
Mellin transforms and the functional equation of

the Riemann Zeta function

Marko R. Riedel

July 8, 2022

We collect several examples of using Mellin transforms and the functional
equation of the Riemann Zeta function to evaluate harmonic sums. These are
extracted from my posts at math.stackexchange.com and have retained the ques-
tion answer format used there.

The methods here are those of the papers by Szpankowski [Szp01] and Fla-
jolet [FS96]. Similar techniques are used in [Vep06].
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1 Evaluating Fourier series

Suppose we seek to show that∑
n=1,3,5,...

sin2(n/q)

n2
=

π

4q
.

As suggested we use

sin2 t =
1− cos(2t)

2
to get ∑

n=1,3,5,...

1

n2
1− cos(2n/q)

2

which is
1

2

∑
n=1,3,5,...

1

n2
− 1

2

∑
n=1,3,5,...

1

n2
cos(2n/q).

We will be using ∑
n=1,3,5,...

1

ns
=

(
1− 1

2s

)
ζ(s)

which gives for the sum

1

2

(
1− 1

22

)
ζ(2)− 1

2

∑
n=1,3,5,...

1

n2
cos(2n/q)

or
π2

16
− 1

2

∑
n=1,3,5,...

1

n2
cos(2n/q).

Introduce S(x) given by

S(x) =
∑

n=1,3,5,...

1

n2
cos(nx) =

∞∑
k=1

1

(2k − 1)2
cos((2k − 1)x)

so that we are interested in S(2/q).
The sum term is harmonic and may be evaluated by inverting its Mellin

transform.
Recall the harmonic sum identity

M

∑
k≥1

λkg(µkx); s

 =

∑
k≥1

λk
µsk

 g∗(s)

where g∗(s) is the Mellin transform of g(x).
In the present case we have

λk =
1

(2k − 1)2
, µk = (2k − 1) and g(x) = cos(x).
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We need the Mellin transform g∗(s) of g(x).
Now the Mellin transform of cos(x) was computed at math.stackexchange.com

question 479586 and found to be

Γ(s) cos(πs/2)

It follows that the Mellin transform Q(s) of the harmonic sum S(x) is given
by

Q(s) = Γ(s) cos(πs/2)

(
1− 1

2s+2

)
ζ(s+ 2)

because
∑
k≥1

λk
µsk

=
∑
k≥1

1

(2k − 1)2
1

(2k − 1)s
=

(
1− 1

2s+2

)
ζ(s+ 2)

for <(s) > −1.
The Mellin inversion integral here is

1

2πi

∫ 1/2+i∞

1/2−i∞
Q(s)/xsds

which we evaluate by shifting it to the left for an expansion about zero (the
abscissa <(s) = 1/2 is in the intersection of 〈−1,∞〉 and 〈0, 1〉 from the cosine
transform).

The zeros of the cosine term at the negative odd integers cancel the poles of
the gamma function at those values. Additional cancelation is gained from the
trivial zeros of the zeta function term ζ(s + 2) at the even negative integers p
with p ≤ −4.

This leaves just two poles at s = 0 and s = 1 and we have

Ress=0Q(s)/xs =
π2

8
and Ress=−1Q(s)/xs = −π

4
x

and therefore

S(x) ∼ π2

8
− π

4
x.

We will see that this is exact for x ∈ [0, π).
With q ≥ 1 we have 2/q ≤ 2 and we get for the initial sum the form

π2

16
− 1

2

π2

8
+

1

2

π

4

2

q
=

π

4q

which is the claim we were trying to prove.
We still need to prove exactness on [0, π) to complete the argument.
Put s = σ + it with σ ≤ −3/2 where we seek to evaluate

1

2πi

∫ −3/2+i∞
−3/2−i∞

Q(s)/xsds
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by shifting it to the left.
Recall that with σ > 1 and for |t| → ∞ we have

|ζ(σ + it)| ∈ O(1).

Furthermore recall the functional equation of the Riemann Zeta function

ζ(1− s) =
2

2sπs
cos
(πs

2

)
Γ(s)ζ(s)

which we re-parameterize like so

ζ(s+ 2) = 2× (2π)s+1 cos

(
−π(s+ 1)

2

)
Γ(−s− 1)ζ(−s− 1)

which is

ζ(s+ 2) = −2× (2π)s+1 sin(πs/2)
Γ(1− s)
s(s+ 1)

ζ(−s− 1).

Substitute this into Q(s) to obtain

Γ(s) cos(πs/2)

(
1− 1

2s+2

)
×−2× (2π)s+1 sin(πs/2)

Γ(1− s)
s(s+ 1)

ζ(−s− 1).

Use the reflection formula for the Gamma function to obtain

cos(πs/2)

(
1− 1

2s+2

)
×−2× (2π)s+1 sin(πs/2)× π

sin(πs)

1

s(s+ 1)
ζ(−s− 1),

in other words we have

Q(s) = −π(2π)s+1

(
1− 1

2s+2

)
ζ(−s− 1)

s(s+ 1)
.

There are two components here, call them Q1(s) and Q2(s), which are

−π(2π)s+1 ζ(−s− 1)

s(s+ 1)
and π(2π)s+1 1

2s+2

ζ(−s− 1)

s(s+ 1)
.

We evaluate these with σ < −5/2. For the first component this implies (with
σ = −5/2 we have <(−s− 1) = 3/2)

|Q1(s)/xs| ∼ 2π2(2π)σx−σ|t|−2.

or
|Q1(s)/xs| ∼ 2π2(x/2/π)−σ|t|−2.

We see from the term in |t| that the integral obviously converges. (This
much we knew already.) Moreover, when x ∈ (0, 2π) we have (x/2/π)−σ → 0 as
σ → −∞. The term in x does not depend on the variable t of the integral and
may be brought to the front. This means that the contribution from the left
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side of the rectangular contour that we employ as we shift to the left vanishes
in the limit.

For the second component we get

|Q2(s)/xs| ∼ π2

2
(π)σx−σ|t|−2.

or

|Q2(s)/xs| ∼ π2

2
(x/π)−σ|t|−2.

This is the same as the first only now we have convergence in (0, π).
Joining the bounds for Q1(s) and Q2(s) we have proved the exactness of the

formula for S(x) in the interval (0, π) obtained earlier.
As I have mentioned elsewhere there is a theorem hiding here, namely that

certain Fourier series can be evaluated by inverting their Mellin transforms
which is not terribly surprising and which the reader is invited to state and
prove.

This is math.stackexchange.com question 1153068.

2 Approximating a simple product

Let

P =
∏
n≥1

(
1− 1

2n

)
.

Introduce

S = logP =
∑
n≥1

log

(
1− 1

2n

)
.

Now recall the harmonic sum identity for Mellin transforms:

M

∑
k≥1

λkg(µkx); s

 =

∑
k≥1

λk
µsk

 g∗(s)

where g∗(s) is the Mellin transform of g(x).
Introducing

S(x) =
∑
n≥1

log

(
1− 1

2nx

)
so that S = S(1) we see that S(x) is harmonic with parameters

λk = 1, µk = k and g(x) = log

(
1− 1

2x

)
and may be evaluated (approximated) by inverting its Mellin transform.
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Now

M

(
log

(
1− 1

2x

)
; s

)
=

∫ ∞
0

log

(
1− 1

2x

)
xs−1dx = −

∫ ∞
0

∑
q≥1

2−qx

q
xs−1dx.

This is

− Γ(s)

(log 2)s

∑
q≥1

1

q

1

qs
= − Γ(s)

(log 2)s
ζ(s+ 1).

It follows that the Mellin transform of S(x) is

Q(s) = M(S(x); s) = − 1

(log 2)s
Γ(s)ζ(s)ζ(s+ 1).

Now perform Mellin inversion with the inversion integral being

1

2πi

∫ 3/2+i∞

3/2−i∞
Q(s)/xsds

and shifting the integral to the left for an expansion about zero. There are only
three singularities to consider because the trivial zeros of the two zeta function
terms cancel the poles of the gamma function.

We have

Res(Q(s)/xs; s = 1) = −1/6
π2

log 2× x
,

Res(Q(s)/xs; s = 0) = 1/2 log (2π)− 1/2 log log 2− 1/2 log x

and
Res(Q(s)/xs; s = −1) = 1/24 log 2× x.

Putting x = 1 we obtain that

S(1) = S ≈ −1/6
π2

log 2
+ 1/2 log (2π)− 1/2 log log 2 + 1/24 log 2.

This approximation is excellent (good to 24 digits) but not quite exact. E.g.
setting x = 1/2 which is closer to zero we get 50 good digits, setting x = 1/5
we get 123 good digits and so on.

The conclusion is that

P ≈ e−π
2/6/ log 2 ×

√
2π × 21/24√

log 2
≈ 0.2887880950866024212788997.

Adddendum, July 2022. We can actually do a somewhat better and
compute a functional equation for S(x). This requires an evaluation of the re-
mainder, which is

1

2πi

∫ −3/2+i∞
−3/2−i∞

Q(s)/xs ds.
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Substitute s = −t in this integral to get (we get one minus from Q(s),
another from the differential, and a third reversing the direction of the line)

− 1

2πi

∫ 3/2+i∞

3/2−i∞
(log 2)tΓ(−t)ζ(−t)ζ(1− t)xtdt

In view of the desired functional equation we now use the functional equation
of the Riemann zeta function on Q(s) to prove that the integrand of the last
integral is in fact a scaled version of Q(t).

Start with the functional equation

ζ(1− s) =
2

2sπs
cos
(πs

2

)
Γ(s)ζ(s)

and substitute this into Q(s) to obtain

Q(s) = − 1

(log 2)s
ζ(1− s)2sπs

2 cos
(
πs
2

) ζ(s+ 1).

Apply the functional equation again (this time to ζ(s+ 1)) to get

− 1

(log 2)s
ζ(1− s)2sπs

2 cos
(
πs
2

) 2s+1πs cos
(
−πs

2

)
Γ(−s)ζ(−s).

This is

Q(s) = −22sπ2s 1

(log 2)s
Γ(−s)ζ(−s)ζ(1− s).

We thus have for the remainder integral (there was a minus in front and the
multiple of Q(t) brings another one)

1

2πi

∫ 3/2+i∞

3/2−i∞
(log 2)t

Q(t)

22tπ2t
(log 2)txtdt

=
1

2πi

∫ 3/2+i∞

3/2−i∞
Q(t)

(
4π2

x(log 2)2

)−t
dt.

Together with the residues we have established the following functional equa-
tion

S(x) = −1

6

π2

log 2× x
+

1

2
log(2π/ log 2/x) +

1

24
log 2× x

+S

(
4π2

x(log 2)2

)
.

The fixed point at x = 2π/ log 2 of the recursion does not produce a value
here, but we get by way of confirming the computation that

0 = −1

6

π2

2π
+

1

24
2π.

This was math.stackexchange.com problem 491948.

8

https://math.stackexchange.com/questions/491948/


3 Some sum formulae by Apery and Plouffe

Suppose we are trying to prove that

3

2
ζ(3) =

π3

24

√
2− 2

∞∑
k=1

1

k3(eπk
√
2 − 1)

−
∞∑
k=1

1

k3(e2πk
√
2 − 1)

3

2
ζ(5) =

π5

270

√
2− 4

∞∑
k=1

1

k5(eπk
√
2 − 1)

+

∞∑
k=1

1

k5(e2πk
√
2 − 1)

9

2
ζ(7) =

41π7

37800

√
2− 8

∞∑
k=1

1

k7(eπk
√
2 − 1)

−
∞∑
k=1

1

k7(e2πk
√
2 − 1)

Introduce the sum

S(x;α, p) =
∑
n≥1

1

np(eαnx − 1)

with p a positive odd integer and α > 1, so that we seek e.g. 2S(1;π
√

2, 3) +
S(1; 2π

√
2, 3).

The sum term is harmonic and may be evaluated by inverting its Mellin
transform.

Recall the harmonic sum identity (this is the last time it will be quoted in
the present document)

M

∑
k≥1

λkg(µkx); s

 =

∑
k≥1

λk
µsk

 g∗(s)

where g∗(s) is the Mellin transform of g(x).
In the present case we have

λk =
1

kp
, µk = k and g(x) =

1

eαx − 1
.

We need the Mellin transform g∗(s) of g(x) which is∫ ∞
0

1

eαx − 1
xs−1dx =

∫ ∞
0

e−αx

1− e−αx
xs−1dx

=

∫ ∞
0

∑
q≥1

e−αqxxs−1dx =
∑
q≥1

∫ ∞
0

e−αqxxs−1dx

= Γ(s)
∑
q≥1

1

(αq)s
=

1

αs
Γ(s)ζ(s).

It follows that the Mellin transform Q(s) of the harmonic sum S(x;α, p) is
given by
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Q(s) =
1

αs
Γ(s)ζ(s)ζ(s+ p) because

∑
k≥1

λk
µsk

=
∑
k≥1

1

kp
1

ks
= ζ(s+ p)

for <(s) > 1− p.
The Mellin inversion integral here is

1

2πi

∫ 3/2+i∞

3/2−i∞
Q(s)/xsds

which we evaluate by shifting it to the left for an expansion about zero.

3.1 First formula

We take

Q(s) =
1

πs
√

2
s

(
2 +

1

2s

)
Γ(s)ζ(s)ζ(s+ 3).

We shift the Mellin inversion integral to the line s = −1, integrating right
through the pole at s = −1 picking up the following residues:

Res(Q(s)/xs; s = 1) =
π3
√

2

72x
and Res(Q(s)/xs; s = 0) = −3

2
ζ(3)

and
1

2
Res(Q(s)/xs; s = −1) =

π3
√

2x

36
.

This almost concludes the proof of the first formula if we can show that the
integral on the line <(s) = −1 vanishes when x = 1. To accomplish this we must
show that the integrand is odd on this line.

Put s = −1− it in the integrand to get

π1+it
√

2
1+it (

2 + 21+it
)

Γ(−1− it)ζ(−1− it)ζ(2− it).

Now use the functional equation of the Riemann Zeta function in the follow-
ing form:

ζ(1− s) =
2

2sπs
cos
(πs

2

)
Γ(s)ζ(s)

to obtain (with s = −1− it)

π1+it
√

2
1+it (

2 + 21+it
)
ζ(2 + it)2−1−itπ−1−it

1

2 cos
(
π(−1−it)

2

)ζ(2− it)

which is √
2
1+it (

2−it + 1
)
ζ(2 + it)

1

2 cos
(
π(1+it)

2

)ζ(2− it)
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and finally yields

− 1

sin(πit/2)

(√
2
−1−it

+
√

2
−1+it)

ζ(2 + it)ζ(2− it).

It is now possible to conclude by inspection: the zeta function terms and the
powers of the square root are even in t and the sine term is odd, so the whole
term is odd and the integral vanishes. (We get exponential decay from the sine
term.)

3.2 Second formula

We take

Q(s) =
1

πs
√

2
s

(
4− 1

2s

)
Γ(s)ζ(s)ζ(s+ 5).

We shift the Mellin inversion integral to the line s = −2 (no pole on the line
this time) picking up the following residues:

Res(Q(s)/xs; s = 1) =
π5
√

2

540x
and Res(Q(s)/xs; s = 0) = −3

2
ζ(5)

and

Res(Q(s)/xs; s = −1) =
π5
√

2x

540
.

It remains to verify that the integrand on the line <(s) = −2 is odd when
x = 1. Put s = −2− it in the integrand to get

π2+it
√

2
2+it (

4− 22+it
)

Γ(−2− it)ζ(−2− it)ζ(3− it).

Applying the functional equation once again with s = −2− it we obtain

π2+it
√

2
2+it (

4− 22+it
)
ζ(3 + it)2−2−itπ−2−it

1

2 cos
(
π(−2−it)

2

)ζ(3− it)

which is √
2
2+it (

2−it − 1
)
ζ(3 + it)

1

2 cos
(
π(−2−it)

2

)ζ(3− it)

which is in turn(√
2
2−it
−
√

2
2+it

) 1

2 cos
(
π(2+it)

2

)ζ(3 + it)ζ(3− it)

which finally yields

−
(√

2
2−it
−
√

2
2+it

) 1

2 cos(πit/2)
ζ(3 + it)ζ(3− it)

The product of the zeta function terms is even, as is the cosine term. The
term in front is odd, so the integrand is odd as claimed. (As before we get
exponential decay from the cosine term.)
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3.3 Third formula

We take

Q(s) =
1

πs
√

2
s

(
8 +

1

2s

)
Γ(s)ζ(s)ζ(s+ 7).

We shift the Mellin inversion integral to the line s = −3, integrating right
through the pole at s = −3 picking up the following residues:

Res(Q(s)/xs; s = 1) =
17π7

√
2

37800x
and Res(Q(s)/xs; s = 0) = −9

2
ζ(7)

and

Res(Q(s)/xs; s = −1) =
π7
√

2x

1134
and

1

2
Res(Q(s)/xs; s = −3) = −π

7
√

2x3

4050
.

This almost concludes the proof of this third formula if we can show that
the integral on the line <(s) = −3 vanishes when x = 1. To accomplish this we
must show once more that the integrand is odd on this line.

Put s = −3− it in the integrand to get

π3+it
√

2
3+it (

8 + 23+it
)

Γ(−3− it)ζ(−3− it)ζ(4− it).

By the functional equation we obtain with s = −3− it

π3+it
√

2
3+it (

8 + 23+it
)
ζ(4 + it)2−3−itπ−3−it

1

2 cos (π(−3− it)/2)
ζ(4− it)

which is √
2
3+it (

2−it + 1
)
ζ(4 + it)

1

2 cos (π(3 + it)/2)
ζ(4− it)

which finally yields

1

2 sin(πit/2)

(√
2
3−it

+
√

2
3+it

)
ζ(4 + it)ζ(4− it).

This concludes it since the two zeta function terms together are even as is
the square root term while the sine term is odd, so their product is odd.

This is math.stackexchange.com question 157040.

4 A sum formula by Hardy and Ramanujan

Suppose we are trying to evaluate∑
n≥1

(
coth(nπx) + x2 coth(nπ/x)

)
/n3.
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Put

S(x) = ζ(3) +
∑
n≥1

−1 + coth(nπx)

n3

and introduce the sum

T (x) =
∑
n≥1

−1 + coth(nπx)

n3
.

The sum term is harmonic and may be evaluated by inverting its Mellin
transform. We will construct a functional equation for T (x).

Using the harmonic sum identity in the present case we have

λk =
1

k3
, µk = k and g(x) = 2

e−2πx

1− e−2πx
.

We need the Mellin transform g∗(s) of g(x) which is

2

∫ ∞
0

e−2πx

1− e−2πx
xs−1dx

= 2

∫ ∞
0

∑
q≥1

e−2qπxxs−1dx = 2
∑
q≥1

∫ ∞
0

e−2qπxxs−1dx

= 2Γ(s)
∑
q≥1

1

(2πq)s
=

2

2s
1

πs
Γ(s)ζ(s).

It follows that the Mellin transform Q(s) of the harmonic sum T (x) is given
by

Q(s) =
2

2s
1

πs
Γ(s)ζ(s)ζ(s+ 3) because

∑
k≥1

λk
µsk

=
∑
k≥1

1

k3
1

ks
= ζ(s+ 3)

for <(s) > −2.
The Mellin inversion integral here is

1

2πi

∫ 3/2+i∞

3/2−i∞
Q(s)/xsds

which we evaluate by shifting it to the left for an expansion about zero.
Fortunately the trivial zeros of the two zeta function terms cancel the poles

of the gamma function term. Shifting to <(s) = −3− 1/2 we get

T (x) =
π3x3

90
+ 4ζ ′(−2)π2x2 +

π3x

18
− ζ(3) +

π3

90x
+

1

2πi

∫ −7/2+i∞
−7/2−i∞

Q(s)/xsds.

Substitute s = −2− t in the remainder integral to get

− 1

2πi

∫ 3/2−i∞

3/2+i∞

2

2−2−t
1

π−2−t
Γ(−2− t)ζ(−2− t)ζ(1− t)xt+2dt
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which is

x2

2πi

∫ 3/2+i∞

3/2−i∞
23+tπ2+tΓ(−2− t)ζ(−2− t)ζ(1− t)xtdt.

In view of the desired functional equation we now use the functional equation
of the Riemann zeta function on Q(s) to prove that the integrand of the last
integral is in fact −Q(t).

Start with the functional equation

ζ(1− s) =
2

2sπs
cos
(πs

2

)
Γ(s)ζ(s)

and substitute this into Q(s) to obtain

Q(s) =
2

2s
1

πs
ζ(1− s)2sπs

2 cos
(
πs
2

) ζ(s+ 3) =
ζ(3 + s)

cos
(
πs
2

)ζ(1− s).

Apply the functional equation again (this time to ζ(s+ 3)) to get

Q(s) =
1

cos
(
πs
2

) 2

2−2−sπ−2−s
cos

(
π(−2− s)

2

)
Γ(−2− s)ζ(−2− s)ζ(1− s)

Observe that
cos
(
−π − πs

2

)
cos
(
πs
2

) = −
cos
(
−πs2

)
cos
(
πs
2

) = −1

so we finally get

Q(s) = −23+sπ2+sΓ(−2− s)ζ(−2− s)ζ(1− s),

thus proving the claim.
We have established the functional equation

T (x) =
π3x3

90
+ 4ζ ′(−2)π2x2 +

π3x

18
− ζ(3) +

π3

90x
− x2T (1/x).

Finally returning to the sum that was the initial goal we see that it has the
value

ζ(3) + T (x) + x2(ζ(3) + T (1/x))

or
ζ(3) + T (x) + x2ζ(3) + x2T (1/x).

Using the functional equation for T (x) this becomes

ζ(3) + T (x) + x2ζ(3) +
π3x3

90
+ 4ζ ′(−2)π2x2 +

π3x

18
− ζ(3) +

π3

90x
− T (x)

which is

x2ζ(3) +
π3x3

90
+ 4ζ ′(−2)π2x2 +

π3x

18
+

π3

90x
.
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In view of the fact that

ζ(3) + 4ζ ′(−2)π2 = 0

this finally becomes

π3x3

90
+
π3x

18
+

π3

90x
=

π3

90x

(
x4 + 5x2 + 1

)
.

This is math.stackexchange.com question 907480.

5 A transform with remarkable symmetries

Suppose we seek to show that∑
n≥1

(−1)n+1

n3
1

sinh(πn)
=

π3

360
.

Using
1

sinh(x)
=

2

ex − e−x
= 2

e−x

1− e−2x

this is the same as ∑
n≥1

(−1)n+1

n3
e−nπ

1− e−2nπ
=

π3

720
.

Let p be a positive integer and introduce

S(x; p) =
∑
n≥1

(−1)n+1

n2p+1

e−nx

1− e−2nx
.

We will evaluate S(π; p) using a functional equation for S(x; p) that is ob-
tained by inverting its Mellin transform.

With the standard harmonic sum identity in the present case we have

λk =
(−1)k+1

k2p+1
, µk = k and g(x) =

e−x

1− e−2x
.

We need the Mellin transform g∗(s) of g(x) which is

∫ ∞
0

e−x

1− e−2x
xs−1dx =

∫ ∞
0

∑
q≥0

e−(2q+1)xxs−1dx =
∑
q≥0

∫ ∞
0

e−(2q+1)xxs−1dx

= Γ(s)
∑
q≥0

1

(2q + 1)s
=

(
1− 1

2s

)
Γ(s)ζ(s)

with fundamental strip 〈1,∞〉.
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It follows that the Mellin transform Q(s) of the harmonic sum S(x; p) is
given by

Q(s) =

(
1− 1

2s

)(
1− 1

2s+2p

)
Γ(s)ζ(s)ζ(s+ 2p+ 1)

because
∑
k≥1

λk
µsk

=
∑
k≥1

(−1)k+1

k2p+1

1

ks
=

(
1− 2

2s+2p+1

)
ζ(s+ 2p+ 1)

for <(s+ 2p+ 1) > 1 or <(s) > −2p.
The Mellin inversion integral here is

1

2πi

∫ 3/2+i∞

3/2−i∞
Q(s)/xsds

which we evaluate by shifting it to the left for an expansion about zero.
Fortunately the trivial zeros of the two zeta function terms cancel the poles

of the gamma function term. The first term cancels those at −2m where m ≥ 1
and the second one the odd ones from −2p − 3 on, which leaves the poles at
s = 1, and −2q − 1 with 0 ≤ q ≤ p. It would appear there is a pole at s = −2p
but this is not the case since we have two simple poles among the five terms but
also two zero values, making for cancelation. The pole at s = 0 is canceled as
well.

For the residue at s = 1 we find

1

2

22p+1 − 1

22p+1
× 1× ζ(2p+ 2)

1

x
=

22p+1 − 1

22p+2

(−1)pB2p+2(2π)2p+2

2(2p+ 2)!

1

x

= (22p+1 − 1)
(−1)pB2p+2π

2p+2

2(2p+ 2)!

1

x
.

The negative odd values at s = −2q − 1 yield

(
1− 1

2−2q−1

)(
1− 1

22p−2q−1

)
(−1)2q+1

(2q + 1)!
ζ(−2q − 1)ζ(2p− 2q)x2q+1

= (1−22q+1)

(
1− 1

22p−2q−1

)
1

(2q + 1)!

B2q+2

2q + 2

(−1)p−q+1B2p−2q(2π)2p−2q

2(2p− 2q)!
x2q+1

=
1

2
(1− 22q+1)(22p−2q−1 − 1)

(−1)p−q+1

(2q + 1)!

B2q+2B2p−2qπ
2p−2q

(2p− 2q)!(q + 1)
x2q+1.

Shifting to <(s) = −2p− 3/2 we get

S(x; p) = (22p+1 − 1)
(−1)pB2p+2π

2p+2

2(2p+ 2)!

1

x

16



+
1

2

p∑
q=0

(1− 22q+1)(22p−2q−1 − 1)
(−1)p−q+1

(2q + 1)!

B2q+2B2p−2qπ
2p−2q

(2p− 2q)!(q + 1)
x2q+1

+
1

2πi

∫ −2p−3/2+i∞
−2p−3/2−i∞

Q(s)/xsds.

We will turn this into the promised functional equation.
Substitute s = −2p− t in the remainder integral to get

− 1

2πi

∫ 3/2−i∞

3/2+i∞

(
1− 22p+t

) (
1− 2t

)
Γ(−2p− t)ζ(−2p− t)ζ(1− t)xt+2pdt

which is

x2p

2πi

∫ 3/2+i∞

3/2−i∞

(
1− 22p+t

) (
1− 2t

)
Γ(−2p− t)ζ(−2p− t)ζ(1− t)xtdt.

In view of the desired functional equation we now use the functional equation
of the Riemann zeta function on Q(s) to prove that the integrand of the last
integral is in fact (−1)pQ(t)/π2p+2t.

Start with the functional equation

ζ(1− s) =
2

2sπs
cos
(πs

2

)
Γ(s)ζ(s)

and substitute this into Q(s) to obtain

Q(s) =

(
1− 1

2s

)(
1− 1

2s+2p

)
ζ(1− s)2sπs

2 cos
(
πs
2

) ζ(s+ 2p+ 1)

=
1

2
(2s − 1)

(
1− 1

2s+2p

)
πs
ζ(s+ 2p+ 1)

cos
(
πs
2

) ζ(1− s).

Apply the functional equation again (this time to ζ(s+ 2p+ 1)) to get

Q(s) =
1

2

πs

cos
(
πs
2

) (2s − 1)

(
1− 1

2s+2p

)
2

2−2p−sπ−2p−s
cos

(
π(−2p− s)

2

)
×Γ(−2p− s)ζ(−2p− s)ζ(1− s)

=
πs

cos
(
πs
2

) (2s − 1)(22p+s − 1)π2p+s(−1)p cos

(
−πs

2

)
×Γ(−2p− s)ζ(−2p− s)ζ(1− s)

and we finally get

Q(s) = (−1)pπ2p+2s(1− 2s)(1− 22p+s)Γ(−2p− s)ζ(−2p− s)ζ(1− s)
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thus proving the claim.
Return to the remainder integral and re-write it as follows:

(−1)p
(x/π)2p

2πi

∫ 3/2+i∞

3/2−i∞
(−1)pπ2p+2t

(
1− 22p+t

) (
1− 2t

)
×Γ(−2p− t)ζ(−2p− t)ζ(1− t)(x/π2)tdt.

so that the fact of it being a multiple of the defining integral of S(π2/x; p)
becomes readily apparent.

We have established the functional equation

S(x; p) = (22p+1 − 1)
(−1)pB2p+2π

2p+2

2(2p+ 2)!

1

x

+
1

2

p∑
q=0

(1− 22q+1)(22p−2q−1 − 1)
(−1)p−q+1

(2q + 1)!

B2q+2B2p−2qπ
2p−2q

(2p− 2q)!(q + 1)
x2q+1

+(−1)p
(x
π

)2p
S(π2/x; p).

Now the value x = π is obviously special here (fixed point) and we get for
p = 2r + 1 with r ≥ 0 (p even yields a Bernoulli number identity)

S(π; 2r + 1) =
∑
n≥1

(−1)n+1

n4r+3

e−nx

1− e−2nx
= −π

4r+3

4
(24r+3 − 1)

B4r+4

(4r + 4)!

+
π4r+3

4

2r+1∑
q=0

(1− 22q+1)(24r+1−2q − 1)
(−1)q

(2q + 1)!

B2q+2B4r+2−2q

(4r + 2− 2q)!(q + 1)
.

We obtain a rational multiple of π4r+3. Scale by two to get for∑
n≥1

(−1)n+1

n3
1

sinh(πn)
,
∑
n≥1

(−1)n+1

n7
1

sinh(πn)
,

∑
n≥1

(−1)n+1

n11
1

sinh(πn)
,
∑
n≥1

(−1)n+1

n15
1

sinh(πn)
, . . .

the values

π3

360
,

13π7

453600
,

4009π11

13621608000
,

13739π15

4547140416000
, . . .

These are dominated by the first term

1

sinh(π)
.

This was math.stackexchange.com problem 2598443.
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6 A sum formula by Cauchy and Ramanujan

We are trying to show that

∑
m∈Z
m 6=0

cothmπ

m4p+3
= (2π)4p+3

2p+2∑
q=0

B2q

(2q)!
(−1)q+1 B4p+4−2q

(4p+ 4− 2q)!
,

Note that this sum is in fact

2
∑
m≥1

cothmπ

m4p+3
.

The sum term

Tp(x) = 2
∑
m≥1

cothmx

m4p+3

is harmonic and may be evaluated by inverting its Mellin transform.
Observe that

cothx =
ex + e−x

ex − e−x
= 1 + 2

e−x

ex − e−x
= 1 + 2

e−2x

1− e−2x
.

This yields

Tp(x) = 2ζ(4p+ 3) + 4
∑
m≥1

1

m4p+3

e−2mx

1− e−2mx
.

We will now work with

S(x) =
∑
m≥1

1

m4p+3

e−2mx

1− e−2mx

and establish a functional equation for S(x) that has x = π as a fixed point.
With the harmonic sum identity in the present case we have

λk =
1

k4p+3
, µk = k and g(x) =

exp(−2x)

1− exp(−2x)
.

We need the Mellin transform g∗(s) of g(x) which we compute as follows:∫ ∞
0

exp(−2x)

1− exp(−2x)
xs−1dx =

∫ ∞
0

∑
q≥1

exp(−2qx) xs−1dx

=
∑
q≥1

∫ ∞
0

exp(−2qx) xs−1dx = Γ(s)
∑
q≥1

1

2sqs
=

1

2s
Γ(s)ζ(s).

with fundamental strip 〈1,∞〉.
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Hence the Mellin transform Q(s) of S(x) is given by

Q(s) =
1

2s
Γ(s)ζ(s)ζ(s+ 4p+ 3) because

∑
k≥1

λk
µsk

= ζ(s+ 4p+ 3)

where <(s+ 4p+ 3) > 1 or <(s) > −4p− 2.
Intersecting the fundamental strip and the half-plane from the zeta function

term we find that the Mellin inversion integral for an expansion about zero is

1

2πi

∫ 3/2+i∞

3/2−i∞
Q(s)/xsds

which we evaluate in the left half-plane <(s) < 3/2.
The plain zeta function term cancels the poles of the gamma function term at

even negative integers 2q ≤ −2 and the compound zeta function term the poles
at odd negative integers 2q + 1 ≤ −4p − 5. We are left with the contributions
from s = 1, s = 0 and s = −1 which are

Res(Q(s)/xs; s = 1) =
1

2x
ζ(4p+ 4)

Res(Q(s)/xs; s = 0) = −1

2
ζ(4p+ 3)

Res(Q(s)/xs; s = −1) =
1

6
xζ(4p+ 2).

The remaining contributions are

2p+1∑
q=1

Res(Q(s)/xs; s = −2q − 1)

=

2p+1∑
q=1

22q+1x2q+1 (−1)2q+1

(2q + 1)!
ζ(−2q − 1)ζ(4p+ 2− 2q)

=

2p+1∑
q=1

22q+1x2q+1 1

(2q + 1)!

B2q+2

2q + 2
(−1)2p+1−q+1B4p+2−2q(2π)4p+2−2q

2(4p+ 2− 2q)!

=

2p+1∑
q=1

22q+1x2q+1 B2q+2

(2q + 2)!
(−1)−q

B4p+2−2q(2π)4p+2−2q

2(4p+ 2− 2q)!

=

2p+2∑
q=2

22q−1x2q−1
B2q

(2q)!
(−1)q+1B4p+4−2q(2π)4p+4−2q

2(4p+ 4− 2q)!

= 24p+2

2p+2∑
q=2

x2q−1
B2q

(2q)!
(−1)q+1B4p+4−2qπ

4p+4−2q

(4p+ 4− 2q)!

= 24p+2

2p+2∑
q=2

x2q−1π4p+4−2q B2q

(2q)!
(−1)q+1 B4p+4−2q

(4p+ 4− 2q)!
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and the one from the pole of the compound zeta function term at s = −4p−2
which we’ll do in a moment.

Now some algebra shows that setting q = 0 and q = 1 in the sum produces
precisely the values that we obtained earlier for the poles at s = 1 and s = −1
so we may extend the sum to start at zero, keeping only the residue from the
pole at s = 0 to get

24p+2

2p+2∑
q=0

x2q−1π4p+4−2q B2q

(2q)!
(−1)q+1 B4p+4−2q

(4p+ 4− 2q)!
.

We have thus established that

S(x) = −1

2
ζ(4p+ 3) + Res(Q(s)/xs; s = −4p− 2)

+ 24p+2

2p+2∑
q=0

x2q−1π4p+4−2q B2q

(2q)!
(−1)q+1 B4p+4−2q

(4p+ 4− 2q)!

+
1

2πi

∫ −4p−4+i∞
−4p−4−i∞

Q(s)/xsds.

To treat the integral recall the duplication formula of the gamma function:

Γ(s) =
1√
π

2s−1Γ
(s

2

)
Γ

(
s+ 1

2

)
.

which yields for the integral∫ −4p−4+i∞
−4p−4−i∞

1

2
√
π

Γ
(s

2

)
Γ

(
s+ 1

2

)
ζ(s)ζ(s+ 4p+ 3)/xsds.

Furthermore observe the following variant of the functional equation of the
Riemann zeta function:

Γ
(s

2

)
ζ(s) = πs−1/2Γ

(
1− s

2

)
ζ(1− s)

which gives for the integral∫ −4p−4+i∞
−4p−4−i∞

πs−1

2
Γ

(
s+ 1

2

)
Γ

(
1− s

2

)
ζ(1− s)ζ(s+ 4p+ 3)/xsds

=

∫ −4p−4+i∞
−4p−4−i∞

πs

2

1

sin(π/2(s+ 1))
ζ(1− s)ζ(s+ 4p+ 3)/xsds.
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Now put s = −4p− 2− u to get∫ 2+i∞

2−i∞

π−4p−2−u

2

1

sin(π/2(−4p− 2− u+ 1))

× ζ(u+ 4p+ 3)ζ(1− u)/x−4p−2−udu

=
x4p+2

π4p+2

∫ 2+i∞

2−i∞

π−u

2

1

sin(π/2(−(u+ 1)))

× ζ(u+ 4p+ 3)ζ(1− u)/x−udu

= −x
4p+2

π4p+2

∫ 2+i∞

2−i∞

π−u

2

1

sin(π/2(u+ 1))

× ζ(u+ 4p+ 3)ζ(1− u)/x−udu.

We have established the functional equation

S(x) = −1

2
ζ(4p+ 3) + Res(Q(s)/xs; s = −4p− 2)

+ 24p+2

2p+2∑
q=0

x2q−1π4p+4−2q B2q

(2q)!
(−1)q+1 B4p+4−2q

(4p+ 4− 2q)!
−
(x
π

)4p+2

S

(
π2

x

)
.

Setting x = π we have

S(π) = −1

2
ζ(4p+ 3) + Res(Q(s)/πs; s = −4p− 2)

+ 24p+2π4p+3

2p+2∑
q=0

B2q

(2q)!
(−1)q+1 B4p+4−2q

(4p+ 4− 2q)!
−
(π
π

)4p+2

S (π)

and hence

S(π) = −1

4
ζ(4p+ 3) +

1

2
Res(Q(s)/πs; s = −4p− 2)

+ 24p+1π4p+3

2p+2∑
q=0

B2q

(2q)!
(−1)q+1 B4p+4−2q

(4p+ 4− 2q)!
.

To conclude we treat the residue that we have defered until now. Recall the
alternate form of Q(s)/πs,

πs

2

1

sin(π/2(s+ 1))
ζ(1− s)ζ(s+ 4p+ 3)/πs

=
1

2

1

sin(π/2(s+ 1))
ζ(1− s)ζ(s+ 4p+ 3).

It follows that the residue at s = −4p− 2 is

1

2

1

sin(π/2(−4p− 1))
ζ(4p+ 3) =

1

2

1

sin(−π/2)
ζ(4p+ 3) = −1

2
ζ(4p+ 3).
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This finally yields for S(π)

S(π) = −1

2
ζ(4p+ 3) + 24p+1π4p+3

2p+2∑
q=0

B2q

(2q)!
(−1)q+1 B4p+4−2q

(4p+ 4− 2q)!
.

Computing Tp(π) we thus obtain

2ζ(4p+ 3)− 4× 1

2
ζ(4p+ 3) + 24p+3π4p+3

2p+2∑
q=0

B2q

(2q)!
(−1)q+1 B4p+4−2q

(4p+ 4− 2q)!

or

(2π)4p+3

2p+2∑
q=0

B2q

(2q)!
(−1)q+1 B4p+4−2q

(4p+ 4− 2q)!
,

QED.
This is math.stackexchange.com question 1293232.

7 A functional equation relating two harmonic
sums

Suppose we seek a functional equation for

S(x) =
∑
k≥1

1

(2k − 1)

1

exp(x(2k − 1))− exp(−x(2k − 1))
.

The sum S(x) is harmonic and may be evaluated by inverting its Mellin
transform.

With the harmonic sum identity in the present case we have

λk =
1

(2k − 1)
, µk = 2k − 1 and g(x) =

1

exp(x)− exp(−x)
.

We need the Mellin transform g∗(s) of g(x) which is computed as follows:

g∗(s) =

∫ ∞
0

1

exp(x)− exp(−x)
xs−1dx =

∫ ∞
0

exp(−x)

1− exp(−2x)
xs−1dx

=

∫ ∞
0

∑
q≥0

exp(−(2q + 1)x)xs−1dx =
∑
q≥0

1

(2q + 1)s
Γ(s) =

(
1− 1

2s

)
Γ(s)ζ(s).

Hence the Mellin transform Q(s) of S(x) is given by

Q(s) =

(
1− 1

2s+1

)(
1− 1

2s

)
Γ(s)ζ(s)ζ(s+ 1)

because
∑
k≥1

λk
µsk

=

(
1− 1

2s+1

)
ζ(s+ 1)
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where <(s) > 1. Intersecting the fundamental strip and the half-plane from the
zeta function term we find that the Mellin inversion integral for an expansion
about zero is

1

2πi

∫ 3/2+i∞

3/2−i∞
Q(s)/xsds

which we evaluate in the left half-plane <(s) < 3/2.
The two zeta function terms cancel the poles of the gamma function term

and we are left with just

Res(Q(s)/xs; s = 1) =
π2

16x
and (1)

Res(Q(s)/xs; s = 0) = −1

4
log 2. (2)

This shows that

S(x) =
π2

16x
− 1

4
log 2 +

1

2πi

∫ −1/2+i∞
−1/2−i∞

Q(s)/xsds.

To treat the integral recall the duplication formula of the gamma function:

Γ(s) =
1√
π

2s−1Γ
(s

2

)
Γ

(
s+ 1

2

)
.

which yields for Q(s)(
1− 1

2s+1

)(
1− 1

2s

)
1√
π

2s−1Γ
(s

2

)
Γ

(
s+ 1

2

)
ζ(s)ζ(s+ 1)

Furthermore observe the following variant of the functional equation of the
Riemann zeta function:

Γ
(s

2

)
ζ(s) = πs−1/2Γ

(
1− s

2

)
ζ(1− s)

which gives for Q(s)(
1− 1

2s+1

)(
1− 1

2s

)
1√
π

2s−1πs−1/2Γ

(
s+ 1

2

)
Γ

(
1− s

2

)
ζ(1− s)ζ(s+ 1)

=

(
1− 1

2s+1

)(
1− 1

2s

)
1√
π

2s−1πs−1/2
π

sin(π(s+ 1)/2)
ζ(1− s)ζ(s+ 1)

=

(
1− 1

2s+1

)(
1− 1

2s

)
2s−1

πs

sin(π(s+ 1)/2)
ζ(1− s)ζ(s+ 1).

Now put s = −u in the remainder integral to get
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1

2πi

∫ 1/2+i∞

1/2−i∞

(
1− 2u

2

)
(1− 2u) 2−u−1

π−u

sin(π(−u+ 1)/2)
ζ(1 + u)ζ(1− u)xudu

=
1

2πi

∫ 1/2+i∞

1/2−i∞

(
1− 2u

2

)
(1− 2u) 2−u−1

× πu

sin(π(−u+ 1)/2)
ζ(1 + u)ζ(1− u)(x/π2)udu.

We may shift this to 3/2 as there is no pole at u = 1.
Now

sin(π(−u+ 1)/2) = sin(π(−u− 1)/2 + π)

= − sin(π(−u− 1)/2) = sin(π(u+ 1)/2)

and furthermore(
1− 2u

2

)
(1− 2u) 2−u−1 =

1

2

(
1− 2u

2

)(
1

2u
− 1

)
= 2u−2

(
1

2u−1
− 1

)(
1

2u
− 1

)

= 2u−2
(

1− 1

2u−1

)(
1− 1

2u

)
= 2u−2

(
1− 1

2u+1

)(
1− 1

2u

)
− 3× 2u−2

1

2u+1

(
1− 1

2u

)
=

1

2
2u−1

(
1− 1

2u+1

)(
1− 1

2u

)
− 3

4
2u−1

(
1− 1

2u

)
1

2u
.

We have shown that

S(x) =
π2

16x
− 1

4
log 2 +

1

2
S(π2/x)

−3

4

1

2πi

∫ 3/2+i∞

3/2−i∞

(
1− 1

2u

)
Γ(u)ζ(u)ζ(u+ 1)(x/π2/2)udu

or alternatively

S(x) =
π2

16x
− 1

4
log 2 +

1

2
S(π2/x)− 3

4
T (2π2/x)

where

T (x) =
∑
k≥1

1

k

1

exp(kx)− exp(−kx)

with functional equation

T (x) =
1

24
x− 1

2
log 2 +

π2

12x
− T (2π2/x).
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which finally yields

S(x) =
1

2
S(π2/x)− 1

32
x+

1

8
log 2 +

3

4
T (x).

Using sinh with

S(x) =
∑
k≥1

1

(2k − 1)

1

sinh((2k − 1)x)
and T (x) =

∑
k≥1

1

k

1

sinh(kx)

we obtain the functional equation

S(x) =
1

2
S(π2/x)− 1

16
x+

1

4
log 2 +

3

4
T (x).

We also have

T (
√

2π) =

√
2π

24
− 1

2
log 2 +

π
√

2

24
=

√
2π

12
− 1

2
log 2.

This was math.stackexchange.com problem 1417849.

8 Functional equation of the Hurwitz Zeta func-
tion

Suppose we seek to show that

∞∑
k=0

(−1)k

2k + 1

1

exp((2k + 1)π/2) + exp(−(2k + 1)π/2)
=

π

16
.

The sum term

S(x) =
∑
k≥1

(−1)k+1

2k − 1

1

exp(x(2k − 1)) + exp(−x(2k − 1))

is harmonic and may be evaluated by inverting its Mellin transform. We are
interested in S(π/2).

With the harmonic sum identity in the present case we have

λk =
(−1)k+1

2k − 1
, µk = 2k − 1 and g(x) =

1

exp(x) + exp(−x)
.

We need the Mellin transform g∗(s) of g(x) which is computed as follows:

g∗(s) =

∫ ∞
0

1

exp(x) + exp(−x)
xs−1dx =

∫ ∞
0

exp(−x)

1 + exp(−2x)
xs−1dx

=

∫ ∞
0

∑
q≥0

(−1)q exp(−(2q + 1)x)xs−1dx = Γ(s)
∑
q≥0

(−1)q

(2q + 1)s
= Γ(s)β(s)
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where

β(s) = 4−s
(
ζ

(
s,

1

4

)
− ζ

(
s,

3

4

))
.

Note that β(s) does not have a pole at s = 1 and β(1) = π
4 .

Hence the Mellin transform Q(s) of S(x) is given by

Q(s) = Γ(s)β(s)β(s+ 1) because
∑
k≥1

λk
µsk

= β(s+ 1)

where <(s) > 0. Intersecting the fundamental strip and the half-plane from the
zeta function term we find that the Mellin inversion integral for an expansion
about zero is

1

2πi

∫ 1/2+i∞

1/2−i∞
Q(s)/xsds

which we evaluate in the left half-plane <(s) < 1/2.
The two beta function terms cancel the poles of the gamma function term

and we are left with just

Res(Q(s)/xs; s = 0) =
π

8
.

This shows that

S(x) =
π

8
+

1

2πi

∫ −1/2+i∞
−1/2−i∞

Q(s)/xsds.

To treat the integral recall the duplication formula of the gamma function:

Γ(s) =
1√
π

2s−1Γ
(s

2

)
Γ

(
s+ 1

2

)
.

which yields for Q(s)

1√
π

2s−1Γ
(s

2

)
Γ

(
s+ 1

2

)
β(s)β(s+ 1)

Furthermore observe the following variant of the functional equation of the
Riemann zeta function adapted to the beta function:

Γ

(
s+ 1

2

)
β(s) = 21−2sπs−1/2Γ

(
1− s

2

)
β(1− s)

which gives for Q(s)

1√
π

2s−1Γ
(s

2

)
21−2sπs−1/2Γ

(
1− s

2

)
β(1− s)β(s+ 1)

= 2−sπs−1
π

sin(πs/2)
β(1− s)β(s+ 1)
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= 2−s
πs

sin(πs/2)
β(1− s)β(s+ 1).

Now put s = −u in the remainder integral to get

1

2πi

∫ 1/2+i∞

1/2−i∞
2u

π−u

sin(−πu/2)
ζ(1 + u)ζ(1− u)xudu

= − 1

2πi

∫ 1/2+i∞

1/2−i∞
2−u

πu

sin(πu/2)
ζ(1 + u)ζ(1− u)(4x/π2)udu.

We have shown that

S(x) =
π

8
− S(π2/4/x).

In particular we get

S(π/2) =
π

8
− S(π/2) or S(π/2) =

π

16

as claimed.
Addendum. The functional equation for β(s) can be derived from the

functional equation of the Hurwitz Zeta function:

ζ
(

1− s, m
n

)
=

2Γ(s)

(2πn)s

n∑
k=1

[
cos

(
πs

2
− 2πkm

n

)
ζ

(
s,
k

n

)]
.

where 1 ≤ m ≤ n.
This yields

ζ(1− s, 1/4) =
2Γ(s)

23sπs
[cos(πs/2− π/2)ζ(s, 1/4) + cos(πs/2− π)ζ(s, 1/2)

+ cos(πs/2− 3π/2)ζ(s, 3/4) + cos(πs/2− 2π)ζ(s)]

=
2Γ(s)

23sπs
[sin(πs/2)ζ(s, 1/4)− cos(πs/2)ζ(s, 1/2)

− sin(πs/2)ζ(s, 3/4) + cos(πs/2)ζ(s)] .

Similarly

ζ(1− s, 3/4) =
2Γ(s)

23sπs
[cos(πs/2− 3π/2)ζ(s, 1/4) + cos(πs/2− 3π)ζ(s, 1/2)

+ cos(πs/2− 9π/2)ζ(s, 3/4) + cos(πs/2− 6π)ζ(s)]

=
2Γ(s)

23sπs
[− sin(πs/2)ζ(s, 1/4)− cos(πs/2)ζ(s, 1/2)

+ sin(πs/2)ζ(s, 3/4) + cos(πs/2)ζ(s)] .
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Subtract to obtain

41−sβ(1− s) =
2Γ(s)

23sπs
(2 sin(πs/2)ζ(s, 1/4)− 2 sin(πs/2)ζ(s, 3/4))

or

41−sβ(1− s) =
2Γ(s)

23sπs
2 sin(πs/2)4sβ(s)

which is

β(1− s) = 2s
Γ(s)

πs
sin(πs/2)β(s)

=
1

πs+1/2
22s−1Γ

(s
2

)
Γ

(
s+ 1

2

)
sin(πs/2)β(s)

=
1

πs+1/2
22s−1

π

sin(πs/2)
Γ
(

1− s

2

)−1
Γ

(
s+ 1

2

)
sin(πs/2)β(s)

which yields

β(1− s)Γ
(

1− s

2

)
= π1/2−s22s−1β(s)Γ

(
s+ 1

2

)
which is the desired result.

This was math.stackexchange.com problem 1447489.

9 Two contrasting examples of fixed point sce-
narios

Suppose we seek a functional equation for the sum term

S(x) =
∑
k≥1

k5

exp(kx)− 1

which is harmonic and may be evaluated by inverting its Mellin transform.
We are interested in possible fixed points of the functional equation especially
S(2π).

With the harmonic sum identity in the present case we have

λk = k5, µk = k and g(x) =
1

exp(x)− 1
.

We need the Mellin transform g∗(s) of g(x) which is computed as follows:

g∗(s) =

∫ ∞
0

1

exp(x)− 1
xs−1dx =

∫ ∞
0

exp(−x)

1− exp(−x)
xs−1dx

=

∫ ∞
0

∑
q≥1

exp(−qx)xs−1dx =
∑
q≥1

1

qs
Γ(s) = Γ(s)ζ(s).
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Hence the Mellin transform Q(s) of S(x) is given by

Q(s) = Γ(s)ζ(s)ζ(s− 5) because
∑
k≥1

λk
µsk

=
∑
k≥1

k5

ks
= ζ(s− 5)

where <(s) > 6.
Intersecting the fundamental strip and the half-plane from the zeta function

term we find that the Mellin inversion integral for an expansion about zero is

1

2πi

∫ 13/2+i∞

13/2−i∞
Q(s)/xsds

which we evaluate in the left half-plane <(s) < 13/2.
The two zeta function terms cancel the poles of the gamma function term

and we are left with just

Res(Q(s)/xs; s = 6) =
8π6

63x6
andRes(Q(s)/xs; s = 0) =

1

504
. (3)

This shows that

S(x) =
8π6

15x6
+

1

504
+

1

2πi

∫ −1/2+i∞
−1/2−i∞

Q(s)/xsds.

To treat the integral recall the duplication formula of the gamma function:

Γ(s) =
1√
π

2s−1Γ
(s

2

)
Γ

(
s+ 1

2

)
.

which yields for Q(s)

1√
π

2s−1Γ
(s

2

)
Γ

(
s+ 1

2

)
ζ(s)ζ(s− 5)

Furthermore observe the following variant of the functional equation of the
Riemann zeta function:

Γ
(s

2

)
ζ(s) = πs−1/2Γ

(
1− s

2

)
ζ(1− s)

which gives for Q(s)

1√
π

2s−1πs−1/2Γ

(
s+ 1

2

)
Γ

(
1− s

2

)
ζ(1− s)ζ(s− 5)

=
1√
π

2s−1πs−1/2
π

sin(π(s+ 1)/2)
ζ(1− s)ζ(s− 5)

= 2s−1
πs

sin(π(s+ 1)/2)
ζ(1− s)ζ(s− 5).
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Now put s = 6− u in the remainder integral to get

1

x6
1

2πi

∫ 13/2+i∞

13/2−i∞
25−u

π6−u

sin(π(7− u)/2)
ζ(u− 5)ζ(1− u)xudu

=
64π6

x6
1

2πi

∫ 13/2+i∞

13/2−i∞
2u−1

πu

sin(π(7− u)/2)
ζ(u− 5)ζ(1− u)(x/π2/22)udu.

Now
sin(π(7− u)/2) = sin(π(−u− 1)/2 + 4π)

= sin(π(−u− 1)/2) = − sin(π(u+ 1)/2).

We have shown that

S(x) =
8π6

63x6
+

1

504
− 64π6

x6
S(4π2/x).

In particular we get

S(2π) =
1

63× 8
+

1

504
− S(2π)

or

S(2π) =
1

504
.

Remark. Unfortunately this method does not work for

S(x) =
∑
k≥1

k3

exp(kx)− 1

We get the functional equation

S(x) =
π4

15x4
− 1

240
+

16π4

x4
S(4π2/x).

which yields

S(2π) =
1

15× 16
− 1

240
+ S(2π)

which holds without providing any data about the value itself.
This was math.stackexchange.com problem 1482918.

10 Making more effective use of a two-cycle of
fixed points

Suppose we seek to evaluate

F (p) =
∑
n≥1

n4p−1

eπn − 1
− 16p

∑
n≥1

n4p−1

e4πn − 1
.
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These sums may be evaluated using harmonic summation techniques.
Introduce the sum

S(x; p) =
∑
n≥1

n4p−1

enx − 1

with p a positive integer and x ≥ 0.
The sum term is harmonic and may be evaluated by inverting its Mellin

transform.
With the harmonic sum identity in the present case we have

λk = k4p−1, µk = k and g(x) =
1

ex − 1
.

We need the Mellin transform g∗(s) of g(x) which is∫ ∞
0

1

ex − 1
xs−1dx =

∫ ∞
0

e−x

1− e−x
xs−1dx

=

∫ ∞
0

∑
q≥1

e−qxxs−1dx =
∑
q≥1

∫ ∞
0

e−qxxs−1dx

= Γ(s)
∑
q≥1

1

qs
= Γ(s)ζ(s).

It follows that the Mellin transform Q(s) of the harmonic sum S(x, p) is
given by

Q(s) = Γ(s)ζ(s)ζ(s− (4p− 1))

because
∑
k≥1

λk
µsk

=
∑
k≥1

k4p−1
1

ks
= ζ(s− (4p− 1))

for <(s) > 4p.
The Mellin inversion integral here is

1

2πi

∫ 4p+1/2+i∞

4p+1/2−i∞
Q(s)/xsds

which we evaluate by shifting it to the left for an expansion about zero.
The two zeta function terms cancel the poles of the gamma function term

and we are left with just

Res(Q(s)/xs; s = 4p) = Γ(4p)ζ(4p) and

Res(Q(s)/xs; s = 0) = ζ(0)ζ(−(4p− 1)).

Computing these residues we get

−(4p− 1)!
B4p(2π)4p

2(4p)!
= −B4p(2π)4p

2× 4p
and − 1

2
×−B4p

4p
.
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This shows that

S(x; p) = −B4p(2π)4p

8p× x4p
+
B4p

8p
+

1

2πi

∫ −1/2+i∞
−1/2−i∞

Q(s)/xsds.

To treat the integral recall the duplication formula of the gamma function:

Γ(s) =
1√
π

2s−1Γ
(s

2

)
Γ

(
s+ 1

2

)
.

which yields for Q(s)

1√
π

2s−1Γ
(s

2

)
Γ

(
s+ 1

2

)
ζ(s)ζ(s− (4p− 1))

Furthermore observe the following variant of the functional equation of the
Riemann zeta function:

Γ
(s

2

)
ζ(s) = πs−1/2Γ

(
1− s

2

)
ζ(1− s)

which gives for Q(s)

1√
π

2s−1πs−1/2Γ

(
s+ 1

2

)
Γ

(
1− s

2

)
ζ(1− s)ζ(s− (4p− 1))

=
1√
π

2s−1πs−1/2
π

sin(π(s+ 1)/2)
ζ(1− s)ζ(s− (4p− 1))

= 2s−1
πs

sin(π(s+ 1)/2)
ζ(1− s)ζ(s− (4p− 1)).

Now put s = 4p− u in the remainder integral to get

1

x4p
1

2πi

∫ 4p+1/2+i∞

4p+1/2−i∞
24p−1−u

× π4p−u

sin(π(4p+ 1− u)/2)
ζ(u− (4p− 1))ζ(1− u)xudu

=
24pπ4p

x4p
1

2πi

∫ 4p+1/2+i∞

4p+1/2−i∞
2u−1

× πu

sin(π(4p+ 1− u)/2)
ζ(u− (4p− 1))ζ(1− u)(x/π2/22)udu.

Now
sin(π(4p+ 1− u)/2) = sin(π(1− u)/2 + 2πp)

= sin(π(1− u)/2) = − sin(π(−1− u)/2) = sin(π(u+ 1)/2).
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We have shown that

S(x; p) = −B4p(2π)4p

8p× x4p
+
B4p

8p
+

24pπ4p

x4p
S(4π2/x; p) .

In particular we get

S(π; p) = −B4p2
4p

8p
+
B4p

8p
+ 24pS(4π; p)

and

S(4π; p) = −B4p2
−4p

8p
+
B4p

8p
+ 2−4pS(π; p).

Therefore

S(π; p)− 24pS(4π; p)

= −B4p(2
4p − 1)

8p
+
B4p

8p
(1− 24p) + (24pS(4π; p)− S(π; p)).

We finally conclude that

F (p) =
B4p

4p
(1− 24p)− F (p)

or

F (p) =
B4p

8p
(1− 24p).

The first few values are

1

16
,

17

32
,

691

16
,

929569

64
,

221930581

16
, . . .

We can use the functional equation to extract additional sum formulae. For
example when we choose the pair

√
2π and 2

√
2π

the scalar is 22p. The calculation starts from

S(
√

2π; p) = −B4p2
2p

8p
+
B4p

8p
+ 22pS(2

√
2π; p)

and

S(2
√

2π; p) = −B4p2
−2p

8p
+
B4p

8p
+ 2−2pS(

√
2π; p).

Therefore

34



S(
√

2π; p)− 22pS(2
√

2π; p)

= −B4p(2
2p − 1)

8p
+
B4p

8p
(1− 22p) + (22pS(2

√
2π; p)− S(

√
2π; p)).

We obtain the formula∑
n≥1

n4p−1

e
√
2πn − 1

− 4p
∑
n≥1

n4p−1

e2
√
2πn − 1

=
B4p

8p
(1− 22p).

We get for the initial values (factor is 1 + 22p)

1

80
,

1

32
,

691

1040
,

3617

64
,

5412941

400
, . . .

The reader is cordially invited to prove this last result by a different method.
Addendum. To illustrate the creation of identities from the functional

equation we present a third example, which is

√
3π and 4π/

√
3.

In this example the scalar is 24p3−2p. The calculation starts from

S(
√

3π; p) = − B4p2
4p

8p× 32p
+
B4p

8p
+

24p

32p
S(4π/

√
3; p)

and

S(4π/
√

3; p) = − B4p3
2p

8p× 24p
+
B4p

8p
+

32p

24p
S(
√

3π; p).

Therefore

S(
√

3π; p)− 24p3−2pS(4π/
√

3; p)

= −B4p(2
4p3−2p − 1)

8p
+
B4p

8p
(1− 24p3−2p) + (24p3−2pS(

√
3π; p)−S(4π/

√
3; p)).

We obtain the formula∑
n≥1

n4p−1

en
√
3π − 1

− 24p3−2p
∑
n≥1

n4p−1

en4π/
√
3 − 1

=
B4p

8p
(1− 24p3−2p).

Remark. The general pattern for

β and 4π2/β

is

∑
n≥1

n4p−1

enβ − 1
− 24pπ4p

β4p

∑
n≥1

n4p−1

en4π2/β − 1
=
B4p

8p

(
1− 24pπ4p

β4p

)
.

This was math.stackexchange.com problem 1792052.
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11 Double Bernoulli number

Suppose we seek to evaluate

S =
∑
n≥1

n13

e2πn − 1
.

This very similar to the previous calculation up to a sign.
Introduce the sum

S(x; p) =
∑
n≥1

n4p+1

enx − 1

with p a positive integer and x > 0.
Apply the harmonic sum identity to

λk = k4p+1, µk = k and g(x) =
1

ex − 1
.

We need the Mellin transform g∗(s) of g(x) which is∫ ∞
0

1

ex − 1
xs−1dx = Γ(s)ζ(s).

It follows that the Mellin transform Q(s) of the harmonic sum S(x, p) is
given by

Q(s) = Γ(s)ζ(s)ζ(s− (4p+ 1))

because
∑
k≥1

λk
µsk

=
∑
k≥1

k4p+1 1

ks
= ζ(s− (4p+ 1))

for <(s) > 4p+ 2.
The Mellin inversion integral here is

1

2πi

∫ 4p+5/2+i∞

4p+5/2−i∞
Q(s)/xsds

which we evaluate by shifting it to the left for an expansion about zero.
The two zeta function terms cancel the poles of the gamma function term

and we are left with just

Res(Q(s)/xs; s = 4p+ 2) = Γ(4p+ 2)ζ(4p+ 2)/x4p+2 and

Res(Q(s)/xs; s = 0) = ζ(0)ζ(−(4p+ 1)).

Computing these residues we get

(4p+ 1)!
B4p+2(2π)4p+2

2(4p+ 2)!× x4p+2
=

B4p+2(2π)4p+2

2× (4p+ 2)× x4p+2
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and

−1

2
×−B4p+2

4p+ 2
.

This shows that

S(x; p) =
B4p+2(2π)4p+2

(8p+ 4)× x4p+2
+
B4p+2

8p+ 4
+

1

2πi

∫ −1/2+i∞
−1/2−i∞

Q(s)/xsds.

To treat the integral recall the duplication formula of the gamma function:

Γ(s) =
1√
π

2s−1Γ
(s

2

)
Γ

(
s+ 1

2

)
.

which yields for Q(s)

1√
π

2s−1Γ
(s

2

)
Γ

(
s+ 1

2

)
ζ(s)ζ(s− (4p+ 1))

Furthermore observe the following variant of the functional equation of the
Riemann zeta function:

Γ
(s

2

)
ζ(s) = πs−1/2Γ

(
1− s

2

)
ζ(1− s)

which gives for Q(s)

1√
π

2s−1πs−1/2Γ

(
s+ 1

2

)
Γ

(
1− s

2

)
ζ(1− s)ζ(s− (4p+ 1))

=
1√
π

2s−1πs−1/2
π

sin(π(s+ 1)/2)
ζ(1− s)ζ(s− (4p+ 1))

= 2s−1
πs

sin(π(s+ 1)/2)
ζ(1− s)ζ(s− (4p+ 1)).

Now put s = 4p+ 2− u in the remainder integral to get

− 1

x4p+2

1

2πi

∫ 4p+5/2−i∞

4p+5/2+i∞
24p+1−u

× π4p+2−u

sin(π(4p+ 3− u)/2)
ζ(u− (4p+ 1))ζ(1− u)xudu

=
24p+2π4p+2

x4p+2

1

2πi

∫ 4p+5/2+i∞

4p+5/2−i∞
2u−1

× πu

sin(π(4p+ 3− u)/2)
ζ(u− (4p+ 1))ζ(1− u)(x/π2/22)udu.

Now
sin(π(4p+ 3− u)/2) = sin(π(1− u)/2 + π(2p+ 1))
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= − sin(π(1− u)/2) = sin(π(−1− u)/2) = − sin(π(u+ 1)/2).

We have shown that

S(x; p) =
B4p+2(2π)4p+2

(8p+ 4)× x4p+2
+
B4p+2

8p+ 4
− (2π)4p+2

x4p+2
S(4π2/x; p).

In particular we get

S(2π; p) =
B4p+2

8p+ 4
.

The sequence in p starting from p = 1 is

1

504
,

1

264
, 1/24,

43867

28728
,

77683

552
,

657931

24
,

1723168255201

171864
, . . .

We thus have for p = 3 as per request from OP

∑
n≥1

n13

e2πn − 1
=

1

24
.

This was math.stackexchange.com problem 3557171.
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