U)(l + 2)2 — 2(1 + w)2

1 1 m+1
_ b / a+2m 1 / _ MHw s
21 Jisj=e 2" 270 J =y (1 —w2)(w — 2)

There is no pole at w = 0 here. Note however that for the geometric series
to converge we must have |z(1 + w)?| < |w(1 + 2)?|. We can achieve this by
taking v = 2¢ so that

242
2 2 — g4 2 =
|2(1+w)*| < (1 42€)° = 4€” +4€ + ¢ _ 1py = 1555
and
361
[w(1+2)°| > 26(1 = €)* = 26 — 4 +2¢[ _, = 1555

With these values the pole at w = z is inside the contour and we get as the
residue

1+2 1

1—22 1-—2

This yields on substitution into the outer integral

n A+a)m™ 1 )™
/Me dz = [2"]

2mi zntl 1—2 1—2

—nz’C zmﬂzn_kizn m 1
=R =3 (M)

This is the claim.

Remark. For the pole at w = 1/z to be inside the contour we would need
1/e < 2e or 1 < 2¢% which does not hold here so this pole does not contribute.

This was math.stackexchange.com problem 3640984.

58.4 The Tree function and Eulerian numbers of the sec-
ond order

We seek to show that the following identity holds:

Y e ]
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We will be using data from Wikipedia on Lambert W| and work with the
combinatorial branch which is Wy(2).
Recall that

We obtain

w11 11
e T 27ri/|z|_€ e (@) da

Putting W(z) = v we find

1 11 1 1 ey do — D
2i e o VT o —exp(—mv)dy = ——————.
211 lo]=y V" exp(mv) v 211 o]=r pmtl p -
so that
1 m
—_— = _1 m mi.
1+ W(2) ngo( )

We get for the original RHS

nile) Yo " exp(m(z — 1)/2) 51
m>0 :
= i) 3 2 ORCI) s 2)
m>0

First part. Introduce the tree function T(z) from combinatorics where
T(z) = zexpT(z) and T'(z) = —Wp(—=z). Note that we have by Cayley’s theorem

m

that T'(z) =, ., m™ 125 We claim that with n > 1

m!*
m 1 n

Qulz) = 32 m™" 0 = ey kz (WECR

m>0 =1

This means the RHS is 5~ Q,, (exp(—1/2)/2). To verify this last identity note
that Qn+1(2) = zd%Qn(z) so we may prove it by induction.
We get for the RHS of the series identity on differentiating and multiplying

by z
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torme L e+ i S (e e

Extracting the term 27"(z)/(1 — T(2))*"*2 in front leaves us with

(2n+1) g:l Tk +a-1e@) é () rres
SCATO N EEED W IERUEE W

k=1 k=1

:é<<z>>(2n+2—(k+1 +z<<k+l>>k+1mz>k.

We may include k& = 0 in the first sum and k& = n in the second. Now the
Eulerian number recurrence (second order) according to |OEIS A349556 is

()= e G oo

‘We have shown that

- Tt +i<< Hrer

Now we just have to verify that

2T (z 1 /
T(=)(1~ C;(22))2"+2 = AT O AE0-TE) =T@).

The functional equation tells us that 7"(z) = expT(z) + zexpT(2)T"(2)
so that 7"(2)(1 — T(z)) = expT(z) = T(z)/z which is just what we need. Tt
remains to verify the base case so the induction starts properly. We seek

2) = mm-i-lﬁ: T(Z)
@) mzzo m!  (1—=T(z))3

We verify this by coefficient extraction. We get

m! 1 T(z)
"1 () = 5 /|Z_e T
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With T(z) = z + --- this integral will produce the correct value zero for
m = 0. For m > 1, we put T(z) = w so that z = wexp(—w) and dz =
exp(—w)(1 — w) dw and obtain

m! exp((m+ Dw) w
/IWI—’Y

2mi wmtl (1—w)

! 1
m / exp(muw) dw.
lw|=v

= 2 w™ (1 —w)?
This is
m—1 m—1 m—1
mat! m
! 2 lm— ) = ml —m)!
ml Y m—g)=mly = (g — 1)
q=0 q=0 qg=1
m—1 m—2
md+ mdt1 mm
=m! —m! — _ am+l
D S e
q=0 q=0
as desired.

Sequel. Note that in the identity for @, (z) we have by the definition of the
Eulerian numbers that <<g>> is zero when n > 1. Therefore we may extend k to
include zero (with n > 1 for the moment) which yields

= T = g 2 () 7

m>0

Now observe that this will produce Qo(z) = 3", <, m™Z, = due to

=TT
<<8>> = 1 which is in fact correct because unlike @, (z) with n > 1, Qo(z) has
a constant term, which is one (this is because mmt" =0form=0andn>1
and m™*" =1 for m = 0 and n = 0). Therefore

T(z) 1

Qo(2) =1+ 2T(:) =14 T~ = =71

as obtained from the boxed version of the main identity, which is seen to hold
for all n > 0.

Conclusion. We are now ready to answer the original question. We have
shown that the RHS is 5 Q,(exp(—1/2)/2). By our formula for Q,(z) in terms

of the tree function we obtain with T'(exp(—1/2)/2) = 3 at last the closed form
1 1 — yny\ 1 — yny\ 1
S gl << >> =
on (1 — 1/2)2n+1 kZ:O << k>> ok kz:% ke /] 2F

which is the LHS and hence the claim.
This was math.stackexchange.com problem 4040942,
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58.5 A Stirling set number generating function and Eule-
rian numbers of the second order

Supposing that {Z} is the Stirling number of the second kind giving the count
of partitions of a set of n distinguishable objects into k£ non-empty subsets we

seek to show that
n—+r
n

is a polynomial of degree 2r in n. We start with the following claim for r > 0:

%= {" 1"} - (1_21)2T+12<<;>>zk.

n>0

We will prove this by induction. Note that depending on whether ball n+4r+1
joins an existing set or becomes a singleton we have

SR STt TS et

Multiply by 2™ and sum over n > 0 to get

R AR R L EEFAC RS B KA &

n—1 n
n>1 n>0
= 2Q1.(2) + 2Qr+1(2).
This means we have
Qri1(2) = —— QL)
TR T e

Now to prove the claim it certainly holds for » = 0 by inspection. It also
holds for r = 1 since

o S Ny

n>1 n>1 n>0

For the induction step supposing it holds for r > 1 we differentiate and
multiply by z/(1 — 2) to get for Q,41(z)

T D () B L () S

Factoring out 1/(1 — 2)?"*3 for the moment we are left with
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T T

(2r +1) <<7“>> A (1 2) <</:>> 2k

k=0 k=1

e

r4+1

- (WL B e - (e

k=1

R e A IS

k

Now with » > 1 we may extend the first and the third sum to include k = 0
and the second to include £k = r + 1 to obtain

§[<2r+2_k)<<kjl>>+k<<;>>}

k=0

The Eulerian number recurrence (second order) according to OEIS A349556

Gy =" hren-n D)

so this is with the factor in front

1 E )+ b
(1— 228 2=\ &

and the induction goes through.
Now to see that {":r} is a polynomial in n of degree 2r we extract the
coefficient on [2"] of Q,(z) to get

is

T

XT:<<;>> <27’ +27;k‘) - (21); kZ<<,Z>> (n+2r — k)%

k=0 =0

The sum terms are products of 2r linear terms in n times a coefficient that
does not depend on n (Eulerian number) and neither does the range of the sum
(finite, 7 + 1 terms) and we have the claim. The coefficient on n?" is

1 1 1 (2r) 1
(2r)'kz_0<<k>> oV =i T 70

This was math.stackexchange.com problem 4121168.

58.5.1 A Stirling cycle number generating function and Eulerian
numbers of the second order (II)

We start with the following claim
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oSl - ()

We will prove this by induction. Introduce P.(z) = z"Q.(z). Note that
depending on whether ball n 4 r + 2 joins an existing cycle or turns into a fixed
point we have

n+2 n+1

n+r—+2
n+2

} :(n+r+1)[n+r+1] [n—kr—&-l}

Multiply by 2™*" and sum over n > 0 to get

)OI A B DTS S Eaty 1!

= n -+ 2 et n -+ 2
The first term is

%(Pr(z) —rlz2")

and the second one

.y {n +24(r— 1)] -

S0 n -+ 2

= (=(r=1)12" + 2P _1(2)) = —r12"  + Po_1(2) + 2P_, (2).

This gives the recurrence

Po(2) — 712" = —rl2" 4+ 2P, _1(2) + 2°P._,(2) + 2P.(2).
We obtain

oz
T 1—2z

We now prove by induction that

o b £ L)

It certainly holds for » = 0 where the infinite series gives 1/(1 — z) and it
also holds at » = 1 as well where the sum gives

P G o e

n>1 n>0

(Pro1(2) + 2PL_4(2)) = —— (2P 1 (2))'-

Pr(2) 1—2z

and the Eulerian numbers produce
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Now supposing it holds with » > 1 we must show that it holds for r + 1.
Doing the differentiation and multiplication we obtain

z X +1 r sy,
1—2(1—2)%r+2 pors r—k

+1iz(1_i)2r+1 §<<rik>> (r+1+k)z"tF,

Factoring out 1/(1 — 2)?"*3 for the moment this becomes

z(2r+1)i<<rik>> zr+1+k+(z—z2)i<<rik>> (r+1+k)z"t".

k=0 k=0

or

(2T+1)k§:1 <<rik>>zr+2+k+§<<rik>> (r 4+ 14 k)2 H1t+
_k—il <<r i k;>> (r+1 _Hg)zugﬂ'

Here we have included three zero terms, one in every sum. Continuing,

S L Sl L
fril <<T+I_ k>> (r+ k)2 T,

k=0
‘We obtain

]:i_l(wrl—k) <<7n+;—k>>+(r+1+k) <<Tik>>} ik

The Eulerian number recurrence (second order) according to OEIS A349556
is
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=" ren-n L)

Putting n:=r+ 1 and k :=r + 1 — k and restoring the factor in front now

yields
r+1
1 r+1 r+14k
i (L)

thus concluding the induction.

Addendum. The reader might well wonder how the conjecture from the
beginning was obtained i.e. how we find the closed form for small r for lookup
in the OEIS, which then points us to Eulerian numbers, enabling the whole
computation.

Recall e.g. from Concrete Mathematics chapter 6.2. [GKP89] that

We get for our series

Qu(e) = [w] 3 an ) ( w(w)>n+7-+1

25 \T-ew
) () () ()
=) (5= e;;(—w))m (T (LT
— rlfuw] w

(1 — exp(—w) — zw)r+1’

Note that the fraction is a formal power series in w with no pole at zero.
Continuing,

1
|
[ (1 — exp(—w) — zw)r+1’
A CAS like Maple for example can recognize the pole of order r + 1 at zero
which has now appeared and quickly compute the residue by differentiation.
This will produce e.g.

24+ 5223 432822 + 444 2 + 120
Q5(2’) = 11
(1-2)

which is enough to spot the pattern.
This was math.stackexchange.com problem 4480877.
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58.6 Another case of factorization

In seeking to evaluate

S ()

£=0
We get for the first piece of the sum

IS Gty

£=0

[k/2] 2
-1 L (14 o)e2itk 3 92+ 6\ =
270 J)yjze 2P — 20 ) (14 2)*

Now here the residue vanishes when 2¢ > k so it enforces the upper limit of
the sum and we obtain

2mi zk+1

1/ (14 z)9/2-i+k
|z|=¢

2mi w = (1+2)¢ w2

q/2 20 0
xi/ (14 w) Z z (1+w) dw ds
[w|=y

1 / (1 + z)9/2=i+k
|z|=¢

- 2mi Flan
1 1 a/2 1
X — (1 +w) 5 5 dw dz
270 || =~ w 1-22(14w)/(1+ 2)/w
1 (1 + Z)q/27j+k+1
a 271’2 /ZI_E Zk+1
w
X — 14 w)?/? dw dz.
271 ‘w|=,y( ) (w—2)(w(l+ 2z) + 2)

The pole at w = 0 has been canceled. Now observe that for the geometric
series to converge we must have

122(1 + w)/w?/(1 + 2)| < 1.

We will choose a contour that includes both simple poles. The first pole is at
—z/(1+z). We thus require |z/(14 2)| <. With |z/(14+2)| <e/(1 —¢) we get
e/(1 —€) < 7 and we furthermore need |22/(1 + z)| < |w?/(1 + w)|. The latter
holds if €2/(1 —€) < 4?/(1+ 7). Both hold if ey < 42/(1+ ) or ¢ < /(14 7).
So ¢ = 72/(1 + 7) will work. Observe that this contour also includes the pole
at w = z.

First pole. Now to extract the residue at w = —z/(1 + z) we write
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1 / (1 + z)9/2=i+k
|z|=¢e

2mi 2R+l
X 1 (1 +w)?/? v dw dz
270 )=y (w—2)(w+2z/(1+2))
and obtain

L/ () A PR /() B

271 |z|:€ Zk+1 —Z/(1+Z) —Z
1 (1427 1 "
I N e

Repeating for the second sum we get

1 14 z)k=i-1
1 / (1+2) L
270 Jz)=e Zkt+1 242

Adding the two we find

1 1+ 11+ (1+2) 1 & — k—j—1
27 J| ;)= Zk+1 z4+2 7 k '

Second pole. For the residue at w = z we obtain for the first sum

1 / (1 4 z)9/2=g+k+1
|z|=¢

z
14272 ———  _dz
( ) (z(142) + 2)

1 / (1+ Z>q—j+k+1 1 4
210 J)2)=e Zk+1 212 %

2mi zZhtl

Repeating for the second sum we get

1 1 q—Jj+k 1
/ (L+2) dz.
|z|=¢

27i zk+1 z+2

Adding the two we find

1 (L4217 1+ (1+2) 1 <q —j+ k:)
- dz = .
270 J|5)=e Zkt+1 242 k

Conclusion. Collecting everything we obtain

q—j+k k—j—1
()
The second term is (k — j — 1)%/k!. Now if 0 < j < k this is indeed zero

because the falling factorial hits the zero value. If j > k all k terms are negative
and we get (—j)*/k!.
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We have at last

q—j+k k(J
—1 .
(") e ()
as claimed.

Remark. The potential square roots that appeared in the above all use
the principal branch of the logarithm with branch cut (—oo, —1] which means
everything is analytic in a neighborhood of zero as required.

This was math.stackexchange.com problem 4155443\

58.7 An additional case of factorization

Supposing we seek to simplify

7=0 ] q k ]
Where O < q < ]f ThiS iS

k . .
2 2j 27
[2F](1 + 2)%* Z (j ! q) 7(1 )

Jj=0

Here the coefficient extractor enforces the upper limit of the sum and we
find

2 27 2
[2F](1 + 2)%* Z (j . q) 7(1 el

J=0

At this point we see that we will require residues and complex integration
and continue with

1 (1+2)* 1 1 (1+w) 2
o T k1 9o . - dw d
2me /Z_E Skl on /wl—'y wiat! JZ:O wi 0+ 2% w dz

1 (14 2)% 1 1 1
- - dw dz
210 Jisme 2R 270 J oy wTH L = 2(1 4 w)2 /w/ (1 + 2)?
1 1 2k+2 1 1
Ry i
210 Jiyme  2RTL 2w f ey wl w(1 4 2)2 = 2(1 4 w)?

1 / (14 2)%+2 1 / 1 1 dw d
— A — dwdz.
210 Jiy=e  2RTL O 2mi =y wi (w0 — 2)(1 - w2)

For the geometric series to converge we must have |z(1+w)?/w/(1+2)?| < 1
or |z/(142)?| < |w/(1+w)?|. This requires £/(1—¢)? < v/(1+7)?. We will also
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require w = z to be inside the contour for w so we need € < . With ¢ <« 1 and
v < 1 we may take ¢ = «?2 for the latter inquality. We then get for the inquality
from the geometric series v2/(1 —v3)2 < ~v/(1+7v)? or v < (1 —~4?)?/(1 +7)?
or v < (1 —+)2. This holds for v < 1 — 1/¢ with ¢ the golden mean.

Now we have the pole at zero and the one at w = z inside the contour in
w. This means we can evaluate the integral by using the fact that residues sum
to zero, taking minus the residue at w = 1/z and minus the residue at infinity,
which is zero by inspection, however. (The pole at w = 1/z has modulus 1/e
and is outside the contour.) Computing minus the residue at w = 1/z we write

1 (1+2)%6+2 1 1 1
S S — dw dz.
210 Jipme  2RT2 2mi =y wi (0 — 2)(w — 1/2)

With the sign change we obtain

dz

L/ (I4z)22 1 1 (14 2)%F+2 1
211 |z|=¢

z dz = —
Zk+2 1/z—=z 210 Jiyme 2RO 122

1 / (14 2)%+1 1 J
= — Z.
2mi |z|=¢ zk—at+l 1—2

This is zero when ¢ > k and otherwise
]§<Qk+1)_z’“:(2k+1>_ Z’“: (2k+1)
=0~/ =0~ j=k—gt1 N7

or alternatively

. z’“: <2k;—1>

Jj=k—q+1

which is a closed form term plus a sum of ¢ terms. E.g. with ¢ = 0 we
obtain 4* and with ¢ =1, 4% — (gklj'l). For ¢ = 2 we have 4F — (Qk]fjll) - (21:;—1)
and so on.

This was math.stackexchange.com problem 4174584\
58.8 Contours and a binomial square root
Suppose we seek to prove that

S - G,

k=0
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Introduce the integral representation

m+k 1 1
= — ——(1+2)""" dz.
( 2n ) 271 /|Z|=E 22”+1( +2) i

This gives the following integral

! — (2n+1 1
2mi ——(1 m+k g
2710 J) )= kz—o <2k + 1) S2nt1 (1+2) 2

1 (1+2)" < (2n+1 k
= — — 1 d
271 /Z—E z2n+1 I;) <2k’ + 1)( + Z) z

1 A+ 12 (2n+1 2k+1
_/HZ%HZ itz ' de

271 = 2k +1
The sum is

2nz+:1 <2n + 1) \/mk%(l (=Y

k
k=0

= %((1 +VI+ 22— (1= VI +2)> )

and we get for the integral

1 (1+2)m=1/2 (14 VIF 22 — (1= VIt 22+ de.

21 |z|=¢ 222n+1

By way of ensuring analyticity we observe that we must have ¢ < 1 owing
to the branch cut (—oo, —1] of the square root. Now put 1 + z = w? so that
dz = 2w dw and the integral becomes

1 w2m—1 _— -
21 Sy 1p, (@2 et (L@ = (1= w)Ph) w du.
w—1=y

This is

1 , 1 1
— m dw.
i |w—1\:'yw ((w )2 + (w + 1)2n+1) w

Treat the two terms in the parentheses in turn. The first contributes

(1 = = 1) 3 (1= (21).

q=0
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The second term is analytic on and inside the circle that w traces round
the value 1 with no poles (pole is at w = —1) and hence does not contribute
anything. This concludes the argument.

Remark. We must document the choice of v so that |w — 1] =~ is entirely
contained in the image of |z| = €, which since w = 1 + %z + .-+ makes one
turn around w = 1 and may then be continuously deformed to the circle |w —
1] = 4. We need a bound on where this image comes closest to one. We have
w=1+3z+ ZqZQ(—l)q+14%Tl_l(2qq)zq. The modulus of the series term is
bounded by >_ -, 4%?1_1(2qq)\z|q = 1 — 3]z| = /1 — |z]. Therefore choosing
v = %6 -1+ %E—F vV1—e=+/1—¢ec+¢e—1 will fit the bill. For example with
e =1/2 we get v = (v/2 —1)/2. Tt is a matter of arithmetic to verify that with
the formula we have v < 1.

This was math.stackexchange.com problem 601940,

58.9 Careful examination of a contour

We seek to show that

- 2¢+1
ST ey (P ) =
o \n—q qg+1

The LHS is

2mi o 2 2mi at

(_1)n 1 1 n ¢ q(1+w)2q+1 v de
' /|z|= /|w=qu—;)(_1) AT

There is no contribution when ¢ > n and we may extend ¢ to infinity:

(f1)n/ 11 14w 1

. — dw dz
276 Jjpjme 2" 270 Jjp=y w2 14 2(1 4+ 2)(1 4+ w)? /w

B (71)”/ 11 14w 1 e
Comi S 22w ey w (T4 2+ w2)(z+ (14 2)w) '

Now we determine € and ~ so that the geometric series converges and the
pole at w = —z/(1+2) is inside |w| =  while the pole at w = —(1+2)/z is not.
For the series we require |z(1 + 2)(1 + w)?/w| < 1. With |2(1 + 2)| < e(1 +¢)
and |w/(1+w)?| > ~/(1+7)? we need e(1 +¢) < /(1 + )2 Observe that on
[0, 1] we have v/(1+ )% > /4 since 4 > (1 +7)?%. For v/4 > (1 +¢) we choose
~v = 8¢ with ¢ < 1 and we have our pair. Now for the pole at —z/(1 + 2) we
need for the maximum norm €/(1 —¢) < v = 8¢ which holds with € < 7/8 which
we will enforce. The second pole under consideration is —(1+2)/z = —-1—-1/z.
The closest this comes to the origin is —1 + & = —1 4+ /8. To see that this is
outside |w| = v we need —1 4 /8 < —v or v < 8/9. This means we instantiate
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€ to e < 1/9, which completes the discussion of the contour.

Now residues sum to zero and the residue at infinity in w is zero by inspection
which means that the inner integral is minus the residue at w = —(1 + 2)/z, as
it is equal to the sum of the residues at zero and at w = —z/(1 + z). We write

11 14+w 1
_227ri/|w:,y w (1 t0Gr0T0)

We get from this being a simple pole the contribution (here $(1+w)/w =
1/(1+z) )

11 1 R
214+zz2—(14+2)2/z 142142z

which combined with the integral in z gives

This is indeed

as claimed.

This was math.stackexchange.com problem 4196412l

58.10 Stirling numbers, Bernoulli numbers and Catalan
numbers

Suppose we seek to prove that

S e ()

k=0

a unique identity that connects three types of significant combinatorial num-
bers. We get for the LHS

e [P S B e

k=0 k=0

The coefficient extractor [2"] combined with the factor z* enforces the upper
limit of the sum so we may let k£ range to infinity:

exp(w) — 1)F (~1)2h

[Zn](l+Z)2n2(n+k)![wn+k}( L E+1

k>0

Here we see that we will require complex methods and switch to
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(n—l)!/ 1 L/ (1+2)*™
210 Jj)=y w270 J e 2

X Z <n + k) (—l)kzlCM dz dw.

wk

Computing the sum we find

1 w n—14+k exp(w) — 1)*
R R

n—1 w
k>1

1 w 1 w 1
zexp(w) —1  zexp(w) —1 (1 + z(exp(w) — 1) /w)™"

The first component yields by inspection

2 1 1 2 2 1
m—1x( " VxB,—=8B,~( " )=B,(" .
n—+1 n! n\n+1 n/n+1

We have the claim if we can show the second component yields zero. We get

B (n—1)! 1
27 /Iw—v (exp(w) — 1) +1
1 (14 2)%" 1 + dw
“omi /|z|—5 22 (2 + w/(exp(w) — 1))" 4z

At this time we must instantiate our contours. We need for the binomial
series to converge that |z(exp(w)—1)/w| < 1 or |z| < |w/(exp(w) —1)|. Observe
that this means the pole at z = —w/(exp(w) — 1) is outside the circle |z| = e.
To get a lower bound on the norm of the image of |w| = v we first take v < 1
and observe that by expanding the series and bounding |, <, w™ !/m!| by
> s Y™t /m! we have |(exp(w) — 1)/w| < (exp(v) — 1)/~. Since the term in
w is non-zero on and inside |w| = 7 (there is no pole at zero and the value there
is one and the nearest zero is at +27i) we may invert to get |w/(exp(w) —1)| >
7/(exp(7) — 1). Now we also have v/(exp(y) — 1) > 1 — 17 as can be seen by
comparing >, < z=t7™ t0 3,1 =;7™, certainly both convergent for v < 1.
Hence e =1— %7 is an admissible choice and we have determined the contour.
The pair v = 1/3 and € = 5/6 will work.

We thus must verify that the pole at z = —w/(exp(w) — 1) makes a zero con-
tribution (residues sum to zero and the residue at infinity is zero by inspection).
This requires (Leibniz rule)

(n—1)
1 1 on
(n— 1)1 (Zn+2<1+z> >
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1 Gn-1 Jntl4g! 1
(71—1)';( q >(1) (n+ 1) znt2ta

(2n)!
“Cn—(th—1—9)

n—1

n+1+q 1 2n
=) (-1)" 14 z)ntita,
q:o( )< q >Z"+2+q<n+1+Q)( +2)

Observe that

<n+;+q><n+21n+q> - q!x(n—i—l)(!QZ)én—l—q)! B (n231)<n;1>

so the sum becomes

o > P

q=0
_( 2n \(1+ z)ntt 1 14+2\"!
T \n+1 znt2 z
_ 2n (71)n71 (1 + Z)nJrl
C\n+1 Z2ntl

Making the substitution we are left with the integral

<n2<7: 1) (=" (ng;il)! /“)I—’y (exp(w)lf 1)n+1

(1 — w/(exp(w) — L))"+

(1 + Z)2n—(n—1—q)

*Cwf(exp(w) — D)zt M
The inner term is
~(exp(w) = 1) (1 = w/(exp(w) — D)
1 1

n+1

=~ oxp(w) —1 (exp(w) — 1 — w)

We get for the integral

< 2n )(_1)"+1 (n— '1)! /lwl_ 1 w (exp() — 1 — )™ du.

n+1 2mi L w22 exp(w) — 1

Now this is
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2n+1] w ntl _

[w oxp(w) = 1(exp(w) —1—-w)

because (exp(w) — 1 — w)"* = Zzw?*2 4 ... which concludes the argu-
ment. (The poles at +27wik, k > 1 are not inside the contour.)

This problem has not yet appeared at math.stackexchange.com. The source
is exercise 6.74 from Concrete Mathematics by Graham, Knuth and Patashnik,
[GKP89] credited to B.F.Logan.

58.11 Computing an EGF from an OGF

We seek to compute the EGF of a sequence from its OGF. There may be some
cases where complex variables, the residue theorem and the residue at infinity
are helpful. Suppose your OGF is f(z) and the desired EGF is g(w). Then we
have

w" 1 1
g(w) = Z ol o ﬁf(z) dz.

n>0 |z|=

This will simplify together with some conditions on convergence to give

1 f(z) L w”
9<w):%/zz‘7zza%dz

| € n>0

1 f(z)

= — — dz.
Example I. Suppose
1
f(Z) - 1 o 27
which yields

1 11
— - dz.
o ) Tz Pw/E)

Now for z = Rexp(if) with R going to infinity we have
1
2R x 2 % exp(Jw|/R) — 0
as R — oo so this integral is

L exp(w/)

—Res,—1
1—2zz2

and we get
9(w) = exp(w)

which is the correct answer.
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Example II. This time suppose that

() = o
so that we should get
(w)—an—n—w w! w exp(w)
o= n! (n—1)! P
n>1 n>1
The integral formula yields
1 z 1

5 e A= exp(w/z) dz

1 1
=5 /Z_E mexp(w/z) dz

The residue at infinity is zero as before and we have

" z—=1)"
exp(w/z) = Y (expluyz) | EL
"0 2= !
The coefficient on (z — 1) is
1
——wexp(w/z) = —wexp(w)
< z=1

which is the correct answer taking into account the sign flip due to z = 1
not being inside the contour.

Remark. Good news. The sum in the integral converges everywhere.

Addendum: somewhat more involved example. The OGF of Stirling num-
bers of the second kind for set partitions into & non-empty sets is

k

n) , z
T;){k:}z ,11;[1 1—qz
We thus have that
1 k
g(w) = ot | l_efexp (w/z) 1:[1 1—qz
q
i k
= (;72 /|Z|_Eexp w/z
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k

(—1)k 1 z
= kX 2mi /Z_E S oe(w/) [ o= d=

q=1

Computing the sum of the residues at the finite poles not including zero we
get

(-D* ¢ R VR~ S V('
k! q;lep(qw)xggll/q—l/mmH 1/g—1/m

=q+1
(—1)k il oy b m
= ;exp(qw) ,,1;[1 pr— ml_q[H pr—
(—1)k & AT 1 f 1
= qZZlexp(qw)E 71_:[1 pr— ml_q[H pr—
(DY R(-D! 1
TR ;eXp(qw)*( — 1) (k—q)!
k
— g el ()
_ ((exp(w) -DF (1)’“>
k! k)

This is a case where the residue at infinity is not zero. We have the formula
for the residue at infinity

Res.—ooh(2) = Res:—o [_212}1 (1”

z

This yields for the present case

k

,Reszzoz—zz exp(wz) ql;[l - _/q/z = —ReSz=0; exp(wz) ql;[l Z—q
k
1 L !
= _EReSZZOZ exp(wz) ql;[l z/q—1
(-1 1 Tl (1)*
— _TReSZ:o; exp(wz) ql;[l 1-z/q TR

Adding the residue at infinity to the residues from the poles at z = 1/¢ we
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finally obtain

B ((exp(w) -k (—1)’“) C(EDF L (ep(w) —DF

k! k! k! k!

Taking into account the sign flip we have indeed computed the EGF of the
Stirling numbers of the second kind

RHE
k] nl
n>0
as can be seen from the combinatorial class equation

which gives the bivariate generating function

G(z,u) = exp(u(exp(z) — 1)).

This was math.stackexchange.com problem 1289377.

58.12 Stirling numbers of the first and second kind

We seek an alternate closed form of

S

q=0
With the usual EGFs this becomes

r

! 11 1 \?
1 qw;/ 14
Z( ) 270 )= 27T ¢! 1>

q=0
(n+q—1) 1 1 &
XiZm’ ol e E(exp(w) — 1% dw d=z.

1
1—2

q
= 29+4--- and hence ¢ >

Now we may extend g beyond r because (1og

r produces no pole in a neighborhood of zero (the branch cut of the logarithmic
term is [1,00)). We find

(=)™ xrlx (n—1)! / 1 1 11 k
— — -1
o le|=e o+l 9 =y wn k! (exp(w) )
n+q—1)\(-1)? 1 \?
log —— | dwd=z.
X;( n—1 > w4 1> s
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| < |w]|. Observe

that for the image of |z| = & we have |log 7=~| < t=. Therefore choosing 7 so
that == <~ will work e.g. for ¢ = 1/Q we take v=1/(Q — 1). This yields

(=) xrlx (n—1)! / 1
|2]=e

Next we will sum the binomial series which requires | log

271 __2rtl
1 11 1
— ex W dwdz
270 )| =y W" k'( plw) 1) (1+ 5 log )"

_(—l)rxr!x(n—l)!/ 1
|2|=¢

27 sl—e 27T
1 1 1
X — —(exp(w) = 1)F —— " dw dz.
278 J )=y K! (w + log )"
The pole at zero for w has been canceled but the pole at w = —log i now

lies inside the contour. Therefore we require

1 1 (1)
O] (k,(exp( ) - 1)k>
(n—1)
1 " [k L
- (n—1)!x k! (Z;) (p) (=" exp(pw))

- n_l,xk,z() ot explpu)

Evaluate at w = — log — 17— and substitute into the integral in 2 to obtain

e [ > Ve

()

We have established that the sum vanishes when k < r. Note that

@ <p> ~ (k-p) k: x(p-nl <k> (112::)

so this simplifies to

T (e

We have proved that the alternate closed form is
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ﬂk_r k—r _1\P ,rnfl
(k_r),;)( )

An interesting special case is that this evaluates to 7"~ ! when k = 7.

This problem has not appeared at math.stackexchange.com. It is from page
172 eqn. 12.22 of H-W.Gould’s Combinatorial Identities for Stirling Numbers
[Goul6] where it is attributed to Frank Olson.

58.13 An identity by Carlitz

We seek to show that where m > 1

zn: n\ (k/2 _nfn-m-1 on—2m
k)\ m m\ m-—1 '
k=0
We get for the LHS
By (") VIFZ = [+ VI
This is
€ L(l +V1i+z2)"d
211 |z|=¢ Zm+1 i =

Now put 1++/1+ z = w so that z = w(w — 2) and dz = 2(w — 1) dw to get

2mi 2(w — 1) dw.
2m /w_2|=7 W (w — 2)m+1 (w—1) dw

Now we have (series need not be finite)

W= (24 (w = )T = 2L (w0 = 22"

S S G IR0

q=0

so we get for the integral

2n—m+1 (n - m) 9—m _ gn—m (n —m—= 1) 9—m
m m
:271_2m<n—m—1) [Zn—m B n—Qm]
m—1 m m

_ gn-2m n—m-—1 n
m—1 m
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This is the claim.

Remark. We need to document the choice of v in terms of ¢ < 1. (The
square root has the branch cut on (—oo, —1].) The image of |z| = ¢ is contained
in an annulus centered at two of radius v/1+¢ —1 and 1 — /1 —e. We may
deform the image to a circle |w — 2| = v where v = ¢/2. This means the pole at
w = 0 is definitely not inside the contour.

Using the residue operator

We get

1 n
I‘SS W(l‘}’ \/1+Z)
1 1

n . n

res —(—1)"2" —m—n——.
o U T A

Now we put 1 — /1 + z = w so that z = w(w —2) and dz = 2(w — 1) dw so
that we obtain

1 n n n 1
res WL (g — 2 (=D)"w"™(w —2) EQ(w -1)
1 n
= Tes W (i — gyt (-1)"2(w—1)
=2nm ! n" 1
=2 i — e )0 )
1

=27 (—1)™ ! res (w—1).

w wm+1(1 7w/2)m n+1

Extracting the residue yields
2m—n—1 1 2m — 1
2n—m(_1)m+1 m-—n m-n —
gm— 1 m m
1 n—m-—1\ 1
— anm _1 m—+1 _1 m— —m— m =
(i )w ("))
() ()
-—m-1 n—2mn—m-—1
— QH—QM 2 n .
S >+ ()
Merge the two binomial coefficients to obtain the same answer as before.

This problem is from page 43 eqn. 3.163 of H.W.Gould’s Combinatorial
Identities [Gou72].
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58.14 Logarithm squared of the Catalan number OGF

Suppose we seek to find

2
"log [ ——— ) .
["]log <1+m>
This is given by

1 1 o ( 2 > d
— — Z.
|z|=e zntl & 1+\/1—4Z

Now put 1 — 4z = w? so that z = 1/4(1 — w?) and —2 dz = w dw to get

1 gntl ) 2 1 p
— (0] —= | W aw.
271 Jyporjesy (L —w?) 1 B\ T 2

2mi

This is

14n+1/ 1 1 ) 1 1 d
2210 1)y A —w) ™ (L) P\ T+ (w—-1)2) "

or

17(_1)n A / ! ! lo ! X w dw
2 om ot my (@ = D) (T )yt B\ T (w—1)/2 '

This has two parts, part Ay is

1(=1)" x 4n+! 1 1 .
2 2mi /wll—"/ W= 1) (1 w1 08 (1 +(w— 1)/2)

dw

and part A, is

1(—1)" x 47+ / 1 1 1
S X log dw
2 2mi lw—1]= (W — 1" (1 4+ w)nHl 1+ (w—1)/2

Part A; is

1(=1)" x4+ 1 1 . 1 y
2 2 /.wu_w (w1 @+ (w— 1)y <1 T 1)/2> !

C(=)mxon 1 1 . 1 .
il B e e s v e e ) R

Extracting coefficients we get

non S~ (@MY (=D)7 (=)t
(_1) 2 Z( n ) 2 anlqu(n_l_q)

q=0
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which is
n—2 q+n 1
—2 g _—
( n )n 1—gq
q=0

Part Ay is

=

n—

(T

=0

Q

which is

nil (q + n) 1
=\ n Jn—q
Re-index A; to match As, getting

n—1
qg—1+n 1
2y (1T

.
q=1 q

Collecting the two contributions we obtain

() -2

n—1
L NS (atnfa=1t —1+ 1
1 (q n(q n) _2<q n))
n q n n n—gq

q=1

which is

1 “Difg—14n
_”+_Q( n )
n—1
1 (¢ —1+n)!
n — q! x n!
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To evaluate this last sum we use the integral

)L
n—1 )" 2mi J_. e ¢

which gives for the sum

1 (1+2)n 1

1 9d
i Jiee  on > (1+2)"dz
[z|=€ q=0
1 1 n—1 n __
_ . (1+2) (1+2) 1 "
270 J) )= 2" 1+2-1
1 (L+2)" ! n
_ 2m./z|_ﬁzn+l((1+z) ~1) de

This also has two components, the second is zero and given by

1 (14 2)"1
—— LT g
2mi /|Z|_6 Fuan :

1 1 2n—1
7/ % dz
|z|=€

27 zntl

2n—1
" .
‘We have shown that

o () <o ()

Addendum Feb 27 2022. It appears from the comments that OP wanted
to prove

leaving

which evaluates to

2 2n 1
"log? — = — Hon_1 — Hy,)~.
[2"]log Y,y <n>( 2n—1 )n

Using the result from the previous section the LHS becomes

11 %k —1\ 1 [(2n—2k—1
1k k n—=k n—=k ’

n

E
I

Using
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this becomes

g”z‘l 1 <2k—1><2n—2k—1)
n n—=k k n—=k
k=1

1 12K\ (20— 2k
_anzln—k k n—=k

B 1 /2n 1., 1 w2k (2n — 2k
a 2n2<n>+2n[w]10glwzw (kz)(nk)

k>0

Here we have extended to infinity due to the coefficient extractor in w (note
that log ﬁ = w+ ---) and canceled the value for k¥ = 0 that was included in
the sum. Continuing with the inner sum term

E ]\/174102 V1-4z
. 1
= [z ]\/(1 —42)2 —4z(1 —42)(w — 1)
[ 1

1 =42z /1 —4z(w—1)/(1 — 4z)

- (2 1
=z ],§<k)zk<w_l>kMW'

This is

Lfurlog 23" (Q,f) (w— 1) (Z) e

k=0
Recall from section 77 that with 1 < k <n

1= () wros 2w -y

Hence we get two pieces, the first is

n—1
1 2k 1
- 7471716.
2n kZ:o < k)n— k

and

We get for the second
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(2”) L ores — log _1 —(-1)" (L - w)™,

We put w/(1 —w) = v so that w = v/(1+v) and dw = 1/(1 +v)? dv to get
(without the scalar in front)

1 1 1
— (1 1 -1"
ves (L + O)loe TR (CU
1 1 1 1
_ (1) ———1 1 — —(=1)"[o"]——1 -
fes oy (~1)" i log(1 ) = —(~1)" "] s log 11—
1 1
n
- 1
[v]lvaglf’u

With the scalar we get

2 1
—< ”) —H,.
n /2n

We have the result if we can show that the first piece is

2n H2n71 + i - 1Ifln l - 2n H2n - 1Ijl-n l
n 2n 2 n n 2 n

n—1
26\ 1 on
F, = gk = 2H,,, — H,).
;<k>n—k ()=

0
We have for the LHS

n—1
1 2k
4™ Tw™ 1 k'4—k.
g > ()

k=0

i.e.

The coefficient extractor enforces the upper limit, we may extend to infinity
and we find

4" [w"] 1o L ! [w"] 1o SEE T
w = |w .
1w 1—w g1—411}«/1—411}
Call the OGF F(w). We get
4 2
Fl(w) = 5+ F(w).
V1—4w 1 —dw

Extracting the coefficient on [w™] we get

-3/2 -
(n+1)Fpi1 = 4”+1<—1>”( n/ ) +2) R
q=0
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_ o n+1l/_ nn+1 _1/2 - n—q
= 4"t (—1) (_1/2)(n+1)+2q§_:0Fq4

2n + 2 -
=2 1 F 4™ 1
(n+ )(n+1) +2) F,
q=0
which also yields

2n + 4) ntl

1 1
(4 2)F, .y = =(n+2 25" F 474,
{00 DFe = 5002 () 4 >,

Subtract to get

1
i(” +2)Fnse

1 2n +4 2n + 2 1
= 1)F, — 2 -2 1 —F1q.
(n+1) "H+2(n+ )(n+2) (n+ )<n+1>+2 o

Introducing G,, = F,, (2;’)_1 and dividing by (27;?12) we get
1

1
5(271 + S)Gn+2 = (n + 3/2)Gn+1 +1 or Gp=Grp_1+ m

so that

n

1 1
n:§ 7:25 —— =2H9,_1 — H,_1 =2H5, — H,.
G q=1q_1/2 12q—1 on—1 1 2

n

This is the claim (we have Fy = Gy = 0 from the generating function) and
it completes the entire argument.
This was math.stackexchange.com problem 1148203

58.15 Bernoulli / Stirling number identity
We seek to show that

The LHS is
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k=0
n 2 = n+1 1 ok
=l ]exp(z)—l];)(nik)'Zk(nJrl)![w ' ](n—k+1)| ( 81— >

n

2 1 1\
:n![zn][wn]exp(z)fl17w22k <log1w) .

k=0

We can certainly extend the sum to infinity because of the coefficient ex-
tractor in z and we find

z 1 r\" 1
2" [w"™ 1 .
nilz ][w]exp(z)llw(0g1w> 1—z/log -

At this point we recognize that we need complex variables and write

1 1 1 1 1 "
— 0
270 Sy 0 L —w \ 1 —w
1 1 z 1
X — dz dw.
2mi /|z|_6 2 lexp(z) =11 — z/log 2 =

Now when we summed the geometric series we introduced the condition

for convergence. Continuing,

1
|z] < ’10g T

1 L1 (1 et
- 0
270 Jjy=y W1 —w 81w
1 1 z
X =— dz dw.
210 Jjyj=e 2 exp(z) — 12 — log 12—

Now we have with v < 1 that

1 ok 7’
log1 '>7—Z>7—Zryq:y_ .
—w q L=~
q=>2 q=>2

This is because log =— = w + w?/2 + w?/3 4+ --- and the first term has
modulus v so that we minimize the whole if we subtract the maximum modulus
of all remaining terms. If we choose this last term for € we have convergence.
As an example v = 1/10 and ¢ = 4/45 will work.

Summarizing we have that all the poles in z at pp = 2mik where |k| > 1
are outside the contour in z, as is the pole at log ﬁ Note also that with the
principal branch of the logarithm | arg(log ﬁﬂ < 7 so the pole at log ﬁ does
not coincide with any of the py.
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We evaluate the inner integral using the fact that residues sum to zero.
Hence we require minus the contribution from the logarithm pole and minus
the contribution from the pj. The former yields

1 L1 (1 ot SO A 1 p
-— (0] O, w
270 Sy 0 L —w \ 1 —w 81 w) 10—-w) -1

1 Lo, L 1
= — —F 10 —— adw = .
270 )=y W2 1w n+1

Multiply by n! to get n!/(n+ 1) which is the claim. It remains to show that
the pj contribute zero. These are all simple. We get
Z — Pk . 1

lim ——— = lim =1.
zopp exp(z) — 1 z—pk exp(z)

This yields

1 1 1 1 \"" 1 1
— T log - dw.
270 J )=y w1 —w 1—w Pr pr — log +—

Note that

1 w? 7! Y
o =[S X T <
I—w g>1 q q>1 q 1=
With the choice of contour above we have a bound of 1/9 on this term.

Hence we may expand into a convergent geometric series, of which only the
initial segment can possibly contribute:

1 1 1 1 \" 1 1
— (10g ) T dw

270 J )=y w1 —w 1—w prtt 1= - log

1 1 \"™ 11 1 \¢
— [w"]—— (1 =N = (10g———) .
[w]l—w(ogl—w> pﬁzpi(ogl—w>

q=0

Note however that we are extracting a coefficient on [w"] from a term that
starts at w"t19, and we have a zero contribution, which concludes the argu-
ment.

This was DLMF [DLMF| Eq. 24.15.8].

58.16 Formal power series vs contour integration

We seek to show that
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() ()

q

We do it two ways, using formal power series and residue operators as well
as contour integration.

Formal power series

The LHS is
i(*l)q 2n+1—gq 2n — 2q
2n+1-2¢q K—q

om s qf 2n+1—q 29
=¥+ 2> (-1 <2n+1—2q)(1+z)2q'

q=0
Here we may extend to infinity because of the coefficient extractor in z. We
find

24 w2
(14 2)%9 (14 w)?

511+ 2) [ (1 4+ w)* Y (—1)
q>0

1

1+ zw?/(142)2/(1+w)
1

(14 2)2(1 + w) + zw?’

= NI+ 2 P 1+ w) !

_ [ZK](l + z)2n+2[w2n+1](1 + w)2n+2
Important note: what we have here is that (227?:11:2"(1) is zero when 2n+1—2¢q
goes negative. This is not always what CAS systems might use. Maple for

example uses that (Z) for b < 0 is (aib) if @ > b. This is a generalization that
we will use in the second answer. It applies here because we replace (2"‘:1_‘1)
by (227?:11:2‘2) which is zero when 2¢ > 2n + 1 under the first rule.

The contribution from w is

1
(1+2)2(1 + w) + z2w?’

res

2n+2
w w2n+2 (1 + w)

Now we put w/(1+w) = v so that w =v/(1 —v) and dw = ﬁ dv to get

1 1 1
T R (14 221+ v/(1— ) + 202 /(1 —0)2 (1 —v)2
Restoring the coefficient extractor in z we have

1
(14 2)2(1 —v) + 202

[ZK] (1 + Z)2n+2 [U2n+1]
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1
(14+2)2— (14 2)3v + z02(1 + 2)?

= ["](1 + 2)[0*" "]

1
_ K 2n+1
2 }1—|—z[v ]1—(1+z)v+zv2
1 1
_ K 2n+1
=1 ]1+z[v ](171))(171)2)
2n+1 2n+2

1 1—2

q=0

This is clearly an even function hence zero when K is odd. When K is even
and K < 2n+ 2 we get a value of one, and when K is even and K > 2n+ 2 the
two contributions cancel, for a value of zero. Thus we have

S0+ (CDS) K < 2n +2])

Contour integration

We again seek to show that

() () e

p q

This time we will not flip the lower index of the first binomial coefficient and
we get an answer that agrees with the second rule, which is used by CAS.
The LHS is

1 1 i 1
. - _1\49 2n+l—q__ - 2n—2q
5 =N (-1) g (1+2) Rt (1+w) dz dw
ol=y 270 Jyz1=e &5
1 1 1 1
- = 1 2n_— - 1 2n+1
28 o]y wK+1( +'UJ) o /|z_5 Z( +Z)

K
1
X Z(—l)qz—q(l + 2) 7w (1 + w) " dz dw.
q=0

Here we may extend ¢ beyond K to infinity because the pole at zero in w is
canceled for the extra values. We obtain

1 1 1 1
_ 1 2717 - 1 2n+1
27 Sy SR w)T ~/|z|—sz( + z)
1
dz dw

“Trw/(+w)?/z/0+2)
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1 1 1
_ = (1 +w)2n+27./ (1 +Z)2n+2
|z|=¢

- 2mi w|=y WET 2mi
o 1
(1+2(1 4+ w))(w+ 2(1 +w))

The pole at zero in z is gone but a new pole has appeared inside the contour.
Note that when we summed the geometric series we required |w/(1 + w)?| <
|2(1+ z)|. We have with v < 1 and € < 1 that |w/(1+w)?| < /(1 —7)* < 2y
and |z(1+z)| > (1 —¢€) > 4e. Therefore taking € = 4y will work e.g. v =1/11
and ¢ = 4/11.

We have for the first simple pole at zop = —1/(1 + w) that | — 1/(1 + w)| >
1/(1 + ) > 4~ = e. This pole is not inside the contour. The second pole is at
z1 = —w/(1 + w) and we have | — w/(1 +w)| < v/(1 — ) < 4y = e. This pole
is inside the contour. We thus write

dz dw.

1 1 2n+1 1 2n+2
2 s rKH(H—w) 2m./|z|_€(1+z)
X L dz d
z dw.
I+ z2(14+w))(w/(1+w)+2)

Evaluating the residue from the simple pole at z; we find

1 1 1

= 1 2n+1 1— 1 2n+2 d
1 L1,
T2 fyey KT T — w2
This is
W] = (14 (~1))
1 —w?
as claimed.

Alternate evaluation

Returning to the start we seek

() (2 -t

q=0 q
With

2n — 2q 2n — 2q 1 1 1 d
= - w
K—gq n—K-—gq 21 J |y WKL (1 — w)2n—K—at1
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the LHS becomes

1 1
o 2n+1—q
27”/”_62 e q+1 (1+2) wK—a+1 (1 — w)2n—K—gt1 dz dw.

2i lw|=~

Here we may extend the sum to infinity due to the pole at w = 0 vanishing
when ¢ > K. This yields

1 1 1 1 1
— o | S
|z|=¢

270 || = wk+1 (1 —w)2 =K+ 27 L, 2
XZ 1+z) Twi(1 —w)? dz dw
q>0

1 1 1 1 1
_ . (1 2n+1
~ omi —y wEFL (1 —w)2n—K+1 27 /ZE Z( +2)

w]
X L dz d
z dw
1+w(l—w)/z/(1+2)
1 1 1 1 / i
= — — — (1+ Z) nt
270 =y WETL (1 —w)2n =K1 275 [,
1
dz d
2(14+2) +w(l —w) =
1 1 1 1
= — - 1 2n+2
270 ey WKL (1 — w)?7~KF1 21 /Z_E( +2)
1
dz dw.

w1
Once more the pole at z = 0 is gone but a new one has appeared (two of
them, in fact). To see this note that in the summation of the infinite series we
require for convergence that |w(l — w)| < |z(1 + z)|. We have for ¢ < 1 and
v < 1 that [2(1+2)] > (1 —¢) > 3¢ and |w(l — w)| < y(1 +7) < 3~. Hence
3v < ¢ will work e.g. take v = ¢/4 as in v = 1/16 and ¢ = 1/4. In particular
|w] < |z| so the pole at zg = —w is inside the contour. On the other hand the
closest that the pole at z; = w — 1 which is on a circle at z = —1, rotating with
radius v, gets to the origin is 1 — v =1—¢/4 > ¢ as long as £ < 4/5, so this is
definitely not inside the contour. Hence the contribution from zy = —w is the
only one and it yields

1 1 1

- 1— 2n+2 d
270 Sy =y wETL (1= w)Q"—K‘H( w) 1—2w "
1 1 1
— L—w)fH g
2y, w0 gy e
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q=0 q=0
1 1 1
= (1)K ¢ 1K+ 2 (—D)E).
(-1 513 2(+( ))

We once more have the claim.
This was math.stackexchange.com problem 4597569.

58.17 A sum of the derivatives of inverse powers

We seek to show that

;f‘”k (ZI 1) M)] " ) = (.

Suppose for the moment that z is a complex number. We will assume f(z)
and 1/f(z) are analytic at = so they both have power series there with some
non-zero radius of convergence. Take p < the lesser of the two and take p =1
if both converge everywhere. We then get for the sum

n ok n+1 k+1xll 1 1 .
> (i) <>2m./|”p e

:
This is
i e T D () e
5 e 2 () e

2mi (2) z—
Expanding the bracketed term into a power series about x we find

9(2) = f'(@) + (@) (z — 2)/2+ " (2) (2 = 2)? /6 + - -

so it goes to a constant f’(x) with no more pole at z = x. More importantly
it is convergent in the neighborhood of x so it represents an analytic function
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there. Integrating ¢"*1(2)/f"(z) which is the product of two analytic terms we
obtain a zero contribution from the integral which concludes the argument.
This was math.stackexchange.com problem 4993025,

58.18 Shifted central binomial coefficient convolution

We seek to simplify

i(_l)k E+r\[(2k+2r\ n—k+r\[(2n—2k+2r
P r k+r r n—k+r )

With this in mind we introduce

A=Y (k :r r) (21; i zr) -

For a closed form we have

. SIERTEDD (k N T) A0 b g,

; r+1 k
270 J =y W o w

For the series to converge we need |(1 + w)?z/w| < 1 or |z| < |w/(1 + w)?|.
We will take v = 1 which gives validity for |z| < 1/4. Continuing,

1 1 1

- 1 2r d
21 J =y wr+1( +w) (1= (1+w)2z/w) T w
1 1
= — 1+w)?" dw
2mi ‘w‘z,y( ) (w— (14 w)2z)r+1
1 1 1
= (=1 r+1_ - = 1 2r d .
( ) ZT+1 271 |w|:'y( + w) ((1 + ’U))2 — U)/Z)TJFI w

The fraction under the integral factors into (w — po)(w — p1) where pg1 =
(1-2z++/1—42)/2/z. We have with |z| < 1/4 the convergent series expansion

p=—— VI - 4o

Note that we have |1/z| > 4. Now the coefficients of the square root are
all negative except for the constant term which is not included. Therefore the
norm of the sum term is at most

1
(1 9z = /1o 4|z|> <1.

22|

This is because 1 — 2|z| — /1 —4|z| < 2|z| or 1 — 4|z| < /1 — 4|z| which

holds when 1—4|z| < 1 (# = 0 is not included here) and we find that p; is inside
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the contour (the unit circle). From the quadratic pg = 1/p1 so pg is not. We
then have from the integral evaluating at w = p; where we require

i (gt o)

which is with the Leibniz rule

r+ 1) 2r—(r— r—
ME:(>u,meﬂﬂ+W>( V(e

r+q n 2r
1 rTq .
Z (w — po) T“*q( q >( ) (T—Q)

q=0
Observe that

<T Z q) <T2—Tq> T - qg?;)!r! <q <2:) <2>

so that we find

q

- (Dt -]

~ () om0 U

r w 7p0)2r+1

Evaluating at w = p; we have (1+w)(14p9) = 2+po+p1 = 2+(2—42)/2/z =
% to get collecting everything

1 2r Z2rt+l 1 2r 1
_ r+1 2r+1 ro__
E(z) = (-1)" 7 (T)(—l) 7\/@27«“;(—1) = (r><1—4z)"+1/2'

We may now evaluate the sum almost by inspection and get

2 Q[Zn] 1 1 (2 Q[Zn] 1
r (1442)7t1/2 (1 —4z)+1/2 — \ r (1 —1622)r+1/2"

We see that n must be even in which case we obtain
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We can re-write the second binomial coefficient somewhat,

1 et 1 (_pyme 2t
i I er=1/2-0) = e T vt 42
1 ()2 @21 1 (=D r120 (2 4n)!
- (n/2)! 2n/2 (2r = (n/2)! 27/2 (2r)! (r +n/2)12rn/2"

Plug this into the closed form to get

2r 22n 2\ " (2r 40\ [T +n _on 2r\ (2r+n\ (r+n
r T T n/2 ) 7 r n/2 )’
Remark. On seeing that F,.(z) has such a simple form we gather that it

can be computed very straightforwardly from first principles. We note that

(r)
1 2k +2r\ pi,
Fr(z)_rl Z( k+r )Z

k>0
N 1 N (r)
1 2K\ 4 2K\
B Z(k) ‘Z<k)z
k>0 k=0

(r)
— 2 (om) = -2y

1 ~1/2 . 1 I
“mmn( )Y - T e

(2 1
o\ ) (1 —4z)r+1/2’

This identity was from a paper by Lucio Barabesi in the JIS, the full citation
is [Bar23].

58.19 Stirling cycle numbers and an exponential EGF
We seek to verify that

)= o (e (=)

We may simplify the factorial,



The contribution from z is

1 z " m—1 1
res =res 2" ————.
z znmHl \exp(z) — 1 z (exp(z) — 1)»

Now put z = log(1 4+ w) so that dz = #w dw to get

I+
1 1
1 m—1 1 - -
res log ( +w)w"1+w
= [w" log™ (1 + w)L = ﬁ[w”] log™ (1 4+ w).
1+w m

Restoring the factors in front,

(1) 2 ] log™ (1 -+ ) = (~1)™ 2 ] log™ (1 — w)

= ") (1) log™ (1~ w) = nlfu"] - (log =) .

We have obtained the standard Stirling cycle number EGF and may con-
clude. This was Formal Laurent Series. It can also be done using complex
variables. Noting that z/(exp(z) — 1) is analytic in a neighborhood of the origin
we obtain from the Cauchy Coefficient Formula

1 1 z " d
— z.
2mi ozl \exp(z) — 1

|z|=

The substitution z = log(1 + w) then maps z = 0 to w = 0 and is locally
invertible. With w = exp(z) — 1 we have w = 2z + 3~ -, Z—{,} The first term
produces a circle with the same radius as the image of |z| = €. The sum of
the remaining terms is bounded by |z|2/(1 — |z]). Now put ¢ = 1/Q, with Q
large. The bound on the remainder becomes 1/Q/(Q — 1) which shows that it
is of lower order than the circle term and we may deform the image contour to
|w] =~ where v < 1/Q — 1/Q/(Q — 1), getting the integral

1 1 1 1
— log™ ™ (1 — —— dw.
270 Sy (L) T

We may then apply the CCF one more time to return to the realm of formal
power series. The above also shows that the singularity at w = —1 and the
branch cut do not intersect the initial image contour (before shrinking to |w| =
~) given that it is contained in a circle of radius 1/Q+1/Q/(Q-1) = 1/(Q-1) <
1.

This was math.stackexchange.com problem 5046903\
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